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Abstract
In this paper, we propose an iterative algorithm with inertial extrapolation to
approximate the solution of multiple-set split feasibility problem. Based on Lopez et
al. (Inverse Probl. 28(8):085004, 2012), we have developed a self-adaptive technique to
choose the stepsizes such that the implementation of our algorithm does not need
any prior information about the operator norm. We then prove the strong
convergence of a sequence generated by our algorithm. We also present numerical
examples to illustrate that the acceleration of our algorithm is effective.
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1 Introduction
Throughout the paper, unless otherwise stated, we assume H1 and H2 are two real Hilbert
spaces, and A : H1 → H2 is a bounded linear operator.

The split feasibility problem (SFP) is a problem of finding a point x̄ with a property

x̄ ∈ C such that Ax̄ ∈ Q, (1)

where C and Q are nonempty closed convex subsets of H1 and H2, respectively. The SFP
was first introduced in 1994 by Censor and Elfving [2] for modeling inverse problems in
finite-dimensional Hilbert spaces which arise from phase retrievals and in medical image
reconstruction. Many projection methods have been developed for solving the SFP, see [3–
7] and the references therein. The SFP has broad theoretical applications in many fields
such as approximation theory [8], control [9], etc., and it plays an important role in the
study of signal processing, image reconstruction, intensity-modulated radiation therapy,
etc. [3, 4, 10, 11].

The original algorithm by Censor and Elfving [2] involves the computation of the in-
verse of A per each iteration assuming the existence of the inverse of A, and thus has not
become popular. A seemingly more popular algorithm that solves the SFP is the CQ algo-
rithm by Byrne [11] which is found to be a gradient-projection method (GPM) in convex
minimization. It is also a special case of the proximal forward–backward splitting method
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[12]. The CQ algorithm starts with any x1 ∈ H1 and generates a sequence {xn} through the
iteration

xn+1 = PC
(
I – γnA∗(I – PQ)A

)
xn,

where γn ∈ (0, 2
‖A‖2 ) (where ‖A‖2 is the the spectral radius of the operator A∗A), PC and

PQ denote the metric projections of H1 and H2 onto C and Q, respectively, A∗ denotes the
adjoint operator of A, and I stands for the identity mapping in H1 and H2. Many of the SFP
findings are continuation of the study on the CQ algorithm, see, for example, [3, 4, 13–17].
An important advantage of the CQ algorithm by Byrne [11] and its continuation of studies
is that computation of inverse of A (matrix inverses) is not necessary, but the implementa-
tion of the algorithm requires prior knowledge of the operator norm. However, operator
norm is a global invariant and is often difficult to estimate, see, for example, a theorem of
Hendrickx and Olshevsky in [18]. Moreover, the computation of a projection onto a closed
convex subset is generally difficult. To overcome this difficulty, Fukushima [19] suggested
a way to calculate the projection onto a level set of a convex function by computing a se-
quence of projections onto half-spaces containing the original level set. This idea is applied
to solve SFPs in the finite-dimensional and infinite-dimensional Hilbert space setting by
Yang [20] and Lopez et al. [1], respectively, and see more recent split type problems in this
direction, for example, [21, 22] and the references therein. They considered SFPs in which
the involved sets C and Q are given as sublevel sets of convex functions, i.e.,

C =
{

x ∈ H1 : c(x) ≤ 0
}

and Q =
{

y ∈ H2 : q(y) ≤ 0
}

, (2)

where c : H1 → R and q : H2 → R are convex and subdifferentiable functions on H1 and
H2, respectively, and that ∂c and ∂q are bounded operators (i.e., bounded on bounded
sets). Yang introduced a relaxed CQ algorithm

xn+1 = PCn

(
xn – γnA∗(I – PQn )A(xn)

)
, (3)

where γn = γ ∈ (0, 2
L ), L denotes the largest eigenvalue of matrix A∗A, for each n ∈ N the

set Cn is given by

Cn =
{

x ∈ H1 : c(xn) ≤ 〈ξn, xn – x〉} (4)

for ξn ∈ ∂c(xn), and the set Qn is given by

Qn =
{

y ∈ H2 : q(Axn) ≤ 〈εn, Axn – y〉} (5)

for εn ∈ ∂q(Axn). Obviously, Cn and Qn are half-spaces and C ⊂ Cn and Q ⊂ Qn for every
n ≥ 1. More important, since the projections onto Cn and Qn have closed form, the relaxed
CQ algorithm is now easily implemented. The specific form of the metric projections onto
Cn and Qn can be found in [23]. Moreover, Lopez et al. [1] introduced a new way of se-
lecting the stepsizes for solving SFP (1) such that the information of operator norm is not
necessary. To be precise, Lopez et al. [1] replaced the parameter γn which appeared in (3)
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by

γn =
ρnf (xn)

‖∇f (xn)‖2 , ∀n ≥ 1,

where ρn ∈ (0, 4), f (xn) = 1
2‖(I – PQn )Axn‖2 and ∇f (xn) = A∗(I – PQn )Axn.

The most recent and prototypical split problem is presented by Censor et al. [24] and is
called the split inverse problem (SIP) formulated as follows:

find a point x̄ ∈ X that solves (IP1)

such that

the point ȳ = A(x̄) ∈ Y solves (IP2),

where IP1 is a problem set in space X, IP2 is a problem set in space Y and A : X → Y
is a bounded linear mapping. Many inverse problems can be modeled in this framework
by choosing different problems for IP1 and IP2, and numerous results in this area were
developed in the recent decades, for example, see [25–30] and the references therein.

In this paper, we are concerned with a problem in the framework of SIP, called multiple-
set split feasibility problem (MSSFP), which was introduced by Censor et al. [27] and is
formulated as a problem of finding a point

x̄ ∈
N⋂

i=1

Ci such that Ax̄ ∈
M⋂

j=1

Qj, (6)

where {C1, . . . , CN } and {Q1, . . . , QM} are nonempty closed convex subsets of H1 and H2,
respectively. Denote by � the set of solutions for (6). The MSSFP (6) with N = M = 1 is the
SFP (1). For solving the MSSFP (6), many methods have been developed, see, for example,
in [27, 31–42] and the references therein.

