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Abstract
Apostol considered generalized Dedekind sums by replacing the first Bernoulli
function appearing in Dedekind sums by any Bernoulli functions and derived a
reciprocity relation for them. Recently, poly-Dedekind sums were introduced by
replacing the first Bernoulli function appearing in Dedekind sums by any type 2
poly-Bernoulli functions of arbitrary indices and were shown to satisfy a reciprocity
relation. In this paper, we consider other poly-Dedekind sums that are obtained by
replacing the first Bernoulli function appearing in Dedekind sums by any
poly-Bernoulli functions of arbitrary indices. We derive a reciprocity relation for these
poly-Dedekind sums.
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1 Introduction
The sawtooth function, denoted by ((x)), is defined by

(
(x)

)
=

⎧
⎨

⎩
x – [x] – 1

2 , if x /∈ Z,

0, if x ∈ Z,
(see [1–5]), (1)

where [x] denotes the greatest integer function not exceeding x.
The Dedekind sums are defined by

S(h, m) =
m–1∑

μ=1

((
μ

m

))((
hμ

m

))
(2)

=
m–1∑

μ=1

(
μ

m
–

1
2

)((
hμ

m

))

=
m–1∑

μ=1

μ

m

((
hμ

m

))
,

where h is any integer and m is a positive integer (see [9–11, 17, 19, 20]).
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It is well known that the Bernoulli polynomials are defined by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π

)
, (see [1–13, 17, 19, 20]). (3)

When x = 0, Bn = Bn(0), (n ≥ 0) are called the Bernoulli numbers.
From (3), we note that

Bn(x) =
n∑

l=0

(
n
l

)

Bn–lxl (n ≥ 0), (see [7–13]). (4)

By (3), we easily get

n–1∑

l=0

lm =
1

m + 1
(
Bm+1(n) – Bm+1

)
, (n ∈N, m ≥ 0), (see [13]), (5)

and

dn–1
d–1∑

l=0

Bn

(
x + i

d

)
= Bn(x), (n ≥ 0, d ∈N), (see [10, 13]). (6)

The modified Hardy’s polyexponential function of index k is defined by

Eik(x) =
∞∑

n=1

xn

nk(n – 1)!
(k ∈ Z), (see [7]). (7)

Note that Ei1(x) = ex – 1.
Recently, the type 2 poly-Bernoulli polynomials of index k are defined by

Eik(log(1 + t))
et – 1

ext =
∞∑

n=0

B(k)
n (x)

tn

n!
(k ∈ Z). (8)

When x = 0, B(k)
n = B(k)

n (0), (n ≥ 0) are called the type 2 poly-Bernoulli numbers of index k.
Note that B(1)

n (x) = Bn(x), (n ≥ 0).
It is well known that the polylogarithmic function of index k is defined by

Lik(x) =
∞∑

n=1

xn

nk , (k ∈ Z), |x| < 1, (see [6, 9, 12]). (9)

Note that Li1(x) = – log(1 – x).
In [6, 7, 12], the poly-Bernoulli polynomials of index k are defined by the generating

function

Lik(1 – e–t)
et – 1

ext =
∞∑

n=0

β (k)
n (x)

tn

n!
. (10)

When x = 0, β (k)
n = β

(k)
n (0) are called the poly-Bernoulli numbers of index k.
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From (10), we note that

n∑

l=0

(
n
l

)

β
(k)
n–lx

l = β (k)
n (x), (n ≥ 0), (see [6, 7, 12]). (11)

The fractional part of x is defined by

〈x〉 = x – [x].

The Bernoulli functions are defined by

Bn(x) = Bn
(〈x〉), (n ≥ 0), (see [1, 2]).

From (2), we have

S(h, m) =
m–1∑

μ=1

μ

m

(
hμ

m
–

[
hμ

m

]
–

1
2

)
(12)

=
m–1∑

μ=1

(
μ

m
–

1
2

)(
hμ

m
–

[
hμ

m

]
–

1
2

)

=
m–1∑

μ=1

B1

(
μ

m

)
B1

(
hμ

m

)
,

where h, m are relatively prime positive integers.
Apostol considered the generalized Dedekind sums, which are given by

Sp(h, m) =
m–1∑

μ=1

μ

m
Bp

(
hμ

m

)
, (13)

and showed in [1, 2] that they satisfy the reciprocity relation

(p + 1)
(
hmpSp(h, m) + mhpSp(m, h)

)
= pBp+1 +

p+1∑

s=0

(
p + 1

s

)

(–1)sBsBp+1–shsmp+1–s.

