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Abstract
The purpose of the present paper is to introduce a generalized hypergeometric
distribution and obtain some necessary and sufficient conditions for generalized
hypergeometric distribution series belonging to certain classes of univalent functions
associated with the conic domains. We also investigate some inclusion relations.
Finally, we discuss an integral operator related to this series.
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1 Introduction
Let A denote the class of functions f (z) of the form

f (z) = z +
∞∑

n=2

anzn (1.1)

that are analytic in the open unit disk

U :=
{

z ∈C : |z| < 1
}

and satisfy the normalized conditions f (0) = f ′(0) – 1 = 0. As usual, we denote by S the
subclass of A consisting of functions of the form (1.1) that are also univalent in U. Further,
by T we denote the subclass of S consisting of functions of the form

f (z) = z –
∞∑

n=2

|an| zn. (1.2)

A function f ∈ A is said to be a starlike function of order α (0 ≤ α < 1) if

�
(

zf ′(z)
f (z)

)
> α, z ∈U.

We denote the class of starlike functions of order α by S ∗(α).
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A function f ∈ A is said to be a convex function of order α (0 ≤ α < 1) if

�
(

1 +
zf ′′(z)
f ′(z)

)
> α, z ∈U.

We denote the class of convex functions of order α by K (α).
Further, let S ∗(0) ≡ S ∗ and K (0) ≡ K be the well-known standard classes of starlike

and convex functions. The classes of starlike and convex functions of order α were studied
earlier by Robertson [17] and Silverman [18].

For some α (0 ≤ α < 1) and β ≥ 0 and functions of the form (1.1), let Sp(α,β) be the
subclass of S satisfying the analytic criteria

�
(

zf ′(z)
f (z)

)
– α > β

∣∣∣∣
zf ′(z)
f (z)

– 1
∣∣∣∣, z ∈U, (1.3)

and let U C V (α,β) be the subclass of S satisfying the analytic criteria

�
(

1 +
zf ′′(z)
f ′(z)

)
> β

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ + α, z ∈ U. (1.4)

Note that Sp(α,β) ∩ T = T S p(α,β) and U C V (α,β) ∩ T = T U C V (α,β).
The classes Sp(α,β), U C V (α,β), T S p(α,β), and T U C V (α,β) were studied by

Bharati et al. [3].
By specializing the parameters in Sp(α,β) and U C V (α,β) we obtain following known

subclasses studied earlier by various researchers:
(1) Sp(0,β) ≡ Sp(β) and U C V (0,β) ≡ U C V (β) studied by Kanas and Wisniowska

[8, 9].
(2) Sp(0, 1) ≡ Sp and U C V (0, 1) ≡ U C V studied by Goodman [6, 7] (see also [10]).
(3) Sp(α, 0) ≡ S ∗(α), U C V (α, 0) ≡ K (α), Sp(0, 0) ≡ S ∗, and U C V (0, 0) ≡ K

studied by Robertson [17] and Silverman [18].
In 1995, Dixit and Pal [4] introduced the class Rτ (A, B) consisting of functions f (z) of the
form (1.1) that satisfy the inequality

∣∣∣∣
f ′(z) – 1

(A – B)τ – B(f ′(z) – 1)

∣∣∣∣ < 1, τ ∈ C \ {0}, –1 ≤ B < A ≤ 1, z ∈U.

For complex numbers a1, a2, . . . , ap and b1, b2, . . . , bq with bj �= 0, –1, –2, . . . , j = 1, 2, . . . , q,
the generalized hypergeometric functions pFq(a1, a2, . . . ap; b1, b2, . . . bq; z) are defined by

pFq(a1, a2, . . . ap; b1, b2, . . . bq; z) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
, z ∈U, (1.5)

where p ≤ q + 1, and (a)n is the Pochhammer symbol defined by

(a)n =
�(a + n)

�(a)
=

⎧
⎨

⎩
1 if n = 0,

a(a + 1)(a + 2) . . . (a + n – 1) if n ∈N.
(1.6)