Inspired by Yang [20] and Lopez et al. [1], we are interested in solving MSSFP in which
the involved sets Ci (i ∈ {1, . . . , N}) and Qj (j ∈ {1, . . . , M}) are given as sublevel sets of
convex functions, i.e.,

Ci =
{

x ∈ H1 : ci(x) ≤ 0
}

and Qj =
{

y ∈ H2 : qj(y) ≤ 0
}

, (7)

where ci : H1 →R and qj : H2 →R are convex functions for all i ∈ {1, . . . , N}, j ∈ {1, . . . , M}.
We assume that both ci and qj are subdifferentiable on H1 and H2, respectively, and that
∂ci and ∂qj are bounded operators (i.e., bounded on bounded sets). In what follows, we
define N + M half-spaces at point xn by

Ci,n =
{

x ∈ H1 : ci(xn) ≤ 〈ξi,n, xn – x〉}, (8)

where ξi,n ∈ ∂ci(xn), and

Qj,n =
{

y ∈ H2 : qj(Axn) ≤ 〈εj,n, Axn – y〉}, (9)

where εj,n ∈ ∂qj(Axn).
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In various disciplines, for example, in economics and control theory [43, 44], problems
arise in infinite-dimensional spaces. In such problems, norm convergence is often much
more desirable than weak convergence, for it translates the physically tangible property
that the energy ‖xn – p‖ of the error between the iterate xn and a solution p eventually
becomes arbitrarily small. More about the importance of strong convergence in a mini-
mization problem via the proximal-point algorithm is underlined in [45].

The classical iteration can only provide weak convergence within an infinite-dimensional
space. But strong convergence is the one that’s most wanted. Since it plays a key role in
the strong convergence, we put the viscosity term for iteration, see, for example, [46]. It is
well known that the inertial method greatly enhances algorithm efficiency and has good
convergence properties [38, 47–49].

This paper contributes a strongly convergent iterative algorithm for MSSFP with iner-
tial effect (extrapolated point xn + αn(xn – xn–1), rather than xn itself ) in the direction of
half-space relaxation (assuming Ci and Qj are given as sublevel sets of convex functions
(7)) where the projection onto half-spaces (8) and (9) is computed in parallel and a priori
knowledge of the operator norm is not required. For this purpose, we introduce the ex-
tended form of the way of selecting stepsize used by Lopez et al. [1], to work for MSSFP
framework, and we analyze the strong convergence of our proposed algorithm.

2 Preliminary
In this paper, the symbols “⇀” and “→” stand for the weak and strong convergence, re-
spectively.

Let C be a nonempty closed convex subset of a real Hilbert space H . The metric projec-
tion on C is a mapping PC : H → C defined by

PC(x) = arg min
{‖y – x‖ : y ∈ C

}
, x ∈ H .

Lemma 2.1 Let C be a closed convex subset of H . Given x ∈ H and a point z ∈ C, z = PC(x)
if and only if

〈x – z, y – z〉 ≤ 0, ∀y ∈ C.

More properties of the metric projection can be found in [50].

Definition 2.2 The mapping T : H → H is said to be
(i) γ -contraction if there exists a constant γ ∈ [0, 1) such that

∥∥T(x) – T(y)
∥∥ ≤ γ ‖x – y‖, ∀x, y ∈ H ;

(ii) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H ,

which is equivalent to

‖Tx – Ty‖2 ≤ 〈Tx – Ty, x – y〉, ∀x, y ∈ H .
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If T is firmly nonexpansive, I – T is also firmly nonexpansive. The metric projection PC

on a closed convex subset C of H is firmly nonexpansive.

Definition 2.3 The subdifferential of a convex function f : H → R at x ∈ H , denoted by
∂f (x), is defined by

∂f (x) =
{
ξ ∈ H : f (z) ≥ f (x) + 〈ξ , z – x〉,∀z ∈ H

}
.

If ∂f (x) = ∅, f is said to be subdifferentiable at x. If the function f is continuously differen-
tiable, then ∂f (x) = {∇f (x)}, this is the gradient of f .

Definition 2.4 The function f : H →R is called weakly lower semicontinuous at x0 if for
a sequence {xn} weakly converging to x0 one has

lim inf
n→∞ f (xn) ≥ f (x0).

A function which is weakly lower semicontinuous at each point of H is called weakly lower
semicontinuous on H .

Lemma 2.5 ([3, 51]) Let H1 and H2 be real Hilbert spaces and f : H1 → R be given by
f (x) = 1

2‖(I –PQ)Ax‖2 where Q is a closed convex subset of H2 and A : H1 → H2 is a bounded
linear operator. Then

(i) the function f is convex and weakly lower semicontinuous on H1;
(ii) ∇f (x) = A∗(I – PQ)Ax, for x ∈ H1;

(iii) ∇f is ‖A‖2-Lipschitz, i.e., ‖∇f (x) – ∇f (y)‖ ≤ ‖A‖2‖x – y‖, ∀x, y ∈ H1.

Lemma 2.6 ([52]) Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈R,, we have
(i) ‖αx + (1 – α)y‖2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2;

(ii) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(iv) 〈x, y〉 = 1

2‖x‖2 + 1
2‖y‖2 – 1

2‖x – y‖2, ∀x, y ∈ H .

Lemma 2.7 ([53, 54]) Let {cn} and {αn} be a sequences of nonnegative real numbers, {βn}
be a sequences of real numbers such that

cn+1 ≤ (1 – αn)cn + βn, n ≥ 1,

where 0 < αn < 1.
(i) If βn ≤ αnL for some L ≥ 0, then {cn} is a bounded sequence.

(ii) If
∑

αn = ∞ and lim supn→∞
βn
αn

≤ 0, then cn → 0 as n → ∞.

Definition 2.8 Let {�n} be a real sequence. Then, {�n} decreases at infinity if there exists
n0 ∈ N such that �n+1 ≤ �n for n ≥ n0. In other words, the sequence {�n} does not decrease
at infinity, if there exists a subsequence {�nt }t≥1 of {�n} such that �nt < �nt+1 for all t ≥ 1.

