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Abstract
Identities of symmetry in two variables for Bernoulli polynomials and power sums had
been investigated by considering suitable symmetric identities. T. Kim used a
completely different tool, namely the p-adic Volkenborn integrals, to find the same
identities of symmetry in two variables. Not much later, it was observed that this
p-adic approach can be generalized to the case of three variables and shown that it
gives some new identities of symmetry even in the case of two variables upon
specializing one of the three variables. In this paper, we generalize the results in three
variables to those in an arbitrary number of variables in a suitable setting and
illustrate our results with some examples.
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1 Introduction and preliminaries
Tuenter [17] obtained the following identity of symmetry involving the Bernoulli numbers
and the power sums. This was done by showing that the exponential generating function
of the sum on the left-hand side of (1) is invariant under the interchange of w1 and w2.

n∑

i=0

(
n
i

)
BiSn–i(w1 – 1)wi–1

1 wn–i
2 =

n∑

i=0

(
n
i

)
BiSn–i(w2 – 1)wi–1

2 wn–i
1 , (1)

where w1, w2 are any positive integers, n is a nonnegative integer, Bn are Bernoulli numbers
in (8), Sk(n) are the power sums in (10).

When w2 = 1, equation (1) reduces to the following recurrence relation for the Bernoulli
numbers:

Bn =
1

w1(1 – wn
1)

n–1∑

i=0

(
n
i

)
BiSn–i(w1 – 1)wi

1, (2)

which was proved by Deeba and Rodriguez [2] and Gessel [3]. Actually, it was a conjecture
posed by Namias who found identity (2) for w1 = 2, 3 by using the multiplication formula
for the gamma function (see [2]).
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A completely different approach to identities of symmetry was given in [12], where the
p-adic Volkenborn integrals for uniformly differential functions (see (5)) were used. In
particular, the following two identities were obtained:
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2 =
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)
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We note here that (3) becomes (1) when x = 0, and that (3) and (4) can be generalized to
higher-order Bernoulli polynomials (see [18]). It turns out that this p-adic approach to
identities of symmetry has the merit of being easily generalized. In addition, the identities
of symmetry can be found also for Euler polynomials [9], q-Bernoulli polynomials [5, 13,
14], and q-Euler polynomials [6], respectively by using p-adic fermionic integrals, p-adic
q-Volkenborn integrals, and p-adic fermionic q-integrals [11]. For the q-Bernoulli and q-
Euler polynomials, we let the reader refer to the papers [1, 4, 16]. Indeed, in [10] many
identities of symmetry for three variables were obtained for the first time by adopting the
p-adic Volkenborn integral approach initiated in [12] (see Example 3.1). As was mentioned
in Sect. 1 of [10], by specializing the variable w3 as 1 in (c-1), (c-2), and (c-3) of Example 3.1,
it was shown that (3) and (4) are all equal and that they are further equal to the following
identities:
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.

Thus we may say that the abundance of symmetries in (c-1), (c-2), and (c-3) shed new
light even on the existing identities in two variables. These would not be unearthed if
more symmetries had not been available. Moreover, the identities of symmetry for higher-
order Bernoulli polynomials in two variables in [18], which was done by manipulations of
identities, can be done by using the p-adic Volkenborn integrals so as to give abundant
symmetries in three variables (see [7, 8]).

The aim of this paper is to generalize the results in three variables [10] to those in an
arbitrary number of variables in a suitable setting. Theorem 2.2 is the main result of this
paper. Further, we illustrate our results with examples in Sect. 3. In the rest of this section,
we recall the facts that are needed throughout this paper.

Let p be a fixed prime. Throughout this paper, Zp, Qp, Cp will respectively denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
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algebraic closure of Qp. For a uniformly differentiable function f : Zp → Cp, the p-adic
Volkenborn integral of f is defined by

∫

Zp

f (z) dμ(z) = lim
N→∞

1
pN

pN –1∑

j=0

f (j). (5)

Then it is easy to see that

∫

Zp

f (z + 1) dμ(z) =
∫

Zp

f (z) dμ(z) + f ′(z). (6)

Let | · |p be the normalized non-Archimedean absolute value of Cp such that |p|p = 1
p , and

let

E =
{

t ∈Cp | |t|p < p– 1
p–1

}
. (7)