The convergence conditions for the series defined by (1.5) are as follows:
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(1) If p < q + 1, then the series converges absolutely in the entire complex plane.
(2) If p ≤ q, then the series converges absolutely for every finite z.
(3) If p = q + 1, then the series converges absolutely for |z| < 1.
(4) If p = q + 1 and |z| = 1, then the series converges when �{∑q

j=1 bj –
∑p

i=1 ai} > 0.
For a detailed study, we refer to [16].
Now for ai, i = 1, 2, . . . , p, bj, j = 1, 2, . . . , q, and m > 0, we define

pFq(a1, a2, . . . ap; b1, b2, . . . bq; m) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

mn

n!
,

provided that the series is convergent.
In this paper, we use the notations

pFq(z) =p Fq(a1, a2, . . . ap; b1, b2, . . . bq; z)

and

pFq(a1 + k; b1 + k; z) =p Fq(a1 + k, a2 + k, . . . ap + k; b1 + k, b2 + k, . . . bq + k; z), k ∈N.

Now we introduce the generalized hypergeometric distribution with probability mass
function

(a1)n · · · (ap)n

(b1)n · · · (bq)n

mn

n!
1

pFq(m)
, n = 0, 1, 2, . . . .

By specializing the parameters in the generalized hypergeometric distribution it reduces
to the following probability distributions:

(1) If p = 2 and q = 1, then it reduces to the hypergeometric-type probability
distribution studied by Porwal and Gupta [15].

(2) If p = q = 1, then it reduces to the confluent hypergeometric distribution studied by
Porwal [14].

(3) If p = q = 1 and a1 = b1, then it reduces to the well-known Poisson distribution.
Next, we introduce the generalized hypergeometric distribution series whose coeffi-

cients are the probabilities of generalized hypergeometric distribution

pFq(m, z) = z +
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
zn

pFq(m)
, (1.7)

where ai, bj > 0, i = 1, 2, . . . , p, j = 1, 2, . . . , q.
Now we define

pFq(m, z) = 2z – pFq(m, z) = z –
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
zn

pFq(m)
. (1.8)

The convolution (or Hadamard product) of two power series is defined as

(f ∗ g)(z) = f (z) ∗ g(z) =
∞∑

n=0

anbnzn, z ∈U.
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Now we consider the linear operator �(p, q, m) : A → A defined by

�(p, q; m)f (z) = pFq(m, z) ∗ f (z) = z +
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
anzn

pFq(m)
. (1.9)

In 2014, Porwal [12] introduced the Poisson distribution series and obtained necessary
and sufficient conditions for this series to belong to certain classes of univalent functions.
It opens up a new and interesting direction of research in geometric function theory. After
the appearance of this paper, several researchers introduced the hypergeometric distribu-
tion series [1], the binomial distribution series [11], the hypergeometric-type distribution
series [15], the confluent hypergeometric distribution series [14], the Pascal distribution
series [5], the generalized distribution series [13], and the Mittag-Leffler-type Poisson dis-
tribution series [2] and obtained some necessary and sufficient conditions for them to be-
long to certain classes of univalent functions. Motivated with the works mentioned, in this
paper, we obtain some necessary and sufficient conditions for the generalized hypergeo-
metric distribution series to belong to the classes Sp(α,β), U C V (α,β), and U C V (β).
We also obtain some inclusion relations between the classes Rτ (A, B) and U C V (α,β),
U C V (β). Finally, we discuss an integral operator associated with the generalized distri-
bution series.

2 Main results
To prove our main results, we need the following lemmas.

Lemma 2.1 ([13]) A function f ∈ A of the form (1.1) belongs to the class Sp(α,β) if

∞∑

n=2

[
n(1 + β) – (α + β)

]|an| ≤ 1 – α. (2.1)

Lemma 2.2 ([3]) A function f ∈ A of the form (1.1) is said to be in the class U C V (α,β)
if

∞∑

n=2

n
[
n(1 + β) – (α + β)

]|an| ≤ 1 – α. (2.2)

Remark 2.1 Conditions (2.1) and (2.2) are also necessary for functions f (z) of the form
(1.2).

Lemma 2.3 ([8]) A function f ∈ A of the form (1.1) is said to be in the class U C V (β) if

∞∑

n=2

n(n – 1)|an| ≤ 1
β + 2

. (2.3)

The number 1
β+2 cannot be increased.

