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Abstract
We consider the discrete Jensen–Mercer inequality and Čebyšev’s inequality of the
Mercer type. We establish bounds for Čebyšev’s functional of the Mercer type and
bounds for the Jensen–Mercer functional in terms of the discrete Ostrowski inequality.
Consequentially, we obtain new refinements of the considered inequalities.
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1 Introduction
Let n ≥ 2 and let w = (w1, . . . , wn) be a real n-tuple such that

0 ≤ Wk =
k∑

i=1

wi ≤ Wn, k = 1, . . . , n, Wn > 0. (1)

In [5] the following Čebyšev’s inequality of the Mercer type:

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)
≤ ac + bd –

1
Wn

n∑

i=1

wixiyi, (2)

was proved for any real n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) monotone in the same
direction and real numbers a, b, c, d such that

a ≤ min
1≤i≤n

xi, b ≥ max
1≤i≤n

xi, c ≤ min
1≤i≤n

yi, d ≥ max
1≤i≤n

yi. (3)

If x and y are monotonic in the opposite directions, inequality (2) is reversed.
Here, to be more precise, we cite that result with the slightly different notation.
In the same paper, the authors considered Čebyšev’s functional (or Čebyšev’s difference)

of the Mercer type defined as the difference of the right- and left-hand sides of inequality
(2). They established bounds in terms of the discrete Ostrowski inequality. Here we give
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more accurate bounds, which also provide refinements of inequality (2). In addition, using
these results, we establish Ostrowski-like bounds for the Jensen–Mercer functional and,
consequentially, a refinement of the Jensen–Mercer inequality.

2 Bounds for the Čebyšev’s functional of the Mercer type
Let m ≥ 2 and let p = (p1, . . . , pm) be a real m-tuple such that

0 ≤ Pk =
k∑

i=1

pi ≤ Pm, k = 1, . . . , m, Pm > 0. (4)

Then Pk =
∑m

i=k pi ≥ 0, k = 1, . . . , m. Furthermore, from the summation by parts (some-
times called the Abel transformation) it follows that the identity

m∑

i=1

pi

m∑

i=1

piξiζi –
m∑

i=1

piξi

m∑

i=1

piζi (5)

=
m–1∑

i=1

( i–1∑

j=1

Pi+1Pj�ξi�ζj +
m–1∑

j=i

PiPj+1�ξi�ζj

)

holds for any two real m-tuples ξ = (ξ1, . . . , ξm) and ζ = (ζ1, . . . , ζm), where �ξi = ξi+1 – ξi,
�ζi = ζi+1 – ζi, i = 1, . . . , m – 1 (see [7, 8]).

Here, and in the rest of the paper, we assume
∑l

j=k xj = 0 when k > l.

Lemma 1 Let n ≥ 2 and let w be a real n-tuple such that (1) is fulfilled. Then for any real
n-tuples x, y and real numbers a, b, c, d satisfying (3), the identity

ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)

= (x1 – a)(d – yn) + (b – xn)(y1 – c)

+
1

Wn

[ n–1∑

i=1

Wi(x1 – a)�yi +
n–1∑

i=1

W i+1(b – xn)�yi (6)

+
n–1∑

i=1

Wi�xi(y1 – c) +
n–1∑

i=1

W i+1�xi(d – yn)

]

+
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1�xi�yj +
n–1∑

j=i

W i+1Wj�xi�yj

)

holds, where �xi = xi+1 – xi, �yi = yi+1 – yi, i = 1, . . . , n – 1.

Proof For m = n + 2, we define m-tuples p, ξ , and ζ as

p1 = 1, p2 = –
w1

Wn
, p3 = –

w2

Wn
, . . . , pm–1 = –

wn

Wn
, pm = 1,

ξ1 = a, ξ2 = x1, ξ3 = x2, . . . , ξm–1 = xn, ξm = b,

ζ1 = c, ζ2 = y1, ζ3 = y2, . . . , ζm–1 = yn, ζm = d.

(7)
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Since w satisfies (1) it follows that

0 ≤ Pk =
k∑

i=1

pi ≤ Pm, k = 1, 2, . . . , m, Pm = 1 > 0.

Hence, we can apply identity (5). Its left-hand side is

m∑

i=1

pi

m∑

i=1

piξiζi –
m∑

i=1

piξi

m∑

i=1

piζi

= ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)
.

