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Abstract
In this paper, we investigate some properties of the domains c(Cn), c0(Cn), and �p(Cn)
(0 < p < 1) of the Copson matrix of order n, where c, c0, and �p are the spaces of all
convergent, convergent to zero, and p-summable real sequences, respectively.
Moreover, we compute the Köthe duals of these spaces and the lower bound of
well-known operators on these sequence spaces. The domain �p(Cn) of Copson
matrix Cn of order n in the sequence space �p, the norm of operators on this space,
and the norm of Copson operator on several matrix domains have been investigated
recently in (Roopaei in J. Inequal. Appl. 2020:120, 2020), and the present study is a
complement of our previous research.
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1 Introduction
Let ω denote the set of all real-valued sequences. Any linear subspace of ω is called a se-
quence space. For 0 < p < 1, the complete p-normed space �p is the set of all real sequences
x = (xk)∞k=0 ∈ ω such that

‖x‖�p =
∞∑

k=0

|xk|p < ∞.

By c and c0, we denote the spaces of all convergent and convergent to zero real sequences,
respectively. These spaces are Banach spaces with the norm ‖x‖∞ = supk |xk|. Here and in
the rest of the paper, the supremum is taken over all k ∈ N0 = {0, 1, 2, 3, . . . }. Also, we use
the notion N = {1, 2, 3, . . . }.

One can consider an infinite matrix as a linear operator from a sequence space to an-
other one. Given any two arbitrary sequence spaces X, Y and an infinite matrix T = (ti,j),
we define a matrix transformation from X into Y as Tx = ((Tx)i) = (

∑∞
j=0 ti,jxj) provided

that the series is convergent for each i ∈ N0. By (X, Y ), we denote the family of all infinite
matrices from X into Y .
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The domain XT of an infinite matrix T in a sequence space X is defined as

XT = {x ∈ ω : Tx ∈ X}, (1.1)

which is also a sequence space. By using matrix domains of special triangle matrices in
classical spaces, many authors have introduced and studied new Banach spaces. For the
relevant literature, we refer to the papers [1, 2, 4, 9, 13, 16, 22, 23, 26–29] and textbooks
[3, 20, 21].

The Köthe duals (α-, β-, γ -duals) of a sequence space X are defined by

Xα =

{
a = (ak) ∈ ω :

∞∑

k=1

|akxk| < ∞ for all x = (xk) ∈ X

}
,

Xβ =

{
a = (ak) ∈ ω :

( n∑

k=1

akxk

)
∈ c for all x = (xk) ∈ X

}
,

Xγ =

{
a = (ak) ∈ ω :

( n∑

k=1

akxk

)
∈ �∞ for all x = (xk) ∈ X

}
,

respectively.
Copson matrix. The Copson matrix is an upper-triangular matrix which is defined by

cj,k =

⎧
⎨

⎩

1
k+1 , 0 ≤ j ≤ k,

0, otherwise,

for all j, k ∈N. That is,

C =

⎛

⎜⎜⎜⎜⎝

1 1/2 1/3 . . .
0 1/2 1/3 . . .
0 0 1/3 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎠
,

and has the �p-norm ‖C‖�p = p. This matrix is the transpose of the well-known Cesàro
matrix.

Copson matrix of order n. Consider the Hausdorff matrix Hμ = (hj,k)∞j,k=0, with entries of
the form:

hj,k =

⎧
⎨

⎩

∫ 1
0

( j
k
)
θ k(1 – θ )j–k dμ(θ ), j ≥ k,

0, j < k,

where μ is a probability measure on [0, 1]. The Hausdorff matrix contains the famous
classes of matrices. For positive integer n, these classes are as follow:

• The choice dμ(θ ) = n(1 – θ )n–1 dθ gives the Cesàro matrix of order n,
• The choice dμ(θ ) = nθn–1 dθ gives the Gamma matrix of order n,
• The choice dμ(θ ) = | log θ |n–1

�(n) dθ gives the Hölder matrix of order n,
• The choice dμ(θ ) = point evaluation at θ = r (0 < r < 1) gives the Euler matrix of

order r.
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We use the notation hau(p) as the set of all sequences whose Hμ-transforms are in the
space �p, that is,

hau(p) =

{
x = (xj) ∈ ω :

∞∑

j=0

∣∣∣∣∣

j∑

k=0

∫ 1

0

(
j
k

)
θ k(1 – θ )j–k dμ(θ )xk

∣∣∣∣∣

p

< ∞
}

,

where μ is a fixed probability measure on [0, 1].
Hardy’s formula [11, Theorem 216] states that the Hausdorff matrix is a bounded oper-

ator on �p if and only if
∫ 1

0 θ
–1
p dμ(θ ) < ∞ and

∥∥Hμ
∥∥

�p
=

∫ 1

0
θ

–1
p dμ(θ ) (1 < p < ∞). (1.2)

Hausdorff operator has the following norm property.