Then, for each fixed t ∈ E, the function f (z) = ezt is analytic on Zp, and by applying (6)
to this f , we get the p-adic integral expression of the generating function for Bernoulli
numbers Bn given by

∫

Zp

ezt dμ(z) =
t

et – 1
=

∞∑

n=0

Bn
tn

n!
(t ∈ E). (8)

So we have the following p-adic integral expression of the generating function for the
Bernoulli polynomials Bn(x):

∫

Zp

e(x+z)t dμ(z) =
t

et – 1
ext =

∞∑

n=0

Bn(x)
tn

n!
(t ∈ E, x ∈ Zp). (9)

Here and throughout this paper, we will have many instances to be able to interchange
integral and infinite sum. That is justified by Proposition 55.4 in [15]. Let Sk(n) denote the
kth power sum of the first n + 1 nonnegative integers, namely

Sk(n) =
n∑

i=0

ik = 0k + 1k + · · · + nk . (10)

In particular, we have

S0(n) = n + 1, Sk(0) =

⎧
⎨

⎩
1 for k = 0,

0 for k > 0.
(11)

From (8) and (10), one easily derives the following identities: for w ∈ Z>0,

w
∫
Zp

ext dμ(x)
∫
Zp

ewyt dμ(y)
=

w–1∑

i=0

eit (12)

=
∞∑

k=0

Sk(w – 1)
tk

k!
(t ∈ E). (13)
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Let n ≥ 2, and let In = {1, 2, . . . , n}. Then the symmetric group Sn acts on In in a natural way
as (σ , j) �→ σ (j). For each integer j with 1 ≤ j ≤ n, let �j be the subset of 2In consisting of
all j-element subsets of In.

Proposition 1.1 Let � be a nonempty subset of 2In not containing the empty set φ. Then
there is an action of Sn on � induced by the natural action of Sn on In if and only if � =
⋃

j∈J �j for some nonempty subset J of In. Moreover, such an action of Sn on � is transitive
if and only if � = �j for some j (1 ≤ j ≤ n).

Proof (⇐) For each j (1 ≤ j ≤ n), the natural action of Sn on In induces an action of Sn on
�j, which is obviously transitive. In turn, this induces an action of Sn on � =

⋃
j∈J �j for

some nonempty subset J of In.
(⇒) Assume that there is an action of Sn on � induced by the natural action of Sn on

In. If A ∈ �, with |A| = j (1 ≤ j ≤ n), then σA ∈ � for all σ ∈ Sn, and hence �j ⊂ �. This
shows that � =

⋃
j∈J �j for some nonempty subset J of In. For the second statement, note

that the action cannot be transitive if � =
⋃

j∈J �j with |J| ≥ 2. �

2 Main results
Assume that n is any fixed integer ≥ 2. Then we will introduce notations that will be used
throughout this paper.

• I = In = {1, 2, . . . , n}.
• �j = �

(n)
j = the set consisting of all j-element subsets of I for any j = 1, 2, . . . , n – 1

(|�j| =
(n

j
)
).

We give the reversed lexicographic ordering on each �j and also on any nonempty subset
� of �j. For example, �3 = {1̄ = {2, 3, 4} < 2̄ = {1, 3, 4} < 3̄ = {1, 2, 4} < 4̄ = {1, 2, 3}}, when
n = 4, j = 3; � = {{2, 3, 4} < {1, 2, 4}} is a subset of �j. We write � < �′ for disjoint nonempty
subsets �, �′ of �j if every member of � is smaller than that of �′. Also, we agree that
φ < �, � < φ for every (including the empty set) subset � of �j.

Every permutation σ in Sn gives rise to a natural bijection of �j onto itself given by
A �→ σA, where σA is the set obtained from A by applying σ to each member of A.

• w1, w2, . . . , wn typical n positive integers.
• wA =

∏
j∈A wj for any subset A of I (wφ = 1). For example, w{1,2,3} = w1w2w3. Also, we

note that
∏

A∈�j
wA = w

(n–1
j–1)

I .
• ŵi = wI

wi
.

• Ā = the complement of A in I for any subset A of I , so that wAwĀ = wI for any subset
A of I .