It can be easily seen that

P1 = 1, Pm = 1, Pm–1 = 0, Pi =
W i

Wn
, for i = 2, . . . , m – 2,

P1 = 1, Pm = 1, P2 = 0, Pi =
Wi–2

Wn
, for i = 3, . . . , m – 1,

hence, on the right-hand side of (5) we have

m–1∑

i=1

( i–1∑

j=1

Pi+1Pj�ξi�ζj +
m–1∑

j=i

PiPj+1�ξi�ζj

)

=
m–1∑

i=1

(
Pi+1P1�ξi�ζ1 +

i–1∑

j=2

Pi+1Pj�ξi�ζj

+
m–2∑

j=i

PiPj+1�ξi�ζj + PiPm�ξi�ζm–1

)

=
m–1∑

i=1

(
Pi+1�ξi(y1 – c) +

1
Wn

i–1∑

j=2

Pi+1W j�ξi�yj–1

+
1

Wn

m–2∑

j=i

PiWj–1�ξi�yj–1 + Pi�ξi(d – yn)

)
.

Calculating separately summands for i = 1 and i = m – 1, we obtain

m–1∑

i=1

(
Pi+1�ξi(y1 – c) +

1
Wn

i–1∑

j=2

Pi+1W j�ξi�yj–1

+
1

Wn

m–2∑

j=i

PiWj–1�ξi�yj–1 + Pi�ξi(d – yn)

)

=
1

Wn

m–2∑

j=2

Wj–1(x1 – a)�yj–1 + (x1 – a)(d – yn)
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+
1

Wn

m–2∑

i=2

Wi–1�xi–1(y1 – c) +
1

W 2
n

m–2∑

i=2

i–1∑

j=2

Wi–1W j�xi–1�yj–1

+
1

W 2
n

m–2∑

i=2

m–2∑

j=i

W iWj–1�xi–1�yj–1 +
1

Wn

m–2∑

i=2

W i�xi–1(d – yn)

+ (b – xn)(y1 – c) +
1

Wn

m–2∑

j=2

W j(b – xn)�yj–1.

Therefore,

m–1∑

i=1

( i–1∑

j=1

Pi+1Pj�ξi�ζj +
m–1∑

j=i

PiPj+1�ξi�ζj

)

= (x1 – a)(d – yn) + (b – xn)(y1 – c)

+
1

Wn

[ n∑

j=2

Wj–1(x1 – a)�yj–1 +
n∑

j=2

W j(b – xn)�yj–1

+
n∑

i=2

Wi–1�xi–1(y1 – c) +
n∑

i=2

W i�xi–1(d – yn)

]

+
1

W 2
n

n∑

i=2

( i–1∑

j=2

Wi–1W j�xi–1�yj–1 +
n∑

j=i

W iWj–1�xi–1�yj–1

)
,

which is equal to the right-hand side of (6). �

Using identity (6) and imposing stricter conditions than (3), we obtain refinements of
inequality (2) which are more accurate than those previously established in [5].

Theorem 1 Let n ≥ 2 and let w be a real n-tuple such that (1) is fulfilled. Let x, y be
real n-tuples monotonic in the same direction. Suppose that real numbers a, b, c, d and
nonnegative real numbers r, s satisfy

min
1≤i≤n

xi – a ≥ r, b – max
1≤i≤n

xi ≥ r, |�xi| ≥ r, i = 1, . . . , n – 1, (8)

min
1≤i≤n

yi – c ≥ s, d – max
1≤i≤n

yi ≥ s, |�yi| ≥ s, i = 1, . . . , n – 1. (9)

Then

ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)

≥ rs

(
2n +

1
W 2

n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

))
≥ 0. (10)

If x and y are monotonic in the opposite directions, then the inequalities in (10) are reversed
and the term rs appears with the negative sign.
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Proof Under the given assumptions, using identity (6), we obtain

ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)

≥ 2rs +
2rs
Wn

( n–1∑

i=1

Wi +
n–1∑

i=1

W i+1

)
+

rs
W 2

n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)
.