Theorem 1.1 ([7, Theorem 9]) Let p ≥ 1 and Hμ, Hϕ , and Hν be Hausdorff matrices such
that Hμ = HϕHν . Then Hμ is bounded on �p if and only if both Hϕ and Hν are bounded on
�p. Moreover, we have

∥∥Hμ
∥∥

�p
=

∥∥Hϕ
∥∥

�p

∥∥Hν
∥∥

�p
.

The following theorem is an analog of Hardy’s formula.

Theorem 1.2 ([8, Theorem 7.18]) Fix p, 0 < p < 1, and let Hμt be the transposed Hausdorff
matrix. Then

∥∥Hμtx
∥∥

�p
≥

(∫ 1

0
θ

1–p
p dμ(θ )

)
‖x‖�p (1.3)

for every sequence x of nonnegative terms. The constant is best possible, and there is equality
only when x = 0 or p = 1 or H = I .

Theorem 1.3 ([8, Corollary 7.27]) If Hμt and Hνt are two transposed Hausdorff matrices,
then the lower bound (on �p, 0 < p < 1) of their product is the product of their lower bounds.

In order to define and know the Copson matrix details, we need the following theorem
also known as Hellinger–Toeplitz theorem.

Theorem 1.4 ([8, Proposition 7.2]) Suppose that 1 < p, q < ∞. A matrix A maps �p into �q

if and only if the transposed matrix, At , maps �q∗ into �p∗ . We then have

‖A‖�p ,�q =
∥∥At∥∥

�q∗ ,�p∗ ,

where p∗ is the conjugate of p, i.e., 1
p + 1

p∗ = 1.

For a nonnegative real number n, and by choosing dμ(θ ) = n(1–θ )n–1 dθ in the definition
of Hausdorff matrix, we gain the Cesàro matrix of order n, which, according to Hardy’s
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formula, has the �p-norm

�(n + 1)�(1/p∗)
�(n + 1/p∗)

.

Now, the Copson matrix of order n, Cn = (cn
j,k), which is defined as the transpose of Cesàro

matrix of order n, has the entries

cn
j,k =

⎧
⎪⎨

⎪⎩

(n+k–j–1
k–j )

(n+k
k )

, j ≤ k,

0, otherwise,
(1.4)

and, according to Hellinger–Toeplitz theorem, the �p-norm

∥∥Cn∥∥
�p

=
�(n + 1)�(1/p)

�(n + 1/p)
.

Note that C0 = I , where I is the identity matrix and C1 = C is the well-known Copson
matrix. For more examples,

C2 =

⎛

⎜⎜⎜⎜⎝

1 2/3 3/6 . . .
0 1/3 2/6 . . .
0 0 1/6 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎠
and C3 =

⎛

⎜⎜⎜⎜⎝

1 3/4 6/10 . . .
0 1/4 3/10 . . .
0 0 1/10 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎠
.

In this study, after introducing the domains of the Copson matrix of order n in the spaces
c0, c, and �p, we study some properties of the Copson spaces. We also compute α-, β-,
γ -duals of these spaces and determine Schauder basis. We seek lower bounds of the form

‖Tx‖�p > L‖x‖�p ,

valid for every x ∈ �p with x0 > x1 > · · · > 0. Here T is a matrix with nonnegative entries,
assumed to map �p into itself, and L is a constant not depending on x. The lower bound
of T is the greatest possible value of L, which we denote by L(T).

Throughout this paper, we use the notations L(·) for the lower bound of operators on �p

and L(·)X,Y for the lower bound of operators from the sequence space X into the sequence
space Y .

Motivation. Many mathematicians have and still publish numerous articles about the
Cesàro matrix, Cesàro matrix domain, and Cesàro function spaces [8, 9, 14, 19, 29], while
the importance of the Copson operator and its associated matrix domains have been ig-
nored under the shadow of its transpose Cesàro matrix. Recently, the author have investi-
gated the sequence space �p(Cn) for 1 ≤ p < ∞, as well as found the norm of well-known
operators on this matrix domain. In this research, as a complement of [24], the matrix
domains c0(Cn), c(Cn), and �p(Cn), 0 < p < 1, are investigated, while the lower bound of
well-known operators on the Copson sequence space and the lower bound of the Cop-
son operator on some matrix domains are computed as well, which has never been done
before.
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2 Copson Banach spaces c0(Cn), c(Cn), and �p(Cn)
In this section, the sequence spaces c0(Cn), c(Cn), and �p(Cn) are introduced and the in-
clusion relations as well as dual spaces of these new spaces are determined.

