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Abstract
In this article, we show unitarily invariant norm inequalities for sector 2× 2 block
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Kittaneh (Positivity, 2020, https://doi.org/10.1007/s11117-020-00770-w).
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1 Introduction
Let Mn be a set of all n × n complex matrices. A matrix A ∈ Mn is said to be positive
semidefinite if x∗Ax ≥ 0 for all x ∈ C

n. If the eigenvalues λ1(A), . . . ,λn(A) of A are all real,
we arrange them in nonincreasing order λ1(A) ≥ · · · ≥ λn(A). Singular values of A are
the eigenvalues of |A| and are arranged in nonincreasing order s1(A) ≥ · · · ≥ sn(A). For
A ∈ Mn, we denote by |A| = (A∗A) 1

2 , A∗, ‖A‖, and ‖A‖∞ = s1(A) the absolute value, the
conjugate transpose, the unitarily invariant norm, and the operator norm, respectively. We
say A is a contraction if ‖A‖∞ ≤ 1. By convention, the n × n identity matrix is denoted by
In. ‖A‖ and ‖A‖∞ = s1(A) are unitarily invariant, i.e., ‖UAV‖ = ‖A‖ for all unitary matrices
U , V . For A, B ∈ Mn, the weak majorization relation s(A) ≺w s(B) means

k∑

j=1

sj(A) ≤
k∑

j=1

sj(B), k = 1, 2, . . . , n.

For A ∈ Mn, recall the Cartesian (or Toeplitz) decomposition (see, e.g., [2, p. 6] and [3,
p. 7])

A = Re A + i Im A,

where

Re A :=
1
2
(
A + A∗), Im A :=

1
2i

(
A – A∗).
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The Cartesian decomposition of a matrix is unique. There are many interesting properties
for such a decomposition. A celebrated result due to Fan and Hoffman (see, e.g., [2, p.73])
states that

λj(Re A) ≤ sj(A), j = 1, . . . , n. (1)

The numerical range of A ∈Mn is defined by

W (A) =
{

x∗Ax | x ∈C
n, x∗x = 1

}
,

which is a compact convex set (see, e.g., [4, Chap. 1]). For α ∈ [0,π/2), a sector on the
complex plane is

Sα =
{

z ∈C | Re z ≥ 0, | Im z| ≤ (Re z) tanα
}

.

A sector matrix A ∈ Mn is a matrix whose numerical range is contained in Sα for some
α ∈ [0,π/2). It is clear that if A ∈ Mn is a sector matrix, then Re A is positive semidefi-
nite. The interested readers can refer to [5–10], and [4] for recent results on sector matri-
ces. If W (A) is contained in the first quadrant of the complex plane, then Re A and Im A
are positive semidefinite. We call such a matrix A accretive-dissipative. Note that if A is
accretive-dissipative, then W (e– iπ

4 A) ⊆ S π
4

. Recently this class of matrices has been stud-
ied by researchers partly due to the fact that it contains the class of positive semidefinite
matrices (see, e.g., [1, 11–17]).

Next we introduce a special class of functions. Let C be the class of all nonnega-
tive increasing functions f on [0,∞) preserving the weak-log majorization, i.e., for two
nonincreasing sequences of nonnegative real numbers (x1, x2, . . . , xn) and (y1, y2, . . . , yn),∏k

j=1 xj ≤ ∏k
j=1 yj for k = 1, . . . , n implies

∏k
j=1 f (xj) ≤ ∏k

j=1 f (yj) for k = 1, . . . , n. There are
many other properties on this class of functions; see [12, 18]. A nonnegative function
f ∈ C on the interval [0,∞) is said to be submultiplicative if f (ab) ≤ f (a)f (b) whenever
a, b ∈ [0,∞). Recently, some unitarily invariant norm inequalities for submultiplicative
functions of accretive-dissipative matrices have been shown in [12] and [13].