Since

n–1∑

i=1

Wi +
n–1∑

i=1

W i+1 =
n–1∑

i=1

Wn = (n – 1)Wn,

we obtain the first inequality in (10). Since r, s are nonnegative real numbers and obviously

2n +
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)
≥ 0,

the second inequality in (10) immediately follows. �

Using identity (6) and the triangle inequality, we can establish bounds for the Čebyšev’s
functional (or Čebyšev’s difference) of the Mercer type in terms of the discrete Ostrowski
inequality.

Throughout the rest of the paper, let [a, b] and [c, d] be intervals in R, where a < b, c < d.

Theorem 2 Let n ≥ 2 and let w be a real n-tuple such that conditions (1) are fulfilled.
Then for any real n-tuples x ∈ [a, b]n, y ∈ [c, d]n the following inequalities hold:

∣∣∣∣∣ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)∣∣∣∣∣

≤ (d – c)

[
1

Wn

( n∑

i=1

Wi|x1 – a| +
n∑

i=1

W i|b – xn|
)

+
n–1∑

i=1

|�xi|

+
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)
|�xi|

]

≤ (b – a)(d – c)

[
2n +

1
W 2

n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)]
. (11)

Proof Using identity (6) and the triangle inequality, we have

∣∣∣∣∣ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)∣∣∣∣∣

≤ |x1 – a||d – yn| + |b – xn||y1 – c|

+
1

Wn

[ n–1∑

i=1

Wi|x1 – a||�yi| +
n–1∑

i=1

W i+1|b – xn||�yi|
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+
n–1∑

i=1

Wi|�xi||y1 – c| +
n–1∑

i=1

W i+1|�xi||d – yn|
]

+
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1|�xi||�yj| +
n–1∑

j=i

W i+1Wj|�xi||�yj|
)

,

because Wi and W i are nonnegative for all i = 1, . . . , n. Since |y1 – c|, |d – yn|, |�yi| for all
i = 1, . . . , n, are less or equal to d – c, and |x1 – a|, |b – xn|, |�xi| for all i = 1, . . . , n, are less
or equal to b – a, we obtain inequalities (11). �

Remark 1 If in Theorem 2 we add assumption that R, S are nonnegative real numbers such
that

|x1 – a| ≤ R, |b – xn| ≤ R, |�xi| ≤ R, i = 1, . . . , n – 1, (12)

|y1 – c| ≤ S, |d – yn| ≤ S, |�yi| ≤ S, i = 1, . . . , n – 1, (13)

then we obtain refinements of the two inequalities proved in [5] under the same assump-
tion. Namely, we have inequalities

∣∣∣∣∣ac + bd –
1

Wn

n∑

i=1

wixiyi –

(
a + b –

1
Wn

n∑

i=1

wixi

)(
c + d –

1
Wn

n∑

i=1

wiyi

)∣∣∣∣∣

≤ S

[
1

Wn

( n∑

i=1

Wi|x1 – a| +
n∑

i=1

W i|b – xn|
)

+
n–1∑

i=1

|�xi|

+
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)
|�xi|

]

≤ RS

[
2n +

1
W 2

n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)]
(14)

and, as a special case when wi = 1 (i = 1, . . . , n), we have inequalities

∣∣∣∣∣ac + bd –
1
n

n∑

i=1

xiyi –

(
a + b –

1
n

n∑

i=1

xi

)(
c + d –

1
n

n∑

i=1

yi

)∣∣∣∣∣

≤ S

(
n + 1

2

(
|x1 – a| +

n–1∑

i=1

|�xi| + |b – xn|
)

–
1

2n

n–1∑

i=1

i(n – i)|�xi|
)

≤ RS
(n + 1)(5n + 7)

12
.

3 Bounds for the Jensen–Mercer functional
Jensen–Mercer inequality

f

(
a + b –

1
Wn

n∑

i=1

wixi

)
≤ f (a) + f (b) –

1
Wn

n∑

i=1

wif (xi), (15)



Matković and Pečarić Journal of Inequalities and Applications        (2020) 2020:242 Page 7 of 9

for a convex function f : (α,β) → R, real n-tuple x ∈ [a, b]n, and positive real n-tuple w,
where –∞ ≤ α < a < b < β ≤ ∞, was proved in [6]. In [1], it was proved that it remains
valid when x is monotonic and w satisfies conditions (1).

Using our results from the previous section, we establish Ostrowski-like bounds for the
Jensen–Mercer functional, i.e., the difference of the right- and left-hand sides of inequality
(15).