Lemma 2.1 The Copson matrix of order n, Cn, is invertible and its inverse, C–n = (c–n
j,k ), is

defined by

c–n
j,k =

⎧
⎨

⎩
(–1)(k–j)( n

k–j
)(n+j

j
)
, j ≤ k,

0, otherwise.

Proof Let us recall the forward difference matrix of order n, �n = (δn
j,k), which is a lower-

triangular matrix with entries

δn
j,k =

⎧
⎨

⎩
(–1)(k–j)( n

k–j
)
, j ≤ k ≤ j + n,

0, otherwise.

This matrix has the inverse �–n = (δ–n
j,k ) with the following entries:

δ–n
j,k =

⎧
⎨

⎩

(n+k–j–1
k–j

)
, j ≤ k,

0, otherwise.

From the relation (1.4), one can see that the Copson matrix of order n and its inverse can
be rewritten based on the forward difference operator and its inverse. For j ≤ k, we have

cn
j,k =

(n+k–j–1
k–j

)

(n+k
k

) =
δ–n

j,k(n+k
k

) and c–n
j,k = δn

j,k

(
n + j

j

)
.

Now, by a simple calculation, we deduce that

(
C–nCn)

i,k =
(n+i

i
)

(n+k
k

)
∑

j

δn
i,jδ

–n
j,k =

(n+i
i
)

(n+k
k

)
(
�n�–n)

i,k =
(n+i

i
)

(n+k
k

) Ii,k ,

which completes the proof. �

Now, we introduce the sequence spaces c0(Cn), c(Cn), and �p(Cn) as the set of all se-
quences whose Cn-transforms are in the spaces c0, c, and �p, respectively, that is,

c0
(
Cn) =

{
x = (xj) ∈ ω : lim

j→∞

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk = 0

}
,

c
(
Cn) =

{
x = (xj) ∈ ω : lim

j→∞

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk < ∞
}

,

and

�p
(
Cn) =

{
x = (xj) ∈ ω :

∞∑

j=0

∣∣∣∣∣

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk

∣∣∣∣∣

p

< ∞
}

(0 < p < 1).
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With the notation of (1.1), the spaces c0(Cn), c(Cn), and �p(Cn) can be redefined as follows:

c0
(
Cn) = (c0)Cn , c

(
Cn) = (c)Cn , and �p

(
Cn) = (�p)Cn .

Throughout the study, y = (yj) will be the Cn-transform of a sequence x = (xj), that is,

yj =
(
Cnx

)
j =

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk (2.1)

for all j ∈N0. Also, the relation

xk =
∞∑

i=k

(–1)i–k
(

n + k
k

)(
n

i – k

)
yi

holds for all k ∈ N0.

Theorem 2.2 The following statements hold:
• The spaces c0(Cn) and c(Cn) are Banach spaces with the norm

‖x‖c0(Cn) = ‖x‖c(Cn) = sup
j∈N0

∣∣∣∣∣

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk

∣∣∣∣∣.

• The space �p(Cn) (0 < p < 1) is a complete p-normed space with the p-norm

‖x‖�p(Cn) =
∞∑

j=0

∣∣∣∣∣

∞∑

k=j

(n+k–j–1
k–j

)

(n+k
k

) xk

∣∣∣∣∣

p

Proof We omit the proof which is a routine verification. �

Theorem 2.3 The following statements hold:
• The spaces c0(Cn) and c(Cn) are linearly norm-isomorphic to c0 and c, respectively.
• The space �p(Cn) is linearly p-norm isomorphic to �p.

Proof The proof follows from the fact that the mapping L : X(Cn) → X defined by x 	→
Lx = y = Cnx is a norm-preserving linear bijection, where X ∈ {c0, c,�p} and y = (yj) is given
by (2.1). �

Theorem 2.4 The inclusion �q(Cn) ⊂ �p(Cn) strictly holds, where 0 < p < q < 1.