As one generalization of Apostol’s generalized Dedekind sums, the poly-Dedekind sums
associated with the type 2 poly-Bernoulli functions of index k

S(k)
P (h, m) =

m–1∑

μ=1

μ

m
B(k)

p

(
hμ

m

)
(14)

were recently introduced (see [13]) and, among other things, a reciprocity relation for
them was derived.

In this paper, as another generalization of Apostol’s generalized Dedekind sums, we con-
sider the poly-Dedekind sums defined by

T (k)
p (h, m) =

m–1∑

μ=1

μ

m
β

(k)
p

(
hμ

m

)
,
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where β
(k)
p (x) = β

(k)
p (〈x〉) are the poly-Bernoulli functions of index k (see (10)). Note

here that T (1)
p (h, m) = Sp(h, m). We show the following reciprocity relation for the poly-

Dedekind sums given by (see Theorem 7)

hmpT (k)
p (h, m) + mhpT (k)

p (m, h)

=
m–1∑

μ=0

p∑

j=0

h–1∑

ν=0

p–j+1∑

l=1

(mh)j–1l!S2(p – j + 1, l)
(p – j + 1)lk

×
(

p
j

)

(–1)p–j+1–l((μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.

For k = 1, this reciprocity relation for the poly-Dedekind sums reduces to that for Apos-
tol’s generalized Dedekind sums given by (see Corollary 8)

hmpSp(h, m) + mhpSp(m, h)

=
m–1∑

μ=0

h–1∑

ν=0

(mh)p–1(μh + mν)Bp

(
ν

h
+

μ

m

)
.

We recommend the readers to look at the articles [15, 16, 18, 21] and the more recent
one [14], which are related to the present paper. In Sect. 2, we derive various facts about
the poly-Bernoulli polynomials that will be needed in the next section. In Sect. 3, we define
the poly-Dedekind sums associated with the poly-Bernoulli functions and demonstrate a
reciprocity relation for them.

2 Poly-Dedekind sums associated with poly-Bernoulli functions
Let n be a nonnegative integer. Then the Stirling numbers of the second kind are defined
by

xn =
n∑

k=0

S2(n, k)(x)k , (n ≥ 0), (see [1–14, 17, 19]),

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1), (n ≥ 1).
From (9) and (10), we note that

Lik(1 – e–t)
et – 1

=
∞∑

n=0

β (k)
n

tn

n!
. (15)

Thus, by (15), we get

Lik
(
1 – e–t) =

( ∞∑

l=0

β
(k)
l

tl

l!

)
(
et – 1

)
(16)

=
∞∑

n=0

(
β (k)

n (1) – β (k)
n

) tn

n!
.
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On the other hand,

Lik
(
1 – e–t) =

∞∑

m=1

1
mk

(
1 – e–t)m =

∞∑

m=1

(–1)mm!
mk

1
m!

(
e–t – 1

)m

=
∞∑

m=1

(–1)mm!
mk

∞∑

n=m
S2(n, m)(–1)n tn

n!
(17)

=
∞∑

m=1

( n∑

m=1

(–1)n–mm!
mk S2(n, m)

)
tn

n!
.

Therefore, by (16) and (17), we obtain the following theorem.

Theorem 1 For n ∈N, we have

β (k)
n (1) – β (k)

n =
n∑

m=1

(–1)n–mm!
mk S2(n, m).

From Theorem 1, we note that

β
(k)
0 = 1, β

(k)
1 = –1 +

1
2k , β

(k)
2 = 1 –

3
2k +

2
3k , . . . .

Taking k = 1 in Theorem 1 gives us the following corollary.

Corollary 2 For n ∈N, we have

n∑

m=1

(–1)n–m(m – 1)!S2(n, m) = δn,1,

where δn,k is the Kronecker symbol.

The three identities in the following lemma can be shown just as in Theorem 3, Corol-
lary 4, and Theorem 5 of [13], and hence their proofs are left to the reader as exercises.