• ŵA =
∏

i∈A ŵi = (wI)|A|–1wĀ (ŵI = (wI)|A|–1).
• xA = xj1j2···jr for any nonempty subset A = {j1, j2, . . . , jr} of I with j1 < j2 < · · · < jr . For

example, x{1,2,3} = x123. These are typical variables of integration.
• φj : �j → �n–j (A �→ Ā) is a bijection.
• pj(w; x) = p(n)

j (w; x) =
∑

A∈�j
wAxĀ for j = 1, 2, . . . , n – 1. For example, with n = 4, we

have

p1(w; x) = w1x234 + w2x134 + w3x124 + w4x123,

p2(w; x) = w1w2x34 + w1w3x24 + w1w4x23 + w2w3x14 + w2w4x13 + w3w4x12,
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p3(w; x) = w1w2w3x4 + w1w2w4x3 + w1w3w4x2 + w2w3w4x1.

• dμ(�) =
∏

A∈� dμ(xĀ) for any nonempty subset � of �j.
As before, assume that n is any fixed integer ≥ 2 and that j is an integer with 1 ≤ j ≤

n – 1. Then, in view of Proposition 1.1, for any subset � for �j, we consider the following
quotients of integrals given by

Ij(�) = I(n)
j (�) =

∫
Z

|�j |
p

e(pj(w;x)+wI (
∑

A∈�j–� yĀ))t dμ(�j)

(
∫
Zp

ewI zt dμ(z))|�| (14)

=
w

(n–1
j–1)–|�|

I t|�j|–|�|ewI (
∑

A∈�j–� yĀ)t(ewI t – 1)|�|
∏

A∈�j
(ewAt – 1)

. (15)

Here, we have to observe that
∫

Z
|�j |
p

epj(w;x)t dμ(�j) =
∏

A∈�j

∫

Zp

ewAxĀt dμ(xĀ) (16)

=
∏

A∈�j

wAt
ewAt – 1

=
w

(n–1
j–1)

I t|�j|
∏

A∈�j
(ewAt – 1)

.

It is important to observe here, either from (14) or from (15), that the integrals Ij(�) are
invariant under any permutation of w1, w2, . . . , wn.

Now, we decompose � into a disjoint union � = �(e) ∪ �(s) with �(e) < �(s). As we allow
either �(e) or �(s) to be the empty set, there are |�|+1 ways of doing this. Then, by invoking
(12) and (13), we write the integral in (14) as follows:

Ij(�) =
1∏

A∈� wĀ
×

∏

A∈�j–�

∫

Zp

ewA(xĀ+wĀyĀ)t dμ(xĀ) ×
∏

A∈�

wĀ
∫
Zp

ewAxĀt dμ(xĀ)
∫
Zp

ewĀwAzt dμ(z)
(17)

=
1∏

A∈� wĀ
×

∏

A∈�j–�

∫

Zp

ewA(xĀ+wĀyĀ)t dμ(xĀ)

×
∏

A∈�(e)

(wĀ–1∑

iA=0

eiAwAt

)
×

∏

A∈�(s)

( ∞∑

jA=0

SjA (wĀ – 1)
(wAt)jA

jA!

)
.

Note here that we used the identity in (12) for all A ∈ �(e), and that in (13) for all A ∈ �(s).

Remark 2.1 We observe that (15) depends essentially only on the size |�| of �. Namely,
if �(1) and �(2) are two subsets of �j, with |�(1)| = |�(2)|, and f : �j → �j is any bijective
map sending �(1) onto �(2), then we have

w
(n–1

j–1)–|�(2)|
I t|�j|–|�(2)|e

wI (
∑

A∈�j–�(2) yĀ)t
(ewI t – 1)|�(2)|

∏
A∈�j

(ewAt – 1)
(18)

=
w

(n–1
j–1)–|�(1)|

I t|�j|–|�(1)|e
wI (

∑
A∈�j–�(1) yf (A))t

(ewI t – 1)|�(1)|
∏

A∈�j
(ewAt – 1)

.
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Thus (14) with �(2) is the same as that with �(1) with the ‘y variables renamed.’ Hence we
only need to consider (17) for only one subset � of �j with the given size. So, for each
positive integer k with k ≤ |�j|, we only consider the subset � of �j consisting of the first
k (smaller) elements of �j. We denote this subset by �jk , and the empty subset of �j by
�j0. From now on, we assume that � = �jk for some integer k (0 ≤ k ≤ |�j| =

(n
j
)
). For

example, when n = 3, we see that

�20 = φ, �21 =
{{2, 3}}, �22 =

{{2, 3}, {1, 3}}, �23 =
{{2, 3}, {1, 3}, {1, 2}}.