Lemma 2.9 ([55]) Let {�n} be a sequence of real numbers that does not decrease at infinity.
Also consider the sequence of integers {ϕ(n)}n≥n0 defined by

ϕ(n) = max{k ∈N : k ≤ n,�k ≤ �k+1}.
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Then {ϕ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞ ϕ(n) = ∞, and for all n ≥ n0,
the following two estimates hold:

�ϕ(n) ≤ �ϕ(n)+1 and �n ≤ �ϕ(n)+1.

3 Main result
Motivated by Lopez et al. [1], we introduce the following setting. For x ∈ H1,

(1) for each i ∈ {1, . . . , N} and n ≥ 1, define

gi,n(x) =
1
2
∥∥(I – PCi,n )x

∥∥2 and ∇gi,n(x) = (I – PCi,n )x,

(2) gn(x) and ∇gn(x) are defined as gn(x) = gix ,n(x) and so ∇gn(x) = ∇gix ,n(x) where
ix ∈ {1, . . . , N} is such that for each n ≥ 1,

ix ∈ arg max
{

gi,n(x) : i ∈ {1, . . . , N}},

(3) for each j ∈ {1, . . . , M} and n ≥ 1, define

fj,n(x) =
1
2
∥
∥(I – PQj,n )Ax

∥
∥2 and ∇fj,n(x) = A∗(I – PQj,n )Ax.

We can easily see that the functions (see Aubin [51]) gi,n and fj,n are convex, weakly lower
semicontinuous and differentiable for each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Using the defi-
nitions of ∇gi,n, gi,n, gn, ∇gn, fj,n, and ∇fj,n given in (1)–(3), we are now in a position to intro-
duce our algorithm and, assuming that the solution set � of the MSSFP (6) is nonempty,
we analyze the strong convergence of our Algorithm 1.

Remark 3.1 In Algorithm 1, if ‖∇gn(yn) + ∇fj,n(yn)‖ = 0 and yn = xn, j ∈ {1, . . . , M}, then xn

is the solution of the MSSFP (6) and the iterative process stops, otherwise, we set n := n + 1
and repeat the iteration.

Theorem 3.2 If the parameters {δj,n} (j ∈ {1, . . . , M}), {ρn}, {αn}, {θn} in Algorithm 1 satisfy
the following conditions:

(C1) 0 < lim infn→∞ δj,n ≤ lim supn→∞ δj,n < 1 for j ∈ {1, . . . , M} and
∑M

j=1 δj,n = 1,
(C2) 0 < αn < 1, limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

Algorithm 1 Algorithm for solving the MSSFP
Initialization: Choose x0, x1 ∈ H1. Let V : H1 → H1 be a contraction mapping with a con-
stant γ . Let {δj,n} (j ∈ {1, . . . , M}), {ρn}, {αn}, {θn} be real sequences.
Compute {xn+1} cyclically using

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = xn + θn(xn – xn–1),

zn = yn –
∑M

j=1{δj,nρn
fj,n(yn)+gn(yn)

d2
j (yn) (∇gn(yn) + ∇fj,n(yn))},

xn+1 = αnV (yn) + (1 – αn)zn,

where dj(yn) = max{1,‖∇gn(yn) + ∇fj,n(yn)‖}.
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(C3) 0 ≤ θn ≤ θ < 1 and limn→∞ θn
αn

‖xn – xn–1‖ = 0,
(C4) 0 < ρn < 4 and lim infn→∞ ρn(4 – ρn) > 0,

then the sequence {xn} generated by Algorithm 1 converges strongly to x̄ ∈ �.

Proof Let x̄ ∈ �. Since I – PCi,n and I – PQj,n are firmly nonexpansive, and since x̄ verifies
(6), we have for all x ∈ H1,

〈∇gi,n(x), x – x̄
〉

=
〈
(I – PCi,n )x, x – x̄

〉

≥ ∥∥(I – PCi,n )x
∥∥2 = 2gi,n(x) (10)

and

〈∇fj,n(x), x – x̄
〉

=
〈
A∗(I – PQj,n )Ax, x – x̄

〉

=
〈
(I – PQj,n )Ax, Ax – Ax̄

〉

≥ ∥
∥(I – PQj,n )Ax

∥
∥2 = 2fj,n(x). (11)

Now from the definition of yn, we get

‖yn – x̄‖ =
∥∥xn + θn(xn – xn–1) – x̄

∥∥

≤ ‖xn – x̄‖ + θn‖xn – xn–1‖. (12)

Using definition of zn and Lemma 2.6 (ii), we have

‖zn – x̄‖2 =

∥∥
∥∥
∥

yn –
M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)}
– x̄

∥∥
∥∥
∥

2

≤ ‖yn – x̄‖2 +

∥
∥∥
∥∥

M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)
}∥
∥∥
∥∥

2

– 2

〈 M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)
}

, yn – x̄

〉

.

(13)

Using the convexity of ‖ · ‖2, we have

∥
∥∥
∥∥

M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)}
∥
∥∥
∥∥

2

≤
M∑

j=1

{
δj,n

(
ρn

fj,n(yn) + gn(yn)
d2

j (yn)

)2∥∥∇gn(yn) + ∇fj,n(yn)
∥∥2

}

≤
M∑

j=1

{
δj,n

(
ρn

fj,n(yn) + gn(yn)
d2

j (yn)

)2

d2
j (yn)

}

= ρ2
n

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

. (14)
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From (10) and (11), we have

〈 M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)
}

, yn – x̄

〉

=
M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
〈∇gn(yn) + ∇fj,n(yn), yn – x̄

〉
}

=
M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(〈∇gn(yn), yn – x̄

〉
+

〈∇fj,n(yn), yn – x̄
〉)
}

≥
M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(
2gn(yn) + 2fj,n(yn)

)}

≥ 2ρn

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

dj(yn)
. (15)

In view of (13), (14), and (15), we have

‖zn – x̄‖2 ≤ ‖yn – x̄‖2 + ρ2
n

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

– 4ρn

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

= ‖yn – x̄‖2 + ρn(ρn – 4)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

= ‖yn – x̄‖2 – ρn(4 – ρn)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

. (16)

Next, we show that the sequences {xn}, {yn}, and {zn} are bounded.
From (16) and (C4), we have

‖zn – x̄‖ ≤ ‖yn – x̄‖. (17)