Lemma 3 For s, p ∈N, we have

p∑

ν=0

(
p
ν

)
β (k)

ν

p – ν + 2
=

(
p + 1

s

)
β

(k)
p–s+1(1)
p + 1

+
s – 1
p + 1

(
p + 2

s

)
β

(k)
p–s+2(1)
p + 2

,

p–s+1∑

ν=0

(
p
ν

)(
p – ν + 2

s

)
β (k)

ν

p – ν + 2

=

(
p + 1

s

)
β

(k)
p–s+1(1)
p + 1

+
s – 1
p + 1

(
p + 2

s

)
β

(k)
p–s+2(1)
p + 2

–
1
s

(
p

s – 2

)

β
(k)
p–s+2,

and

p∑

s=0

(
p
s

)

β (k)
s

1
p + 2 – s

=
β

(k)
p+1(1)
p + 1

–
β

(k)
p+2(1)

(p + 1)(p + 2)
+

β
(k)
p+2

(p + 1)(p + 2)
.
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As a further generalization of Apostol’s Dedekind sums, we study poly-Dedekind sums
associated with poly-Bernoulli functions of index k, which are given by

T (k)
p (h, m) =

m–1∑

μ=1

μ

m
β

(k)
p

(
hμ

m

)
, (18)

where h, m, p ∈N, k ∈ Z, and β
(k)
p (x) = β

(k)
p (〈x〉) are the poly-Bernoulli functions of index k.

Note that

T (1)
p (h, m) =

m–1∑

μ=1

μ

m
Bp

(
hμ

m

)
= Sp(h, m).

The two identities in Lemma 4 can be proved in the same way as in Proposition 6 and
Theorem 7 in [13], while the identity in Lemma 5 can be shown just as in Theorem 8 in
[13]. Therefore their proofs are left to the reader.

Lemma 4 Let p be an odd positive integer ≥ 3, and m ∈ N. Then we have

mpT (k)
p (1, m)

=
p∑

ν=0

(
p
ν

)
β (k)

ν

p + 2 – ν
mp+1 +

p–1∑

i=1

p+1–i∑

ν=0

(
p
ν

)(
p + 2 – ν

i

)
β (k)

ν

p + 2 – ν
Bimp+1–i + Bp+1

and

(p + 1)mpT (k)
p (1, m)

=
p+1∑

i=0

(
p + 1

i

)

Bimp+1–iβ
(k)
p+1–i(1)

+
1

p + 2

p+1∑

i=0

(
p + 2

i

)

(i – 1)Bimp+1–i(β (k)
p+2–i(1) – β

(k)
p+2–i

)
.

Lemma 5 For m, n, h ∈ N with (h, m) = 1, and p any positive odd integer ≥ 3, we have

p+1∑

s=0

(
p + 1

s

)

Bsβ
(k)
p+1–s(1)(mh)p+1–s

= mp
m–1∑

μ=0

p+1∑

s=0

(
p + 1

s

)

hsβ (k)
s

(
μ

m

)
Bp+1–s

(
h –

[
hμ

m

])
.

For d ∈N, we observe that

∞∑

n=0

β (k)
n (x)

tn

n!
=

Lik(1 – e–t)
et – 1

ext =
Lik(1 – e–t)

edt – 1

d–1∑

i=0

e(i+x)t (19)

=
1
dt

Lik
(
1 – e–t)

d–1∑

i=0

dt
edt – 1

e( i+x
d )dt
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=
∞∑

j=0

dj–1
d–1∑

i=0

Bj

(
x + i

d

)
tj

j!
1
t

∞∑

l=1

l!
lk

1
l!
(
1 – e–t)l

=
∞∑

j=0

dj–1
d–1∑

i=0

Bj

(
x + i

d

)
tj

j!
1
t

∞∑

l=1

(–1)ll!
lk

∞∑

m=l

S2(m, l)
(–t)m

m!

=
∞∑

j=0

dj–1
d–1∑

i=0

Bj

(
x + i

d

)
tj

j!

∞∑

m=0

1
m + 1

m+1∑

l=1

l!(–1)l+m–1

lk S2(m + 1, l)
tm

m!

=
∞∑

n=0

( n∑

j=0

d–1∑

i=0

n–j+1∑

l=1

(
n
j

)

dj–1Bj

(
x + i

d

)
l!(–1)n–j+1–l

(n – j + 1)lk S2(n – j + 1, l)

)
tn

n!
.

Therefore, by (19), we obtain the following theorem.

Theorem 6 For k ∈ Z, d ∈N, and n ≥ 0, we have

β (k)
n (x) =

n∑

j=0

d–1∑

i=0

n–j+1∑

l=1

(
n
j

)

dj–1Bj

(
x + i

d

)
l!(–1)n–j+1–l

(n – j + 1)lk S2(n – j + 1, l).