Further, we assume that we have a decomposition of �(e) as the disjoint union

�(e) =
⋃

A∈�j–�

�
(e)
A (19)

satisfying the following conditions:
(i) |�(e)

A | ≤ |�(e)
A′ | for all A, A′ ∈ �j – � with A < A′,

(ii) �
(e)
A < �

(e)
A′ for all A, A′ ∈ �j – � with A < A′.

(Note: in view of (19), this requires in particular that we should choose �(e) = φ for �j –
� = φ.)

We assume that we are given such a decomposition as in (19) satisfying (i) and (ii). Then
we write (17) as

Ij(�) =
1∏

A∈� wĀ

∏

A∈�j–�

∏

E∈�
(e)
A

wĒ–1∑

iE=0

∫

Zp

e
wA(xĀ+wĀyĀ+

∑
E∈�

(e)
A

iE
wE
wA

)t
dμ(xĀ) (20)

×
∏

A∈�(s)

∞∑

jA=0

SjA (wĀ – 1)
(wAt)jA

jA!

=
1∏

A∈� wĀ

∏

A∈�j–�

∞∑

lA=0

∏

E∈�
(e)
A

wĒ–1∑

iE=0

BlA

(
wĀyĀ +

∑

E∈�
(e)
A

iE
wE

wA

)
(wAt)lA

lA!

×
∏

A∈�(s)

∞∑

jA=0

SjA (wĀ – 1)
(wAt)jA

jA!
.

Further, by rearranging sums (20) can be written as

Ij(�) =
1∏

A∈� wĀ

{ ∞∑

n=0

∑
∑

A∈�j–� lA+
∑

A∈�(s) jA=n

(
n

. . . , lA, . . . , jA, . . .

)
(21)

×
∏

A∈�j–�

∏

E∈�
(e)
A

wĒ–1∑

iE=0

BlA

(
wĀyĀ +

∑

E∈�
(e)
A

iE
wE

wA

)

×
∏

A∈�(s)

SjA (wĀ – 1)
∏

A∈�j–�

wlA
A

∏

A∈�(s)

wjA
A

tn

n!

}
.

Here,
( n

...,lA ,...,jA ,...
)

denotes the multinomial coefficient, where lA and jA are nonnegative
integers varying respectively over the index sets A ∈ �j – � and A ∈ �(s).
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For the next theorem, we assume that � = �jk for some k, � has a decomposition
into a disjoint union � = �(e) ∪ �(s) with �(e) < �(s), and that �(e) has a decomposition
�(e) =

⋃
A∈�j–� �

(e)
A satisfying conditions (i) and (ii) in (19). As we noted earlier, the p-adic

integrals in (14) are invariant under every permutation of w1, w2, . . . , wn, so that it gives
the identities of symmetry with respect to w1, w2, . . . , wn, involving Bernoulli polynomials
and power sums. Now, we have our main result from (21).

Theorem 2.2 The following expression is invariant under every permutation of w1, w2, . . . ,
wn, so that it gives the identities of symmetry with respect to w1, w2, . . . , wn:

1∏
A∈� wĀ

∑
∑

A∈�j–� lA+
∑

A∈�(s) jA=n

(
n

. . . , lA, . . . , jA, . . .

)
(22)

×
∏

A∈�j–�

∏

E∈�
(e)
A

wĒ–1∑

iE=0

BlA

(
wĀyĀ +

∑

E∈�
(e)
A

iE
wE

wA

)

×
∏

A∈�(s)

SjA (wĀ – 1)
∏

A∈�j–�

wlA
A

∏

A∈�(s)

wjA
A .

In other words, for all permutations σ ∈ Sn, the following expressions are all the same:

1∏
A∈� wσA

∑
∑

A∈�j–� lA+
∑

A∈�(s) jA=n

(
n

. . . , lA, . . . , jA, . . .

)

×
∏

A∈�j–�

∏

E∈�
(e)
A

w
σE–1∑

iE=0

BlA

(
wσAyĀ +

∑

E∈�
(e)
A

iE
wσE

wσA

)

×
∏

A∈�(s)

SjA (wσA – 1)
∏

A∈�j–�

wlA
σA

∏

A∈�(s)

wjA
σA.