Bourahli et al. [1, Lemma 3.4] showed that if A =
( A11 A12

A21 A22

) ∈ M2n is a positive semidefi-
nite contraction and s, t are positive real numbers such that 1

s + 1
t = 1, then

∥∥f
(|A12|2

)∥∥ ≤ ∥∥f s(A
1
2
11

)∥∥ 1
s
∥∥f t(A

1
2
22

)∥∥ 1
t , (2)

where f is an increasing submultiplicative function on [0,∞) with f (0) = 0. Moreover,
if A ∈ M2n is just positive semidefinite (not necessarily contraction matrices), then they
presented a result related to (2) in [1, Remark 3.5] as follows:

∥∥f
(|A12|2

)∥∥ ≤ f
(∥∥A

1
2
11

∥∥∞
∥∥A

1
2
22

∥∥∞
)∥∥f s(A

1
2
11

)∥∥ 1
s
∥∥f t(A

1
2
22

)∥∥ 1
t . (3)

2 Unitarily invariant norms for submultiplicative functions
In [12] and [13], some unitarily invariant norms for accretive-dissipative matrices involv-
ing a special class of functions have been shown. In this section, we present inequalities
for sector block matrices involving the class of function.
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Lemma 2.1 ([19, p. 280]) Let A, X, B be m × p, p × q, q × n matrices, respectively. Then

si(AXB) ≤ s1(A)sj(X)s1(B), i ≤ min{m, p, q, n}.

Lemma 2.2 ([8, Theorem 2.1]) Let A ∈ Mn be n × n such that W (A) ⊆ Sα for some α ∈
[0,π/2). Then there exist an invertible matrix X and a unitary and diagonal matrix Z =
diag(eiθ1 , . . . , eiθn ) with all |θj| ≤ α such that A = XZX∗. Moreover, such a matrix Z is unique
up to permutation.

Lemma 2.3 ([8, Corollary 2.3 (ii)]) Let A ∈ Mn be such that W (A) ⊆ Sα for some α ∈
[0,π/2), and let A = XZX∗ be a sectoral decomposition of A, where X is invertible and Z is
unitary and diagonal. Then

RR∗ ≤ sec(α)
(
R(Re Z)R∗) = sec(α)

(
Re

(
RZR∗))

for every matrix R ∈Mn.

We are ready to present our main result of this section.

Theorem 2.4 Let f ∈ C be an increasing submultiplicative function on [0,∞) and A ∈M2n

be a contraction matrix partitioned as

A =

(
A11 A12

A21 A22

)
, (4)

with W (A) ⊆ Sα for some α ∈ [0,π/2). Then, for all r, s, t > 0 with 1
s + 1

t = 1 and all unitarily
invariant norms,

∥∥f
(|A12|2r)∥∥ ≤ ∥∥f s((sec2(α)|A11|

)r/2)∥∥1/s∥∥f t((sec2(α)|A22|
)r/2)∥∥1/t (5)

and

∥∥f
(|A21|2r)∥∥ ≤ ∥∥f s((sec2(α)|A11|

)r/2)∥∥1/s∥∥f t((sec2(α)|A22|
)r/2)∥∥1/t . (6)

Proof Note that A is a sector matrix with W (A) ⊆ Sα . By Lemma 2.2, we have A = XZX∗,
where X is invertible and Z is unitary and diagonal. We partition X as

( X1
X2

)
, X1, X2 ∈ Mn×2n.

Thus, Re A11 = X1(Re Z)X∗
1 , Re A22 = X2(Re Z)X∗

2 , and A12 = X1ZX∗
2 . Consider the Carte-

sian decomposition

A =

(
A11 A12

A21 A22

)
= R + iS =

(
R11 R12

R21 R22

)
+ i

(
S11 S12

S21 S22

)
,

where R is positive semidefinite and S is Hermitian. Since A is a contraction matrix,

AA∗ = R2 + S2 + i(SR – RS) ≤ I (7)



Zhou Journal of Inequalities and Applications        (2020) 2020:247 Page 4 of 8

and

A∗A = R2 + S2 + i(RS – SR) ≤ I. (8)

Adding (7) and (8), we get

2
(
R2 + S2) ≤ 2I.