Lemma 2.4 ([4]) If f ∈ Rτ (A, B) is of the form (1.1), then

|an| ≤ (A – B)|τ |
n

, n ∈N \ {1}. (2.4)

The bounds given in (2.4) are sharp.
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Theorem 2.1 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q). Suppose that the inequality

(1 + β)
a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
pFq(a1 + 2; b1 + 2; m)

+ (3 + 2β – α)
a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) ≤ 1 – α (2.5)

holds with one of the following conditions:
(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 2.

Then pFq(m, z) defined by (1.7) is in the class U C V (α,β).

Proof To prove that pFq(m, z) defined by (1.7) is in the class U C V (α,β), by Lemma 2.2 it
suffices to prove that

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)
≤ 1 – α.

We have

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)

=
1

pFq(m)

[ ∞∑

n=2

[
(n – 1)(n – 2)(1 + β) + (3 + 2β – α)(n – 1)

+ (1 – α)
] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 3)!

+ (3 + 2β – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 2)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
∞∑

n=2

(a1 + 2)n–3 · · · (ap + 2)n–3

(b1 + 2)n–3 · · · (bq + 2)n–3

mn–3

(n – 3)!

+ (3 + 2β – α)
a1 · · ·ap

b1 · · ·bq
m

∞∑

n=2

(a1 + 1)n–2 · · · (ap + 1)n–2

(b1 + 1)n–2 · · · (bq + 1)n–2

mn–2

(n – 2)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
pFq(a1 + 2; b1 + 2; m)
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+ (3 + 2β – α)
a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) + (1 – α)

(
pFq(m) – 1

)]

≤ 1 – α

by the given hypothesis. This completes the proof of Theorem 2.1. �

Theorem 2.2 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q). Suppose that the inequality

(1 + β)
a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) ≤ 1 – α (2.6)

holds with one of the following conditions:
(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 1.

Then pFq(m, z) defined by (1.7) is in the class Sp(α,β).

Proof To prove that pFq(m, z) defined by (1.7) is in the class Sp(α,β), by Lemma 2.1 it
suffices to prove that

∞∑

n=2

[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)
≤ 1 – α.

We have

∞∑

n=2

[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)

=
1

pFq(m)

[
(1 + β)

∞∑

n=2

(n – 1)
(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

a1 · · ·ap

b1 · · ·bq
m

∞∑

n=2

(a1 + 1)n–2 · · · (ap + 1)n–2

(b1 + 1)n–2 · · · (bq + 1)n–2

mn–2

(n – 2)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) + (1 – α)

(
pFq(m) – 1

)]

≤ 1 – α,

by the given hypothesis. This completes the proof of Theorem 2.2. �

Remark 2.2 Conditions (2.5) and (2.6) are also necessary for the series pFq(m, z) defined
by (1.8) to belong to the classes T S p(α,β) and T U C V (α,β), respectively.
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Theorem 2.3 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q). Suppose that the inequality

a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
pFq(a1 + 2; b1 + 2; m) + 2

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m)

≤ pFq(m)
β + 2

(2.7)

holds with one of the following conditions:
(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 2.

Then pFq(m, z) defined by (1.7) is in the class U C V (β).

Proof To prove that pFq(m, z) defined by (1.7) is in the class U C V (β), by Lemma 2.3 it
suffices to prove that

∞∑

n=2

n[n – 1]
(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)
≤ 1

β + 2
.

We have

∞∑

n=2

n[n – 1]
(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
1

pFq(m)

=
1

pFq(m)

[ ∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 3)!
+ 2

∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 2)!

]

=
1

pFq(m)

[
a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
∞∑

n=2

(a1 + 2)n–3 · · · (ap + 2)n–3

(b1 + 2)n–3 · · · (bq + 2)n–3

mn–3

(n – 3)!

+ 2
a1 · · ·ap

b1 · · ·bq
m

∞∑

n=2

(a1 + 1)n–2 · · · (ap + 1)n–2

(b1 + 1)n–2 · · · (bq + 1)n–2

mn–2

(n – 2)!