By (18), Lemmas 3–5, and Theorem 6, we get

hmpT (k)
p (h, m) + mhpT (k)

p (m, h) (20)

= hmp
m–1∑

μ=0

μ

m
β

(k)
p

(
hμ

m

)
+ mhp

h–1∑

ν=0

(
μ

h

)
β

(k)
p

(
mν

h

)

= hmp
m–1∑

μ=0

μ

m

p∑

j=0

hj–1

(
p
j

) h–1∑

ν=0

p–j+1∑

l=1

l!(–1)p–j+1–l

(p – j + 1)lk S2(p – j + 1, l)Bj

(
μ

m
+

ν

h

)

+ mhp
h–1∑

ν=0

ν

h

p∑

j=0

mj–1

(
p
j

) m–1∑

μ=0

p–j+1∑

l=1

l!(–1)p–j+1–l

(p – j + 1)lk S2(p – j + 1, l)Bj

(
ν

h
+

μ

m

)

=
m–1∑

μ=0

μ

m

p∑

j=0

mp–j(mh)j

(
p
j

) h–1∑

ν=0

p–j+1∑

l=1

Bj

(
μ

m
+

ν

h

)
l!S2(p – j + 1, l)

(p – j + 1)lk (–1)p–j+1–l

+
h–1∑

ν=0

ν

h

p∑

j=0

hp–j(mh)j

(
p
j

) m–1∑

μ=0

p–j+1∑

l=1

Bj

(
ν

h
+

μ

m

)
l!S2(p – j + 1, l)

(p – j + 1)lk (–1)p–j+1–l

=
m–1∑

μ=0

p∑

j=0

h–1∑

ν=0

p–j+1∑

l=1

(μh)(mh)–1mp–j(mh)j

(
p
j

)

× Bj

(
μ

m
+

ν

h

)
l!S2(p – j + 1, l)

(p – j + 1)lk (–1)p–j+1–l

+
m–1∑

μ=0

p∑

j=0

h–1∑

ν=0

p–j+1∑

l=1

(mν)(mh)–1hp–j(mh)j

(
p
j

)

× Bj

(
ν

h
+

μ

m

)
l!S2(p – j + 1, l)

(p – j + 1)lk (–1)p–j+1–l
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=
m–1∑

μ=0

p∑

j=0

h–1∑

ν=0

p–j+1∑

l=1

(mh)j–1l!S2(p – j + 1, l)
(p – j + 1)lk

×
(

p
j

)

(–1)p–j+1–l((μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.

Therefore, by (20), we obtain the following reciprocity theorem for the poly-Dedekind
sums associated with poly-Bernoulli functions with index k.

Theorem 7 For m, h, p ∈N and k ∈ Z, we have

hmpT (k)
p (h, m) + mhpT (k)

p (m, h)

=
m–1∑

μ=0

p∑

j=0

h–1∑

ν=0

p–j+1∑

l=1

(mh)j–1l!S2(p – j + 1, l)
(p – j + 1)lk

×
(

p
j

)

(–1)p–j+1–l((μh)mp–j + (mν)hp–j)Bj

(
ν

h
+

μ

m

)
.

In case of k = 1, by making use of Corollary 2, we obtain the following reciprocity relation
for the generalized Dedekind sums defined by Apostol.

Corollary 8 For m, h, p ∈ N, we have

hmpT (1)
p (h, m) + mhpT (1)

p (m, h) = mhpSp(h, m) + mhpSp(m, h)

=
m–1∑

μ=0

h–1∑

ν=0

(mh)p–1(μh + mν)Bp

(
ν

h
+

μ

m

)
.

3 Conclusion
The quantity called the Dedekind sum,

S(h, m) =
m–1∑

μ=1

μ

m
B1

(
hμ

m

)
,

occurs in the transformation behavior of the logarithm of the Dedekind eta-function un-
der substitutions from the modular group. It was shown by Dedekind that they satisfy the
following reciprocity relation:

S(h, m) + S(m, h) =
1

12

(
h
m

+
1

hm
+

m
h

)
–

1
4

if h and m are relatively prime positive integers.
Apostol considered the generalized Dedekind sums

Sp(h, m) =
m–1∑

μ=1

μ

m
Bp

(
hμ

m

)
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and derived a reciprocity relation for them. Recently, as one generalization of the gener-
alized Dedekind sums, the poly-Dedekind sums

S(k)
P (h, m) =

m–1∑

μ=1

μ

m
B(k)

p

(
hμ

m

)
,

associated with the type 2 poly-Bernoulli functions of arbitrary indices, were introduced
and were shown to satisfy a reciprocity relation. In this paper, as another generalization
of the generalized Dedekind sums, we considered the poly-Dedekind sums

T (k)
p (h, m) =

m–1∑

μ=1

μ

m
β

(k)
p

(
hμ

m

)
,

associated with the poly-Bernoulli functions of arbitrary indices, and derived a reciprocity
relation for these poly-Dedekind sums.
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