Using (12), (17), and the definition of xn+1, we get

‖xn+1 – x̄‖ =
∥
∥αnV (yn) + (1 – αn)zn – x̄

∥
∥

=
∥
∥(1 – αn)(zn – x̄) + αn

(
V (yn) – V (x̄)

)
+ αn

(
V (x̄) – x̄

)∥∥

≤ (1 – αn)‖zn – x̄‖ + αn
∥
∥V (yn) – V (x̄)

∥
∥ + αn

∥
∥V (x̄) – x̄

∥
∥

≤ (1 – αn)‖zn – x̄‖ + αnγ ‖yn – x̄‖ + αn
∥
∥V (x̄) – x̂

∥
∥

≤ (
1 – αn(1 – γ )

)‖yn – x̄‖ + αn
∥∥V (x̄) – x̄

∥∥

≤ (
1 – αn(1 – γ )

)‖xn – x̄‖ +
(
1 – αn(1 – γ )

)
θn‖xn – xn–1‖

+ αn
∥∥V (x̄) – x̄

∥∥
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=
(
1 – αn(1 – γ )

)‖xn – x̄‖ (18)

+ αn(1 – γ )
{

(1 – αn(1 – γ ))
1 – γ

θn

αn
‖xn – xn–1‖ +

‖V (x̄) – x̄‖
1 – γ

}
.

Observe that by (C2) and (C3),

lim
n→∞

(1 – αn(1 – γ ))
1 – γ

θn

αn
‖xn – xn–1‖ = 0.

Let

K = 2 max

{‖V (x̄) – x̄‖
1 – γ

, sup
n≥1

(1 – αn(1 – γ ))
1 – γ

θn

αn
‖xn – xn–1‖

}
.

Then, (18) becomes

‖xn+1 – x̄‖ ≤ (
1 – αn(1 – γ )

)‖xn – x̄‖ + αn(1 – γ )K .

Thus, by Lemma 2.7, the sequence {xn} is bounded. As a consequence, {yn}, {V (yn)}, and
{zn} are also bounded.

Claim 1: There exists a unique x̄ ∈ H1 such that x̄ = P�V (x̄).
As a result of

∥
∥P�V (x) – P�V (y)

∥
∥ ≤ ∥

∥V (x) – V (y)
∥
∥ ≤ γ ‖x – y‖, ∀x, y ∈ H1,

the mapping P�V is a contraction mapping of H1 into itself. Hence, by the Banach contrac-
tion principle, there exists a unique element x̄ ∈ H1 such that x̄ = P�V (x̄). Clearly, x̄ ∈ �,
and we have

x̄ = P�V (x̄) ⇔ 〈
x̄ – V (x̄), y – x̄

〉 ≥ 0, ∀y ∈ �.

Claim 2: The sequence {xn} converges strongly to x̄ ∈ � where x̄ = P�V (x̄).
Let x̄ ∈ � where x̄ = P�V (x̄). Now

‖yn – x̄‖2 =
∥
∥xn + θn(xn – xn–1) – x̄

∥
∥2

= ‖xn – x̄‖2 + θ2
n‖xn – xn–1‖2

+ 2θn〈xn – x̄, xn – xn–1〉. (19)

From Lemma 2.6 (iv), we have

〈xn – x̄, xn – xn–1〉 =
1
2
‖xn – x̄‖2 –

1
2
‖xn–1 – x̄‖2 +

1
2
‖xn – xn–1‖2. (20)

From (19) and (20), and since 0 ≤ θn < 1, we get

‖yn – x̄‖2 = ‖xn – x̄‖2 + θ2
n‖xn – xn–1‖

+ θn
(‖xn – x̄‖2 – ‖xn–1 – x̄‖2 + ‖xn – xn–1‖2) (21)
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≤ ‖xn – x̄‖2 + 2θn‖xn – xn–1‖2 + θn
(‖xn – x̄‖2 – ‖xn–1 – x̄‖2).

Using the definition of xn+1 and Lemma 2.6 (iii), together with (21), we have

‖xn+1 – x̄‖2 =
∥
∥αnV (yn) + (1 – αn)zn – x̄

∥
∥2

=
∥∥αn

(
V (yn) – x̄

)
+ (1 – αn)(zn – x̄)

∥∥2

≤ (1 – αn)‖zn – x̄‖2 + 2αn
〈
V (yn) – x̄, xn+1 – x̄

〉

≤ ‖zn – x̄‖2 + 2αn
〈
V (yn) – x̄, xn+1 – x̄

〉

≤ ‖yn – x̄‖2 + 2αn
〈
V (yn) – x̄, xn+1 – x̄

〉

+ ρn(ρn – 4)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

≤ ‖xn – x̄‖2 + 2θn‖xn – xn–1‖2 (22)

+ θn
(‖xn – x̄‖2 – ‖xn–1 – x̄‖2)

+ 2αn
〈
V (yn) – x̄, xn+1 – x̄

〉

+ ρn(ρn – 4)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

.

Since the sequences {xn} and {V (yn)} are bounded, there exists K1 such that 2〈V (yn) –
x̄, xn+1 – x̄〉 ≤ K1 for all n ≥ 1. Thus, from (22), we obtain

‖xn+1 – x̄‖2 ≤ ‖xn – x̄‖2 + 2θn‖xn – xn–1‖2 + θn
(‖xn – x̄‖2 – ‖xn–1 – x̄‖2)

+ αnK1 + ρn(ρn – 4)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

.
(23)

Let us distinguish the following two cases related to the behavior of the sequence {�n}
where

�n = ‖xn – x̄‖2.

Case 1: Suppose the sequence {�n} decrease at infinity. Thus, there exists n0 ∈ N such
that �n+1 ≤ �n for n ≥ n0. Then, {�n} converges and �n – �n+1 → 0 as n → 0.

From (23), we have

ρn(4 – ρn)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

≤ (�n – �n+1) + αnK1 + θn(�n – �n–1)

+ 2θn‖xn – xn–1‖2.