]

=
1

pFq(m)

[
a1(a1 + 1) · · ·ap(ap + 1)
b1(b1 + 1) · · ·bq(bq + 1)

m2
pFq(a1

+ 2; b1 + 2; m) + 2
a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m)

]

≤ 1
β + 2

by the given hypothesis. This completes the proof of Theorem 2.3. �

Theorem 2.4 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q), and let f ∈ Rτ (A, B). Suppose that
the inequality

(A – B)|τ |
pFq(m)

[
(1 + β)

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) + (1 – α)

(
pFq(m) – 1

)]

≤ 1 – α (2.8)
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holds with one of the following conditions:
(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 1.

Then �(p, q, m)f ∈ U C V (α,β).

Proof Since

�(p, q, m)f (z) = z +
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
anzn

pFq(m)
,

to prove that �(p, q, m)f ∈ U C V (α,β), by Lemma 2.2 it suffices to prove that

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
|an|

pFq(m)
≤ 1 – α.

Using Lemma 2.4, we have

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!
|an|

pFq(m)

≤ (A – B)|τ |
pFq(m)

∞∑

n=2

[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

=
(A – B)|τ |

pFq(m)

[
(1 + β)

∞∑

n=2

(n – 1)
(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
(A – B)|τ |

pFq(m)

[
(1 + β)

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1, b1 + 1, m) + (1 – α)

(
pFq(m) – 1

)]

≤ 1 – α

by the given hypothesis. This completes the proof of Theorem 2.4. �

Theorem 2.5 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q), and let f ∈ Rτ (A, B). Suppose that
the inequality

(A – B)|τ |
pFq(m)

[
a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m)

]
≤ 1

β + 2
(2.9)

holds with one of the following conditions:
(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 1.

Then �(p, q, m)f ∈ U C V (β).

Proof The proof of Theorem 2.5 is similar to that of Theorem 2.4, and therefore we omit
it. �
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Remark 2.3 If we put p = q = 1 in Theorems 2.1 and 2.2, then we obtain the corresponding
results of Porwal [14].

3 An integral operator
In this section, we obtain analogous results in connection with the particular integral

G(p, q, m, z) =
∫ z

0

pFq(m, t)
t

dt. (3.1)

Theorem 3.1 If all the conditions of Theorem 2.2 hold, then G(p, q, m, z) defined by (3.1)
is in the class U C V (α,β).

Proof From representation (3.1) we have

G(p, q, m, z) = z +
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

n!
zn

pFq(m)
.

To prove that G(p, q, m, z) ∈ U C V (α,β), by Lemma 2.2 it suffices to prove that

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

n!
1

pFq(m)
≤ 1 – α.

We have

∞∑

n=2

n
[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

n!
1

pFq(m)

=
1

pFq(m)

∞∑

n=2

[
n(1 + β) – (α + β)

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

=
1

pFq(m)

∞∑

n=2

[
(1 + β)(n – 1) + 1 – α

] (a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

=
1

pFq(m)

[
(1 + β)

∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 2)!

+ (1 – α)
∞∑

n=2

(a1)n–1 · · · (ap)n–1

(b1)n–1 · · · (bq)n–1

mn–1

(n – 1)!

]

=
1

pFq(m)

[
(1 + β)

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) + (1 – α)

(
pFq(m) – 1

)]
.

The last expression is bounded above by 1 – α if (2.6) holds. Thus the proof of Theorem
3.1 is established. �

Theorem 3.2 Let ai, bj > 0 (i = 1, 2, . . . , p; j = 1, 2, . . . , q). Suppose that the inequality

a1 · · ·ap

b1 · · ·bq
mpFq(a1 + 1; b1 + 1; m) ≤ pFq(m)

β + 2
(3.2)

holds with one of the following conditions:
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(1) p ≤ q and m > 0,
(2) p = q + 1 and m < 1,
(3) p = q + 1, m = 1, and

∑q
j=1 bj >

∑p
i=1 ai + 1.

Then G(p, q, m, z) defined by (3.1) is in the class U C V (β).

Proof The proof of this theorem is much akin to that of Theorem 3.1. Therefore we omit
it. �

Remark 3.1 If we put p = 2 and q = 1 in Theorems 2.1–3.2, then we obtain the correspond-
ing results of Porwal and Gupta [15].
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