Here,
( n

...,lA ,...,jA ,...
)

denotes the multinomial coefficient, where lA and jA are nonnegative inte-
gers varying respectively over the index sets A ∈ �j – � and A ∈ �(s).

3 Examples
Here, we would like to illustrate our Theorem 2.2.

Example 3.1 Assume that n = 3, j = 2. Here, �2 = �
(3)
2 = {1̄ = {2, 3} < 2̄ = {1, 3} < 3̄ = {1, 2}}.

In view of our discussion leading up to Theorem 2.2, we may consider only the subsets
� = �2i (i = 0, 1, 2, 3) of �2.

(a) �20 = φ (�2 – �20 = �2)
(a-1) �

(e)
20 = φ (�(e)

20,A = φ for each A ∈ �2), �(s)
20 = φ.

(b) �21 = {1̄} (�2 – �21 = {2̄, 3̄})
(b-1) �

(e)
21 = φ (�(e)

21,A = φ for each A ∈ �2 – �21), �(s)
21 = {1̄},

(b-2) �
(e)
21 = {1̄} (�(e)

21,2̄ = φ, �(e)
21,3̄ = {1̄}), �(s)

21 = φ.
(c) �22 = {1̄, 2̄} (�2 – �22 = {3̄})

(c-1) �
(e)
22 = φ (�(e)

22,3̄ = φ), �(s)
22 = {1̄, 2̄},

(c-2) �
(e)
22 = {1̄} (�(e)

22,3̄ = {1̄}), �(s)
22 = {2̄},

(c-3) �
(e)
22 = {1̄, 2̄} (�(e)

22,3̄ = {1̄, 2̄}), �(s)
22 = φ.
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(d) �23 = {1̄, 2̄, 3̄} (�2 – �23 = φ)
(d-1) �

(e)
23 = φ, �(s)

23 = �23.
One checks now that the invariance of (14) under any permutation of w1, w2, w3, applied

to each of the cases (a-1), (b-1), (b-2), (c-1), (c-2), and (c-3), yields the results in Theorems
1, 2, 5, 8, 11, 14 in [10]. As we noted in [10], not all of these give the full six identities
of symmetry corresponding to the symmetric group S3. The possible numbers of distinct
identities of symmetry are 1, 2, 3, and 6 corresponding to the quotient |S3|/|H|, where H
is a subgroup of S3, with the respective orders 6, 3, 2, and 1. In our case, (a-1), (b-1), (b-2),
and (c-2) give the full six identities of symmetry, and (c-1) and (c-3) yield three identities
of symmetry, while (d-1) gives no identities of symmetry. For convenience of the reader,
we reproduce those results here with appropriate change of notations in (22).

∑

k+�+m=n

(
n

k,�, m

)
Bk(w1y1)B�(w2y2)Bm(w3y3)w�+m

1 wk+m
2 wk+�

3

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w1y1)B�(w3y2)Bm(w2y3)w�+m

1 wk+m
3 wk+�

2

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w2y1)B�(w1y2)Bm(w3y3)w�+m

2 wk+m
1 wk+�

3

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w2y1)B�(w3y2)Bm(w1y3)w�+m

2 wk+m
3 wk+�

1

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w3y1)B�(w1y2)Bm(w2y3)w�+m

3 wk+m
1 wk+�

2

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w3y1)B�(w2y2)Bm(w1y3)w�+m

3 wk+m
2 wk+�

1 ,

(a-1)

∑

k+�+m=n

(
n

k,�, m

)
Bk(w2y2)B�(w3y3)Sm(w1 – 1)w�+m

2 wk+m
3 wk+�–1

1

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w2y2)B�(w1y3)Sm(w3 – 1)w�+m

2 wk+m
1 wk+�–1

3

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w1y2)B�(w3y3)Sm(w2 – 1)w�+m

1 wk+m
3 wk+�–1

2

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w1y2)B�(w2y3)Sm(w3 – 1)w�+m

1 wk+m
2 wk+�–1

3

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w3y2)B�(w2y3)Sm(w1 – 1)w�+m

3 wk+m
2 wk+�–1

1

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w3y2)B�(w1y3)Sm(w2 – 1)w�+m

3 wk+m
1 wk+�–1

2 ,

(b-1)

wn–1
1

n∑

k=0

(
n
k

)
Bk(w2y2)

w1–1∑

i=0

Bn–k

(
w3y3 +

w3

w1
i
)

wn–k
2 wk

3

= wn–1
1

n∑

k=0

(
n
k

)
Bk(w3y2)

w1–1∑

i=0

Bn–k

(
w2y3 +

w2

w1
i
)

wn–k
3 wk

2
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= wn–1
2

n∑

k=0

(
n
k

)
Bk(w1y2)

w2–1∑

i=0

Bn–k

(
w3y3 +

w3

w2
i
)

wn–k
1 wk

3 (b-2)