Thus, R and S are also contraction matrices, which implies that both Re A11 = R11 and
Re A22 = R22 are positive semidefinite contractions.

Now

s�

(|A12|r
)

= sr
�

(|A12|
)

= sr
�(A12) = sr

�

(
X1ZX∗

2
)

≤ sr
1(X1)sr

�

(
ZX∗

2
)

(by Lemma 2.1)

= λ
r
2
1
(
X∗

1 X1
)
λ

r
2
�

(
X2Z∗ZX∗

2
)

= λ
r
2
1
(
X1X∗

1
)
λ

r
2
�

(
X2X∗

2
)

≤ λ
r
2
1
(
sec(α)X1(Re Z)X∗

1
)
λ

r
2
�

(
sec(α)X2(Re Z)X∗

2
)

(by Lemma 2.3)

= λ
r
2
1
(
sec(α) Re A11

)
λ

r
2
�

(
sec(α) Re A22

)
(9)

≤ sec
r
2 (α)λ

r
2
�

(
sec(α) Re A22

)
(since Re A11 is a contraction)

≤ secr(α)s
r
2
�

(|A22|
)

(by (1)) (10)

for l = 1, 2, . . . , n.
Since Re A22 is also a contraction, it follows from (1) and (9) that

s�

(|A12|r
) ≤ secr(α)s

r
2
�

(|A11|
)

(11)

for l = 1, 2, . . . , n.
Multiplying inequalities (10) and (11) by each other implies that

s�

(|A12|2r) ≤ sec2r(α)s
r
2
�

(|A11|
)
s

r
2
�

(|A22|
)

(12)

for l = 1, 2, . . . , n.
So,

s�

(
f
(|A12|2r)) = f

(
s�

(|A12|2r))

≤ f
(
sec2r(α)s

r
2
�

(|A11|
)
s

r
2
�

(|A22|
))

(by (12))

= f
(
secr(α)s

r
2
�

(|A11|
))

f
(
secr(α)s

r
2
�

(|A22|
))

(13)

(since f is submultiplicative)
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for l = 1, 2, . . . , n. Let α = (α1,α2, . . . ,αn) be a decreasing sequence of nonnegative real num-
bers. The α-norm of a matrix B ∈ Mn is defined by

‖B‖α =
n∑

�=1

α�s�(B).

The α-norms are unitarily invariant [4, p. 204].
Actually, inequality (13) means that

k∏

�=1

α�s�

(
f
(|A12|2r)) ≤

k∏

�=1

α�s�

(
f
((

sec2(α)|A11|
) r

2
))

s�

(
f
((

sec2(α)|A22|
) r

2
))

for k = 1, 2, . . . , n, which implies that

k∑

�=1

α�s�

(
f
(|A12|2r)) ≤

k∑

�=1

α�s�

(
f
((

sec2(α)|A11|
) r

2
))

s�

(
f
((

sec2(α)|A22|
) r

2
))

for k = 1, 2, . . . , n. Thus,

∥∥f
(|A12|2r)∥∥

α

=
n∑

�=1

α�s�

(
f
(|A12|2r))

≤
n∑

�=1

α�s�

(
f
((

sec2(α)|A11|
)r/2))s�

(
f
((

sec2(α)|A22|
)r/2))

=
n∑

�=1

α1/s
� s�

(
f
((

sec2(α)|A11|
)r/2))

α1/t
� s�

(
f
((

sec2(α)|A22|
)r/2))

≤
( n∑

�=1

α�ss
�

(
f
((

sec2(α)|A11|
)r/2))

)1/s( m∑

�=1

α�st
�

(
f
((

sec2(α)|A22|
)r/2))

)1/t

(
by Hölder’s inequality

)

=

( n∑

�=1

α�s�

(
f s((sec2(α)|A11|

)r/2))
)1/s( m∑

�=1

α�s�

(
f t((sec2(α)|A22|

)r/2))
)1/t

=
∥∥f s((sec2(α)|A11|

)r/2)∥∥1/s
α

∥∥f t((sec2(α)|A22|
)r/2)∥∥1/t

α

for all decreasing sequences α = (α1, . . . ,αn) of nonnegative real numbers. It follows from
the above inequality that

∥∥f
(|A12|2r)∥∥ ≤ ∥∥f s((sec2(α)|A11|

)r/2)∥∥1/s∥∥f t((sec2(α)|A22|
)r/2)∥∥1/t .