(24)

Since �n – �n+1 → 0 (�n–1 – �n → 0) and using (C2) and (C3) (noting αn → 0, 0 < αn < 1,
θn‖xn – xn–1‖ ≤ θn

αn
‖xn – xn–1‖ → 0 and {xn} is bounded), we have from (24)

ρn(4 – ρn)
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

→ 0, n → ∞. (25)
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The conditions (C4) and (25) yield

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

→ 0, n → ∞. (26)

In view of (26) and the restriction condition imposed on δj,n in (C1), we have

(fj,n(yn) + gn(yn))2

d2
j (yn)

→ 0, n → ∞, (27)

for all j ∈ {1, . . . , M}.
Now, using the definition of zn and the convexity of ‖ · ‖2, we have

‖yn – zn‖2 =

∥
∥∥
∥∥

M∑

j=1

{
δj,nρn

fj,n(yn) + gn(yn)
d2

j (yn)
(∇gn(yn) + ∇fj,n(yn)

)
}∥
∥∥
∥∥

2

≤
M∑

j=1

{
δj,n

(
ρn

fj,n(yn) + gn(yn)
d2

j (yn)

)2∥∥∇gn(yn) + ∇fj,n(yn)
∥∥2

}

≤ ρ2
n

M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

≤ 16
M∑

j=1

δj,n
(fj,n(yn) + gn(yn))2

d2
j (yn)

. (28)

Thus, (28) together with (26) gives

‖yn – zn‖ → 0, n → ∞. (29)

Now, using the definition of yn and (C3) (θn‖xn – xn–1‖ ≤ θn
αn

‖xn – xn–1‖ → 0), we have

‖xn – yn‖ =
∥
∥xn – xn – θn(xn – xn–1)

∥
∥ = θn‖xn – xn–1‖ → 0, n → ∞. (30)

By (29) and (30), we get

‖xn – zn‖ ≤ ‖xn – yn‖ + ‖yn – zn‖ → 0, n → ∞. (31)

Using the definition of xn+1, (C2), and noting that {V (yn)} and {zn} are bounded, we have

‖xn+1 – zn‖ = αn
∥
∥V (yn) – zn

∥
∥ → 0, n → ∞. (32)

Results from (31) and (32) give

‖xn+1 – xn‖ ≤ ‖xn+1 – zn‖ + ‖zn – xn‖ → 0, n → ∞. (33)

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} which converges to p for
some p ∈ H1. Next, we show that p ∈ �.
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For each i ∈ {1, . . . , N} and for each j ∈ {1, . . . , M}, ∇fj,n(·) and ∇gi,n(·) are Lipschitz con-
tinuous with constant ‖A‖2 and 1, respectively. Since the sequence {zn} is bounded and

∥
∥∇fj,n(yn)

∥
∥ =

∥
∥∇fj,n(yn) – ∇fj,n(x̄)

∥
∥ ≤ ‖A‖2‖yn – x̄‖, ∀j ∈ {1, . . . , M},

∥
∥∇gi,n(yn)

∥
∥ =

∥
∥∇gi,n(yn) – ∇gi,n(x̄)

∥
∥ ≤ ‖yn – x̄‖, ∀i ∈ {1, . . . , N},

we have that the sequences {‖∇gi,n(yn)‖}∞n=1 and {‖∇fj,n(yn)‖}∞n=1 are bounded. Hence, we
have {dj(yn)}∞n=1 is bounded and hence {dj(ynk )}∞k=1 is bounded. Consequently, by (27), we
have

lim
k→∞

fj,nk (ynk ) = lim
k→∞

gnk (ynk ) = 0, ∀j ∈ {1, . . . , M}. (34)

From the definition of gnk (ynk ), we get

gi,nk (ynk ) ≤ gnk (ynk ), ∀i ∈ {1, . . . , N}. (35)

Therefore, (34) and (35) give

lim
k→∞

fj,nk (ynk ) = lim
k→∞

gi,nk (ynk ) = 0, ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , M}.

That is, for all i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, we have

lim
k→∞

∥∥(I – PQj,nk
)Aynk

∥∥ = lim
k→∞

∥∥(I – PCi,nk
)ynk

∥∥ = 0. (36)

Therefore, since {yn} is bounded and from the boundedness assumption of the subdif-
ferential operator ∂qj , the sequence {εj,n}∞n=1 is bounded. In view of this and (36), for all
j ∈ {1, . . . , M}, we have

qj(Aynk ) ≤ 〈
εj,nk , Aznk – PQj,nk

(Aynk )
〉

≤ ‖εj,nk ‖
∥
∥(I – PQj,nk

)Aynk

∥
∥ → 0, k → ∞.

(37)

Similarly, from the boundedness of {ξi,n}∞n=1 and (36), for all i ∈ {1, . . . , N}, we obtain

ci(ynk ) ≤ 〈
ξi,nk , ynk – PCi,nk

(ynk )
〉

≤ ‖ξi,nk ‖
∥∥(I – PCi,nk

)ynk

∥∥ → 0, k → ∞.
(38)

Since xnk ⇀ p, by using (30), we have ynk ⇀ p. Hence Aynk ⇀ Ap.
The weak lower semicontinuity of qj(·) and (37) imply that

qj(Ap) ≤ lim inf
k→∞

qj(Aynk ) ≤ lim sup
k→∞

qj(Aynk ) ≤ 0, ∀j ∈ {1, . . . , M}.

That is, Ap ∈ Qj for all j ∈ {1, . . . , M}.
Likewise, the weak lower semicontinuity of ci(·) and (38) imply that

ci(p) ≤ lim inf
k→∞

ci(ynk ) ≤ 0, ∀i ∈ {1, . . . , N}.

That is, p ∈ Ci for all i ∈ {1, . . . , N}. Hence, p ∈ �.
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Next, we show that lim supn→∞〈(I –V )x̄, x̄–xn〉 ≤ 0. Indeed, since x̄ = P�V (x̄) and p ∈ �,
we obtain that

lim sup
n→∞

〈
(I – V )x̄, x̄ – xn

〉
= lim

k→∞
〈
(I – V )x̄, x̄ – xnk

〉

=
〈
(I – V )x̄, x̄ – p

〉 ≤ 0. (39)

Since ‖xn+1 – xn‖ → 0, from (33) and by (39), we have

lim sup
n→∞

〈
(I – V )x̄, x̄ – xn+1

〉 ≤ 0.