= wn–1
2

n∑

k=0

(
n
k

)
Bk(w3y2)

w2–1∑

i=0

Bn–k

(
w1y3 +

w1

w2
i
)

wn–k
3 wk

1

= wn–1
3

n∑

k=0

(
n
k

)
Bk(w1y2)

w3–1∑

i=0

Bn–k

(
w2y3 +

w2

w3
i
)

wn–k
1 wk

2

= wn–1
3

n∑

k=0

(
n
k

)
Bk(w2y2)

w3–1∑

i=0

Bn–k

(
w1y3 +

w1

w3
i
)

wn–k
2 wk

1,

∑

k+�+m=n

(
n

k,�, m

)
Bk(w3y3)S�(w1 – 1)Sm(w2 – 1)w�+m

3 wk+m–1
1 wk+�–1

2

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w1y3)S�(w2 – 1)Sm(w3 – 1)w�+m

1 wk+m–1
2 wk+�–1

3

=
∑

k+�+m=n

(
n

k,�, m

)
Bk(w2y3)S�(w1 – 1)Sm(w3 – 1)w�+m

2 wk+m–1
1 wk+�–1

3 ,

(c-1)

wn–1
1

n∑

k=0

(
n
k

) w1–1∑

i=0

Bk

(
w3y3 +

w3

w1
i
)

Sn–k(w2 – 1)wn–k
3 wk–1

2

= wn–1
2

n∑

k=0

(
n
k

) w2–1∑

i=0

Bk

(
w3y3 +

w3

w2
i
)

Sn–k(w1 – 1)wn–k
3 wk–1

1

= wn–1
2

n∑

k=0

(
n
k

) w2–1∑

i=0

Bk

(
w1y3 +

w1

w2
i
)

Sn–k(w3 – 1)wn–k
1 wk–1

3

= wn–1
3

n∑

k=0

(
n
k

) w3–1∑

i=0

Bk

(
w1y3 +

w1

w3
i
)

Sn–k(w2 – 1)wn–k
1 wk–1

2

= wn–1
1

n∑

k=0

(
n
k

) w1–1∑

i=0

Bk

(
w2y3 +

w2

w1
i
)

Sn–k(w3 – 1)wn–k
2 wk–1

3

= wn–1
3

n∑

k=0

(
n
k

) w3–1∑

i=0

Bk

(
w2y3 +

w2

w3
i
)

Sn–k(w1 – 1)wn–k
2 wk–1

1 ,

(c-2)

(w1w2)n–1
w1–1∑

i=0

w2–1∑

j=0

Bn

(
w3y3 +

w3

w1
i +

w3

w2
j
)

= (w2w3)n–1
w2–1∑

i=0

w3–1∑

j=0

Bn

(
w1y3 +

w1

w2
i +

w1

w3
j
)

= (w3w1)n–1
w3–1∑

i=0

w1–1∑

j=0

Bn

(
w2y3 +

w2

w3
i +

w2

w1
j
)

.

(c-3)

Example 3.2 Assume that n = 4, j = 3. Here, �3 = �
(4)
3 = {1̄ = {2, 3, 4} < 2̄ = {1, 3, 4} < 3̄ =

{1, 2, 4} < 4̄ = {1, 2, 3}}. In view of our discussion leading up to Theorem 2.2, we may con-
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sider only the subsets � = �3i (i = 0, 1, 2, 3, 4) of �3. We let the interested reader write out
the identities of symmetry for each of the following cases by using Theorem 2.2.

(a) �30 = φ (�3 – �30 = �3)
(a-1) �

(e)
30 = φ (�(e)

30,A = φ for each A ∈ �3), �(s)
30 = φ.