The inequality for A21 is similarly proved. �
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Remark 1 In particular, when A is a positive semidefinite contraction (α = 0) and r = 1,
Theorem 2.4 gives

∥∥f
(|A12|2

)∥∥ ≤ ∥∥f s(A1/2
11

)∥∥1/s∥∥f t(A1/2
22

)∥∥1/t , (14)

which is due to Bourahli et al. [1, Lemma 3.4]. Thus, our result (5) is a generalization of
(14).

Remark 2 If A is just a general sector matrix with W (A) ⊆ Sα for α ∈ [0, π
2 ) (not a contrac-

tion matrix), then we have the following result: Let f ∈ C be an increasing submultiplicative
function on [0,∞) and A =

( A11 A12
A21 A22

) ∈ M2n be a sector matrix with W (A) ⊆ Sα for some
α ∈ [0,π/2). Then, for all r, s, t > 0 with 1

s + 1
t = 1 and all unitarily invariant norms,

∥∥f
(|A12|2r)∥∥ = f

(
sec2r(α)‖A11‖

r
2∞‖A22‖

r
2∞
)∥∥f s(|A11| r

2
)∥∥ 1

s
∥∥f t(|A22| r

2
)∥∥ 1

t . (15)

By (9), (10), and Lemma 2.1, we have

s�

(|A12|r
)

= sr
�

(|A12|
)

= sr
�(A12) = sr

�

(
X1ZX∗

2
)

≤ secr(α)‖A11‖
r
2∞s

r
2
�

(|A22|
)

(16)

and

s�

(|A12|r
) ≤ secr(α)‖A22‖

r
2∞s

r
2
�

(|A11|
)

(17)

for l = 1, 2, . . . , n.
Multiplying inequalities (16) and (17) by each other implies that

s�

(|A12|2r) ≤ sec2r(α)‖A11‖
r
2∞‖A22‖

r
2∞s

r
2
�

(|A11|
)
s

r
2
�

(|A22|
)

(18)

for l = 1, 2, . . . , n.
So,

s�

(
f
(|A12|2r)) = f

(
s�

(|A12|2r))

≤ f (sec2r(α)‖A11‖
r
2∞‖A22‖

r
2∞s

r
2
�

(|A11|
)
s

r
2
�

(|A22|
)

(by (18))

= f
(
sec2r(α)‖A11‖

r
2∞‖A22‖

r
2∞
)
f
(
s

r
2
�

(|A11|
))

f
(
s

r
2
�

(|A22|
))

(19)

for l = 1, 2, . . . , n. Based on (19), we can obtain the desired result by a proof similar to that
given for inequality (13). Therefore, when α = 0 and r = 1, our result (15) is (2).

Theorem 2.5 Let f ∈ C be an increasing submultiplicative function on [0,∞) and A ∈M2n

be a contraction matrix partitioned as

A =

(
A11 A12

A21 A22

)
,
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with W (A) ⊆ Sα for some α ∈ [0,π/2). Then, for all r, s, t > 0 with 1
s + 1

t = 1 and all unitarily
invariant norms,

∥∥f
(|A12|2r)∥∥ +

∥∥f
(|A21|2r)∥∥

≤ 2
∥∥f s((sec2(α)|A11|

)r/2)∥∥1/s∥∥f t((sec2(α)|A22|
)r/2)∥∥1/t . (20)

Proof By Theorem 2.4, we can have the desired result. �

Remark 3 When f (t) = t, r = 1, and α = π
4 , result (20) becomes

∥∥|A12|2
∥∥ +

∥∥|A21|2
∥∥ ≤ 2

∥∥f s((sec2(α)|A11|
)r/2)∥∥1/s∥∥f t((sec2(α)|A22|

)r/2)∥∥1/t .
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