Proof Choose any x ∈ �q(Cn). Then, Cnx ∈ �q. Since the inclusion �q ⊂ �p holds for 0 <
p < q < 1, we have Cnx ∈ �p. This implies that x ∈ �p(Cn). Hence, we conclude that the
inclusion �q(Cn) ⊂ �p(Cn) holds.

Now, we show that the inclusion is strict. Since the inclusion �q ⊂ �p is strict, we can
choose y = (yj) ∈ �p\�q. Define a sequence x = (xj) as

xj =
∞∑

k=j

(–1)k–j
(

n + j
j

)(
n

k – j

)
yk (j ∈ N0).
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Then, we have

(
Cnx

)
j = yj

for every j ∈ N0, which means Cnx = y, and so Cnx ∈ �p\�q. Hence, we conclude that x ∈
�p(Cn)\�q(Cn), and so the inclusion �q(Cn) ⊂ �p(Cn) is strict. �

Corollary 2.5 The inclusion �p(Cα) ⊂ �p(Cβ ) holds, where 0 < p < 1 and α > β ≥ 0.

Proof According to [8, Theorem 20.13], for 0 < p < 1 and α > β ≥ 0, we have

∥∥Cβx
∥∥

�p
≤ �(α + 1)�(β + 1/p)

�(β + 1)�(α + 1/p)
∥∥Cαx

∥∥
�p

.

Hence there remains nothing to prove. �

It is known from Theorem 2.3 of Jarrah and Malkowsky [15] that if T is triangular then
the domain XT of T in a normed sequence space X has a basis if and only if X has a basis.
As a direct consequence of this fact, we have

Corollary 2.6 Define the sequence (b(k)) = (b(k)
j ) for each k ∈N by

(
b(k))

j =

⎧
⎨

⎩
(–1)k–j(n+j

j
)( n

k–j
)
, k ≥ j,

0, k < j
(j ∈N0).

Then, the sequence (b(k)) is a basis for the spaces c0(Cn) and �p(Cn), and every sequence
x ∈ c0(Cn) or x ∈ �p(Cn) has a unique representation of the form x =

∑
k(Cnx)kb(k).

The following lemma is essential to determine the dual spaces. Throughout the paper,
N is the collection of all finite subsets of N.

Lemma 2.7 ([30]) The following statements hold:
(i) T = (tj,k) ∈ (c0,�1) = (c,�1) if and only if

sup
K∈N

∞∑

j=0

∣∣∣∣
∑

k∈K

tj,k

∣∣∣∣ < ∞.

(ii) T = (tj,k) ∈ (c0, c) if and only if

sup
j

∞∑

k=0

|tj,k| < ∞, (2.2)

and

lim
j→∞ tj,k exists for each k ∈N. (2.3)
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(iii) T = (tj,k) ∈ (c, c) if and only if (2.2) and (2.3) hold and

lim
j→∞

∞∑

k=0

tj,k exists.

(iv) T = (tj,k) ∈ (c0,�∞) = (c,�∞) if and only if (2.2) holds.

Lemma 2.8 The following statements hold:
(i) [10, Theorem 5.1.0, with pk = p for all k] T = (tj,k) ∈ (�p,�1) if and only if

sup
N∈N

sup
k∈N

∣∣∣∣
∑

j∈N

tj,k

∣∣∣∣
p

< ∞ (0 < p ≤ 1); (2.4)

sup
N∈N

∞∑

k=0

∣∣∣∣
∑

j∈N

tj,k

∣∣∣∣
p∗

< ∞ (1 < p < ∞). (2.5)

(ii) [18, Theorem 1(i), with pk = p for all k] T = (tj,k) ∈ (�p,�∞) if and only if

sup
j,k∈N0

|tj,k|p < ∞, (0 < p ≤ 1). (2.6)

(iii) [18, Corollary of Theorem 1, with pk = p for all k] T = (tj,k) ∈ (�p, c) if and only if
(2.6) holds and

∃αk ∈C � lim
j→∞ tj,k = αk for each k ∈N. (2.7)

Theorem 2.9 The α-duals of the spaces c0(Cn) and c(Cn) are as follows:

(
c0

(
Cn))α =

(
c
(
Cn))α =

{
b = (bj) ∈ ω : sup

K∈N

∞∑

j=0

∣∣∣∣
∑

k∈K

(–1)k–j
(

n + j
j

)(
n

k – j

)
bj

∣∣∣∣ < ∞
}

.

Proof Let b = (bj) ∈ ω. Consider the matrix A = (aj,k) defined by

aj,k =

⎧
⎨

⎩
(–1)k–j(n+j

j
)( n

k–j
)
bj, j ≤ k,

0, otherwise.