Using (17), we have

‖xn+1 – x̄‖2 =
〈
αnV (yn) + (1 – αn)zn – x̄, xn+1 – x̄

〉

= αn
〈
V (yn) – V (x̄), xn+1 – x̄

〉
+ (1 – αn)〈zn – x̄, xn+1 – x̄〉

+ αn
〈
V (x̄) – x̄, xn+1 – x̄

〉

≤ γαn‖yn – x̄‖‖xn+1 – x̄‖ + (1 – αn)‖zn – x̄‖‖xn+1 – x̄‖
+ αn

〈
V (x̄) – x̄, xn+1 – x̄

〉

≤ (
1 – αn(1 – γ )

)‖yn – x̄‖‖xn+1 – x̄‖
+ αn

〈
V (x̄) – x̄, xn+1 – x̄

〉

≤ (
1 – αn(1 – γ )

)
(‖yn – x̄‖2

2
+

‖xn+1 – x̄‖2

2

)

+ αn
〈
V (x̄) – x̄, xn+1 – x̄

〉
. (40)

Therefore, from (40), we have

‖xn+1 – x̄‖2 ≤ 1 – αn(1 – γ )
1 + αn(1 – γ )

‖yn – x̄‖2 +
2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉

=
(

1 –
2αn(1 – γ )

1 + αn(1 – γ )

)
‖yn – x̄‖2 +

2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉
. (41)

Combining (41) and

‖yn – x̄‖ =
∥∥xn + θn(xn – xn–1) – x̄

∥∥ ≤ ‖xn – x̄‖ + θn‖xn – xn–1‖,

it holds that

‖xn+1 – x̄‖2 ≤
(

1 –
2αn(1 – γ )

1 + αn(1 – γ )

)(‖xn – x̄‖ + θn‖xn – xn–1‖
)2

+
2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉

=
(

1 –
2αn(1 – γ )

1 + αn(1 – γ )

)(‖xn – x̄‖2 + θ2
n‖xn – xn–1‖2

+ 2θn‖xn – x̄‖‖xn – xn–1‖
)
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+
2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉

≤
(

1 –
2αn(1 – γ )

1 + αn(1 – γ )

)
‖xn – x̄‖2 + θ2

n‖xn – xn–1‖2

+ 2θn‖xn – x̄‖‖xn – xn–1‖
+

2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉
. (42)

Since {xn} is bounded, there exists K2 > 0 such that ‖xn – x̄‖ ≤ K2 for all n ≥ 1. Thus, in
view of (42), we have

�n+1 ≤
(

1 –
2αn(1 – γ )

1 + αn(1 – γ )

)
�n + θn‖xn – xn–1‖

(
θn‖xn – xn–1‖ + 2K2

)

+
2αn

1 + αn(1 – γ )
〈
V (x̄) – x̄, xn+1 – x̄

〉

= (1 – σn)�n + σnϑn, (43)

where σn = 2αn(1–γ )
1+αn(1–γ ) and

ϑn =
1 + αn(1 – γ )

2(1 – γ )

(
θn

αn
‖xn – xn–1‖

){
θn‖xn – xn–1‖ + 2K2

}

+
1

1 – γ

〈
V (x̄) – x̄, xn+1 – x̄

〉
.

From (40), (C2), and (C3), we have
∑∞

n=1 σn = ∞ and lim supn→∞ ϑn ≤ 0. Thus, using
Lemma 2.7 and (43), we get �n → 0 as n → ∞. Hence, xn → x̄ as n → ∞.

Case 2: Assume that {�n} does not decrease at infinity. Let ϕ : N → N be a mapping for
all n ≥ n0 (for some n0 large enough) defined by

ϕ(n) = max{k ∈N : k ≤ n,�k ≤ �k+1}.

By Lemma 2.9, {ϕ(n)}∞n=n0 is a nondecreasing sequence, ϕ(n) → ∞ as n → ∞, and

�ϕ(n) ≤ �ϕ(n)+1 and �n ≤ �ϕ(n)+1, ∀n ≥ n0. (44)

In view of ‖xϕ(n) – x̄‖2 – ‖xϕ(n)+1 – x̄‖2 = �ϕ(n) – �ϕ(n)+1 ≤ 0 for all n ≥ n0 and (23), we have
for all n ≥ n0,

ρϕ(n)(4 – ρϕ(n))
M∑

j=1

δj,ϕ(n)
(fj,ϕ(n)(yϕ(n)) + gϕ(n)(yϕ(n)))2

d2
j (yϕ(n))

≤ (�ϕ(n) – �ϕ(n)+1) + αϕ(n)K1 + θϕ(n)(�ϕ(n) – �ϕ(n)–1)

+ 2θϕ(n)‖xϕ(n) – xϕ(n)–1‖2

≤ αϕ(n)K1 + θϕ(n)(�ϕ(n) – �ϕ(n)–1) + 2θϕ(n)‖xϕ(n) – xϕ(n)–1‖2

≤ αϕ(n)K1 + θϕ(n)‖xϕ(n) – xϕ(n)–1‖(
√

�ϕ(n) +
√

�ϕ(n)–1)

+ 2θϕ(n)‖xϕ(n) – xϕ(n)–1‖2. (45)
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Thus, from (45) together with (C2) and (C3), we have for each j ∈ {1, . . . , M},

(fj,ϕ(n)(yϕ(n)) + gϕ(n)(yϕ(n)))2

d2
j (yϕ(n))

→ 0, n → ∞. (46)

Using a similar procedure as above in Case 1, we have

lim
n→∞‖xϕ(n) – yϕ(n)‖ = lim

n→∞‖xϕ(n)+1 – xϕ(n)‖ = 0.

Since {xϕ(n)} is bounded, there exists a subsequence of {xϕ(n)}, still denoted by {xϕ(n)},
which converges weakly to p. By a similar argument as above in Case 1, we conclude
immediately that p ∈ �. In addition, by the similar argument as above in Case 1,
we have lim supn→∞〈(I – V )x̄, x̄ – xϕ(n)〉 ≤ 0. Since limn→∞ ‖xϕ(n)+1 – xϕ(n)‖ = 0, we get
lim supn→∞〈(I – V )x̄, x̄ – xϕ(n)+1〉 ≤ 0. From (43), we have

�ϕ(n)+1 ≤ (1 – σϕ(n))�ϕ(n) + σϕ(n)ϑϕ(n), (47)

where σϕ(n) = 2αϕ(n)(1–γ )
1+αϕ(n)(1–γ ) and

ϑϕ(n) =
1 + αϕ(n)(1 – γ )

2(1 – γ )

(
θϕ(n)

αϕ(n)
‖xϕ(n)– xϕ(n)–1‖

){
θϕ(n)‖xϕ(n) – xϕ(n)–1‖ + 2K2

}

+
1

1 – γ

〈
V (x̄) – x̄, xϕ(n)+1 – x̄

〉
.