(b) �31 = {1̄} (�3 – �31 = {2̄, 3̄, 4̄})
(b-1) �

(e)
31 = φ (�(e)

31,A = φ for each A ∈ �3 – �31), �(s)
31 = {1̄},

(b-2) �
(e)
31 = {1̄} (�(e)

31,2̄ = �
(e)
31,3̄ = φ, �(e)

31,4̄ = {1̄}), �(s)
31 = φ.

(c) �32 = {1̄, 2̄} (�3 – �32 = {3̄, 4̄})
(c-1) �

(e)
32 = φ (�(e)

32,A = φ for each A ∈ �3 – �32), �(s)
32 = {1̄, 2̄},

(c-2) �
(e)
32 = {1̄} (�(e)

32,3̄ = φ, �(e)
32,4̄ = {1}), �(s)

32 = {2̄},
(c-3-1) �

(e)
32 = {1̄, 2̄} (�(e)

32,3̄ = φ, �(e)
32,4̄ = {1̄, 2̄}), �(s)

32 = φ,
(c-3-2) �

(e)
32 = {1̄, 2̄} (�(e)

32,3̄ = {1̄}, �(e)
32,4̄ = {2̄}), �(s)

32 = φ.
(d) �34 = {1̄, 2̄, 3̄, 4̄} (�3 – �34 = φ)

(d-1) �
(e)
34 = φ, �(s)

34 = �34.

Example 3.3 Assume that n = 4, j = 2. Here, �2 = �
(4)
2 = {34 = {3, 4} < 24 = {2, 4} < 23 =

{2, 3} < 14 = {1, 4} < 13 = {1, 3} < 12 = {1, 2}}. In view of our discussion leading up to The-
orem 2.2, we may consider only the subsets � = �2i (i = 0, 1, 2, 3, 4, 5, 6) of �2. We let the
interested reader write out the identities of symmetry for each of the following cases by
using Theorem 2.2.

(a) �20 = φ (�2 – �20 = �2)
(a-1) �

(e)
20 = φ (�(e)

20,A = φ for each A ∈ �2), �(s)
20 = φ.

(b) �21 = {34} (�2 – �21 = {24, 23, 14, 13, 12})
(b-1) �

(e)
21 = φ (�(e)

21,A = φ for each A ∈ �2 – �21), �(s)
21 = {34},

(b-2) �
(e)
21 = {34} (�(e)

21,A = φ for each A ∈ {24, 23, 14, 13}, �(e)
21,12 = {34}), �(s)

21 = φ.
(c) �22 = {34, 24} (�2 – �22 = {23, 14, 13, 12})

(c-1) �
(e)
22 = φ (�(e)

22,A = φ for each A ∈ �2 – �22), �(s)
22 = {34, 24},

(c-2) �
(e)
22 = {34} (�(e)

22,23 = �
(e)
22,14 = �

(e)
22,13 = φ, �(e)

22,12 = {34}), �(s)
22 = {24},

(c-3-1) �
(e)
22 = {34, 24} (�(e)

22,23 = �
(e)
22,14 = �

(e)
22,13 = φ, �(e)

22,12 = {34, 24}), �(s)
22 = φ,

(c-3-2) �
(e)
22 = {34, 24} (�(e)

22,23 = �
(e)
22,14 = φ, �(e)

22,13 = {34}, �(e)
22,12 = {24}),

�
(s)
22 = φ.

(d) �23 = {34, 24, 23} (�2 – �23 = {14, 13, 12})
(d-1) �

(e)
23 = φ (�(e)

23,A = φ for each A ∈ {14, 13, 12}), �(s)
23 = {34, 24, 23},

(d-2) �
(e)
23 = {34} (�(e)

23,14 = �
(e)
23,13 = φ, �(e)

23,12 = {34}), �(s)
23 = {24, 23},

(d-3-1) �
(e)
23 = {34, 24} (�(e)

23,14 = �
(e)
23,13 = φ, �(e)

23,12 = {34, 24}), �(s)
23 = {23},

(d-3-2) �
(e)
23 = {34, 24} (�(e)

23,14 = φ, �(e)
23,13 = {34}, �(e)

23,12 = {24}), �(s)
23 = {23},

(d-4-1) �
(e)
23 = {34, 24, 23} (�(e)

23,14 = �
(e)
23,13 = φ, �(e)

23,12 = {34, 24, 23}), �(s)
23 = φ,

(d-4-2) �
(e)
23 = {34, 24, 23} (�(e)

23,14 = φ, �(e)
23,13 = {34}, �(e)

23,12 = {24, 23}), �(s)
23 = φ,

(d-4-3) �
(e)
23 = {34, 24, 23} (�(e)

23,14 = {34}, �(e)
23,13 = {24}, �(e)

23,12 = {23}), �(s)
23 = φ.