Theorem 3 Let f : (α,β) → R be a differentiable function and suppose that γ , δ are real
numbers such that γ ≤ f ′(x) ≤ δ, for all x ∈ (α,β). Let n ≥ 2 and suppose that n-tuple
x ∈ [a, b]n, where –∞ ≤ α < a < b < β ≤ ∞, satisfies conditions (12). Let w be a real n-
tuple such that conditions (1) are fulfilled and a + b – 1

Wn

∑n
i=1 wixi ∈ [a, b]. Then

∣∣∣∣∣f (a) + f (b) –
1

Wn

n∑

i=1

wif (xi) – f

(
a + b –

1
Wn

n∑

i=1

wixi

)∣∣∣∣∣

≤ (δ – γ )

[
1

Wn

( n∑

i=1

Wi|x1 – a| +
n∑

i=1

W i|b – xn|
)

+
n–1∑

i=1

|�xi|

+
1

W 2
n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)
|�xi|

]

≤ R(δ – γ )

[
2n +

1
W 2

n

n–1∑

i=1

( i–1∑

j=1

WiW j+1 +
n–1∑

j=i

W i+1Wj

)]
. (16)

Proof By the mean-value theorem, for any ζ ,η ∈ (α,β), there exists some ξ between them
such that f (ζ ) – f (η) = f ′(ξ )(ζ – η). Hence, choosing ζ = xi and η = a + b – 1

Wn

∑n
i=1 wixi,

we obtain

f (xi) – f

(
a + b –

1
Wn

n∑

i=1

wixi

)
= f ′(ξi)

(
xi – (a + b) +

1
Wn

n∑

i=1

wixi

)
. (17)

Multiplying (17) by – wi
Wn

, and then summing over i, we have

–
1

Wn

n∑

i=1

wif (xi) + f

(
a + b –

1
Wn

n∑

i=1

wixi

)

= –
1

Wn

n∑

i=1

wixif ′(ξi) +
1

Wn
(a + b)

n∑

i=1

wif ′(ξi) –
1

W 2
n

n∑

i=1

wixi

n∑

i=1

wif ′(ξi).

Choosing ζ = a, ζ = b, respectively, and η = a + b – 1
Wn

∑n
i=1 wixi, we have

f (a) – f

(
a + b –

1
Wn

n∑

i=1

wixi

)
= f ′(ξa)

(
1

Wn

n∑

i=1

wixi – b

)
,

f (b) – f

(
a + b –

1
Wn

n∑

i=1

wixi

)
= f ′(ξb)

(
1

Wn

n∑

i=1

wixi – a

)
.
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Summing the above three equalities, we obtain

f (a) + f (b) –
1

Wn

n∑

i=1

wif (xi) – f

(
a + b –

1
Wn

n∑

i=1

wixi

)

= –
1

Wn

n∑

i=1

wixif ′(ξi) + (a + b)
1

Wn

n∑

i=1

wif ′(ξi) –
1

W 2
n

n∑

i=1

wixi

n∑

i=1

wif ′(ξi)

+ f ′(ξa)

(
1

Wn

n∑

i=1

wixi – b

)
+ f ′(ξb)

(
1

Wn

n∑

i=1

wixi – a

)

= af ′(ξa) + bf ′(ξb) –
1

Wn

n∑

i=1

wixif ′(ξi)

–

(
a + b –

1
Wn

n∑

i=1

wixi

)(
f ′(ξa) + f ′(ξb) –

1
Wn

n∑

i=1

wif ′(ξi)

)
.

Since γ ≤ f ′(x) ≤ δ, for all x ∈ (α,β), it holds

∣∣f ′(ξ1) – f ′(ξa)
∣∣ ≤ δ – γ ,

∣∣f ′(ξb) – f ′(ξn)
∣∣ ≤ δ – γ ,

∣∣�f ′(ξi)
∣∣ ≤ δ – γ , i = 1, . . . , n – 1,

and inequalities (16) immediately follow from Theorem 2 and Remark 1. �

Remark 2 An integral variant of identity (5) can be found in [9] and there is a way to obtain
integral variants in terms of Riemann–Stieltjes integral of the Jensen–Mercer inequality
from the Jensen–Steffensen inequality (see, for example, [2–4]). Hence, our discrete results
can be extended to the continuous case.
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