Using �ϕ(n) – �ϕ(n)+1 ≤ 0 for all n ≥ n0 and ϑϕ(n) > 0, (47) gives

0 ≤ –σϕ(n)�ϕ(n) + σϕ(n)ϑϕ(n).

Since σϕ(n) > 0, we obtain ‖xϕ(n) – x̄‖2 = �ϕ(n) ≤ ϑϕ(n). Moreover, since lim supn→∞ ϑϕ(n) ≤ 0,
we have limn→∞ ‖xϕ(n) – x̄‖ = 0. Thus, limn→∞ ‖xϕ(n) – x̄‖ = 0 together with
limn→∞ ‖xϕ(n)+1 – xϕ(n)‖ = 0, gives limn→∞ �ϕ(n)+1 = 0. Therefore, from (44), we obtain
limn→∞ �n = 0, that is, xn → x̄ as n → ∞. This completes the proof. �

Remark 3.3 Take a real number β ∈ [0, 1) and a real sequence {εn} such that εn > 0 and
εn = o(αn). Then given the iterates xn–1 and xn (n ≥ 1), choose θn such that 0 ≤ θn ≤ θ̄n

where

θ̄n :=

⎧
⎨

⎩
min{θ , εn

‖xn–1–xn‖ }, if xn–1 = xn,

θ , otherwise.

Under this setting, condition (C3) of Theorem 3.2 is satisfied.

It is worth mentioning that our approach also works for approximation of solution of
split feasibility problem (1) where C and Q are given as sublevel sets of convex functions
given as (2). Set gn(x) = 1

2‖(I – PCn )x‖2 and ∇gn(x) = (I – PCn )x, fn(x) = 1
2‖(I – PQn )Ax‖2

and ∇fn(x) = A∗(I – PQn )Ax, where Cn and Qn are half-spaces containing C and Q given
by (4) and (5), respectively. Thus, the following corollary is an immediate consequence of
Theorem 3.2.
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Corollary 3.4 Consider the iterative algorithm

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ H1,

yn = xn + θn(xn – xn–1),

d(yn) = max{1,‖∇gn(yn) + ∇fn(yn)‖},
zn = yn – ρn

fn(yn)+gn(yn)
d2(yn) (∇gn(yn) + ∇fn(yn)),

xn+1 = αnV (yn) + (1 – αn)zn,

(48)

where {ρn}, {αn}, and {θn} are real parameter sequences. If the parameters {αn}, {θn}, and
{ρn} in the iterative algorithm (48) satisfy the following conditions:

(C1) 0 < αn < 1, limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 ≤ θn ≤ θ < 1 and limn→∞ θn

αn
‖xn – xn–1‖ = 0,

(C3) 0 < ρn < 4 and lim infn→∞ ρn(4 – ρn) > 0,
then the sequence {xn} generated by (48) converges strongly to x̄ ∈ �̄ = {x̄ ∈ C : Ax̄ ∈ Q}.

4 Numerical results
Example 4.1 Consider MSSFP for H1 = R

s, H2 = R
t , A : Rs → R

t given by A(x) = Gt×s(x),
where Gt×s is a t × s matrix, the closed convex subsets Ci (i ∈ {1, . . . , N}) of Rs are s-
dimensional ellipsoids centered at bi = (b(1)

i , b(2)
i , . . . , b(s)

i ) given by

Ci =

{

x = (x1, . . . , xs)T ∈ R
s :

s∑

l=1

(xl – b(l)
i )2

(w(l)
i )2

– 1 ≤ 0

}

,

where

b(l)
i =

⎧
⎨

⎩
i – 1, if l = 1,

0, if l = 2, . . . , s,

and

w(l)
i =

⎧
⎨

⎩
2v, if l = 1,

v + i, otherwise,

for v ∈ N, and the closed convex subsets Qj (j ∈ {1, . . . , M}) of Rt are t-dimensional balls
centered at pj = (p(1)

j , p(2)
j , . . . , p(t)

j ) given by

Qj =
{

y = (y1, . . . , yt)T ∈R
t : ‖y – pj‖2 – r2

j ≤ 0
}

,

where rj = 2v�j – �j and

p(k)
j =

⎧
⎨

⎩
�j, if k = j,

0, otherwise.

Now, we take randomly generated t × s matrix Gt×S given by

Gt×s = (aij)t×s,
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where aj,1 = �j. Note that
•

N⋂

i=1

Ci =

⎧
⎪⎪⎨

⎪⎪⎩

∅, if N > 4v + 1,

{(2v, 0, 0, . . . , 0)}, if N = 4v + 1,

D with card(D) > 1, if N < 4v + 1,

• A((2v, 0, 0, . . . , 0)) = (2v�1, 2v�2, . . . , 2v�t),
• (2v�1, 2v�2, . . . , 2v�t) ∈ ⋂M

j=1 Qj.
In our experiment we take N ≤ 4v + 1 for each choice of v ∈ N and hence we have � =
{(s, 0, 0, . . . , 0)}.

We illustrate and compare the numerical results of Algorithm 1 in view of the number of
iterations (Iter(n)) and the time of execution in seconds (CPUt) using the following data:

• Data I: Gt×s is a randomly generated t × s matrix and starting points x0 and x1 are
also randomly generated.

• Parameters for Data I: δj,n = j
∑M

t=1 t
, αn = 1√

n+1 , ρn = 1 and θn = 0.8.

• Stopping Criterion: ‖xn+1–xn‖
‖x2–x1‖ ≤ TOL.

The numerical results are showed in Fig. 1, Tables 1 and 2. In Fig. 1, the x-axis represents
the number of iterations n while the y-axis gives the value of ‖xn+1 – xn‖ generated by each
iteration n.