(e) �24 = {34, 24, 23, 14} (�2 – �24 = {13, 12})
(e-1) �

(e)
24 = φ (�(e)

24,13 = �
(e)
24,12 = φ), �(s)

24 = {34, 24, 23, 14},
(e-2) �

(e)
24 = {34} (�(e)

24,13 = φ, �(e)
24,12 = {34}), �(s)

24 = {24, 23, 14},
(e-3-1) �

(e)
24 = {34, 24} (�(e)

24,13 = φ, �(e)
24,12 = {34, 24}), �(s)

24 = {23, 14},
(e-3-2) �

(e)
24 = {34, 24} (�(e)

24,13 = {34}, �(e)
24,12 = {24}), �(s)

24 = {23, 14},
(e-4-1) �

(e)
24 = {34, 24, 23} (�(e)

24,13 = φ, �(e)
24,12 = {34, 24, 23}), �(s)

24 = {14},
(e-4-2) �

(e)
24 = {34, 24, 23} (�(e)

24,13 = {34}, �(e)
24,12 = {24, 23}), �(s)

24 = {14},
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(e-5-1) �
(e)
24 = {34, 24, 23, 14} (�(e)

24,13 = φ, �(e)
24,12 = {34, 24, 23, 14}), �(s)

24 = φ,
(e-5-2) �

(e)
24 = {34, 24, 23, 14} (�(e)

24,13 = {34}, �(e)
24,12 = {24, 23, 14}), �(s)

24 = φ,
(e-5-3) �

(e)
24 = {34, 24, 23, 14} (�(e)

24,13 = {34, 24}, �(e)
24,12 = {23, 14}), �(s)

24 = φ.
(f ) �25 = {34, 24, 23, 14, 13} (�2 – �25 = {12})

(f-1) �
(e)
25 = φ (�(e)

25,12 = φ), �(s)
25 = {34, 24, 23, 14, 13},

(f-2) �
(e)
25 = {34} (�(e)

25,12 = {34}), �(s)
25 = {24, 23, 14, 13},

(f-3) �
(e)
25 = {34, 24} (�(e)

25,12 = {34, 24}), �(s)
25 = {23, 14, 13},

(f-4) �
(e)
25 = {34, 24, 23} (�(e)

25,12 = {34, 24, 23}), �(s)
25 = {14, 13},

(f-5) �
(e)
25 = {34, 24, 23, 14} (�(e)

25,12 = {34, 24, 23, 14}), �(s)
25 = {13},

(f-6) �
(e)
25 = {34, 24, 23, 14, 13} (�(e)

25,12 = {34, 24, 23, 14, 13}), �(s)
25 = φ.

(g) �26 = {34, 24, 23, 14, 13, 12} (�2 – �26 = φ)
(g-1) �

(e)
26 = φ, �(s)

26 = �26.

4 Conclusion
Identities of symmetry in two variables for Bernoulli polynomials and power sums, which
had been shown by using suitable symmetric identities, were derived by employing a com-
pletely different tool in [12], namely the p-adic Volkenborn integrals. Not much later, it
was observed in [10] that the identities in two variables can be extended to those in three
variables. We recalled that the abundant symmetries of identities in three variables shed
new light even on the existing identities in two variables. Namely, some further identities
of symmetry can be discovered by specializing one of the three variables as 1.

Here, in this paper, we generalized the results in three variables to those in an arbitrary
number of variables in a suitable setting. We proved our main result, Theorem 2.2, and
illustrated our result with some examples. As was noted in [10] and recalled in Example
3.1, the number of distinct identities of symmetry in three variables is not always 6 = |S3|,
but it is 1, 2, 3, or 6, because it is equal to the quotient |S3|/|H|, where H is a subgroup of S3.
It is an interesting problem to determine the possible numbers of distinct symmetries in
our case. We leave this as a challenging problem for the interested reader. Similar results
for other special polynomials together with the corresponding suitable power sums will
appear in forthcoming papers.
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