We compare Algorithm 1 with the gradient projection method (GPM) by Censor et al.
[27, Algorithm 1], the perturbed projection method (PPM) by Censor et al. [32, Algo-
rithm 5], and the self-adaptive projection method (SAPM) by Zhao and Yang [34, Algo-
rithm 3.2].

In view of Fig. 1 and Table 2, it is easy to observe that our algorithm has better perfor-
mance than GPM, PPM, and SAPM. It appears in most cases our algorithm needed fewer
iterations and converged more quickly than GPM, PPM, and SAPM.

Figure 1 Comparison of Algorithm 1 with GPM, PPM, and SAPM for s = t = 10 and randomly generated
starting points x0 and x1.
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Table 1 Algorithm 1 for v = 1, N = 5, M = 1, s = 4 = t, �1 = –2, �2 = 4, �3 = 2, �4 = –2.5, and
TOL = 10–3

CPUt n xn = (x1n , x
2
n , x

3
n , x

4
n)

1 (57, –101, 36, –56)
2 (16.975572, –32.610749, 12.089823, –15.660362)
3 (9.253186, –11.358803, 0.388070, –7.606574)
4 (3.007314, –6.999628, 3.811022, –3.104770)
5 (1.206224, –2.507948, 0.686912, –1.686387)
6 (0.729906, –0.695988, 0.413653, –1.302157)
7 (0.387654, –0.508405, 0.406479, –0.657852)
8 (0.115411, –0.215174, 0.173968, –0.100848)
9 (0.005019, –0.044157, 0.056362, –0.024290)
10 (–0.002422, –0.006532, 0.012524, –0.006262)
11 (–0.001575, –0.000154, 0.005632, –0.003513)
12 (0.000192, –0.000033, 0.001634, –0.001739)

0.016158 13 (0.001666, –0.000577, –0.001287, 0.000157)

Table 2 For �j = j for each j = 1, . . . ,M

v = 1, N = 5,M = 1, s = 5, t = 3, TOL = 10–4

Algorithm 1 GPM PPM SAPM

Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt

20 0.2305 25 0.2689 27 0.2716 24 0.3101

v = 3, N = 2,M = 3, s = 10 = t, TOL = 10–3

Algorithm 1 GPM PPM SAPM

Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt

47 0.8743 62 0.9003 71 0.8428 58 0.9731

v = 4, N = 6,M = 5, s = 30, t = 40, TOL = 10–2

Algorithm 1 GPM PPM SAPM

Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt Iter(n) CPUt

119 1.0678 162 1.1032 143 1.2210 160 1.6241

Example 4.2 ([41]) Consider the Hilbert space H1 = H2 = L2([0, 1]) with norm ‖x|| :=√∫ 1
0 |x(s)|2 ds and the inner product given by 〈x|y〉 =

∫ 1
0 x(s)y(s) ds. The two nonempty,

closed, and convex sets are C = {x ∈ L2([0, 1]) : 〈x(s), 3s2〉 = 0} and Q = {x ∈ L2([0, 1]) :
〈x, s

3 〉 ≥ –1}, and the linear operator is given as (Ax)(s) = x(s), i.e., ‖A‖ = 1 or A = I is the
identity. The orthogonal projections onto C and Q have explicit formulas (see, for exam-
ple, [56]):

PC
(
v(s)

)
=

⎧
⎨

⎩

v(s) – 〈v(s),3s2〉
‖3s2‖2

L2
3s2, if 〈v(s), 3s2〉 = 0,

v(s), if 〈v(s), 3s2〉 = 0,
(49)

PQ
(
v(s)

)
=

⎧
⎨

⎩

v(s) – 〈v(s), –s
3 〉–1

‖ –s
3 ‖2

L2
( –s

3 ), if 〈v(s), –s
3 〉 < –1,

v(s), if 〈v(s), –s
3 〉 ≥ –1.

(50)

Now, we consider the SFP (1). It is clear that problem (1) has a nonempty solution set
� since 0 ∈ �. In this example, we compare scheme (48) with the strong convergence
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result of SFP proposed by Shehu [57]. In the iterative scheme (48), for x0, x1 ∈ C, we take
ρn = 3.5, θn = 0.75, and αn = 1√

n+1 . The iterative scheme (27) in [57] for u, x1 ∈ C, with
αn = 1

n+1 , βn = n
2(n+1) = γn, and tn = 1

‖A‖2 was reduced into the following form:

⎧
⎨

⎩
yn = [xn – 1

‖A‖2 A∗(Axn – PQn (Axn))],

xn+1 = PC( u
n+1 + nxn

2(n+1) + nyn
2(n+1) ), n ≥ 1.

(51)

We see here that our iterative scheme can be implemented to solve problem (1) considered
in this example. We use ‖xn+1 – xn‖ < 10–4 as a stopping criterion for both schemes, and
the outcome of the numerical experiment is reported in Figs. 2–5.

Figure 2 Comparison of schemes (48) and (51) for x0 = u = e3s , and x1 = es .

Figure 3 Comparison of schemes (48) and (51) for x0 = u = s, and x1 = es .
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Figure 4 Comparison of schemes (48) and (51) for x0 = u = sin(s), and x1 = s.

Figure 5 Comparison of schemes (48) and (51) for x0 = u = ses , and x1 = s2 + 1.

5 Conclusions
In this paper, we have presented a strongly convergent iterative algorithm with an inertial
extrapolation to approximate the solution of MSSFP. A self-adaptive technique has been
developed to choose the stepsizes such that the implementation of our algorithm does
not need to know the prior operator norm. Some numerical experiments are given to il-
lustrate the efficiency of the proposed iterative algorithm. Algorithm 1 is compared with
the gradient projection method (GPM) by Censor et al. [27, Algorithm 1], the perturbed
projection method (PPM) by Censor et al. [32, Algorithm 5], and the self-adaptive projec-
tion method (SAPM) by Zhao and Yang [34, Algorithm 3.2]. The numerical results show
Algorithm 1 has a better performance than GPM, PPM, and SPM. In addition, scheme (48)
is compared with scheme (51). It can be observed from Figs. 2–5 that, for different choices
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of u, x0, and x1, scheme (48) is faster in terms of the number of iterations and CPU-run
time than scheme (51).
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