Given any x = (xj) ∈ X(Cn), we have bjxj = (Ay)j for all j ∈ N, where X ∈ {c0, c}. This implies
that bx ∈ �1 with x ∈ X(Cn) if and only if Ay ∈ �1 with y ∈ X. Hence, we conclude that
b ∈ (X(Cn))α if and only if A ∈ (X,�1). This completes the proof by part (i) of Lemma 2.7. �

Theorem 2.10 Let define the following sets:

A1 =

{
b = (bk) ∈ ω : sup

j

{ j∑

k=0

∣∣∣∣∣

k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣

+
∞∑

k=j+1

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

}
< ∞

}
,
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A2 =

{
b = (bk) ∈ ω : lim

j→∞

( j∑

k=0

∣∣∣∣∣

k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣

+
∞∑

k=j+1

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

)
< ∞

}
,

and

A3 =

{
b = (bk) ∈ ω : sup

j

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

p

< ∞
}

.

Then, we have (c0(Cn))β = A1, (c(Cn))β = A1 ∩ A2, and (�p(Cn))β = A3 (0 < p < 1).

Proof Note that b = (bk) ∈ (c0(Cn))β if and only if the series
∑∞

k=0 bkxk is convergent for all
x = (xk) ∈ c0(Cn). The equality

j∑

k=0

bkxk =
j∑

k=0

bk

( ∞∑

i=k

(–1)i–k
(

n + k
k

)(
n

i – k

)
yi

)

=
j∑

k=0

( k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

)
yk

+
∞∑

k=j+1

( j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

)
yk

= (By)j,

where B = (bj,k) is defined by

bj,k =

⎧
⎨

⎩

∑k
i=0(–1)k–i(n+i

i
)( n

k–i
)
bi, 0 ≤ k ≤ j,

∑j
i=0(–1)j–i(n+i

i
)( n

j–i
)
bi, k > j.

We deduce that b = (bk) ∈ (c0(Cn))β if and only if the matrix B = (bj,k) is in the class (c0, c).
Hence, we deduce from part (ii) of Lemma 2.7 that

sup
j

{ j∑

k=0

∣∣∣∣∣

k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ +
∞∑

k=j+1

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

}
< ∞

and also

lim
j→∞

k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi exists for each k ∈N,

which means b = (bk) ∈ A1, and so we have (c0(Cn))β = A1. The other results can be proved
similarly. �
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Theorem 2.11 The γ -duals of the spaces c0(Cn), c(Cn), and �p(Cn) (0 < p < 1) are as fol-
lows:

c0
(
Cn))γ =

(
c
(
Cn))γ

=

{
b = (bk) ∈ ω : sup

j

{ j∑

k=0

∣∣∣∣∣

k∑

i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣

+
∞∑

k=j+1

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

}
< ∞

}

and

(
�p

(
Cn))γ =

{
b = (bk) ∈ ω : sup

j

∣∣∣∣∣

j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣

p

< ∞
}

.

Proof This follows by applying the same technique used in the proof of Theorem 2.10. �

3 Lower bound of operators on the Copson matrix domain for (0 < p < 1)
In this section, we assume 0 < p < 1 and intend to compute the lower bound of operators
from �p into �p(Cn), from �p(Cn) into �p, and from �p(Cn) into itself. In so doing, we need
the following lemma.

We emphasize again that we use the notations L(·) for the lower bound of operators
on �p and L(·)X,Y for the lower bound of operators from the sequence space X into the
sequence space Y .

Lemma 3.1 ([25, Lemma 2.1]) Let U is a bounded operator on �p and Ap and Bp be two
matrix domains such that Ap � �p. Then, the following statements hold:

• If BT is a bounded operator on �p, then T is a bounded operator from �p into Bp and

‖T‖�p ,Bp = ‖T‖�p and L(T)�p ,Bp = L(BT).

• If T has a factorization of the form T = UA, then T is a bounded operator from the
matrix domain Ap into �p and

‖T‖Ap ,�p = ‖U‖�p and L(T)Ap ,�p = L(U).

• If BT = UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap ,Bp = ‖U‖�p and L(T)Ap ,Bp = L(U).

In particular, if AT = UA, then T is a bounded operator from the matrix domain Ap

into itself and ‖T‖Ap = ‖U‖�p and L(T)Ap = L(U). Also, if T and A commute then
‖T‖Ap = ‖T‖�p and L(T)Ap = L(T).
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3.1 Lower bound of operators from �p into �p(Cn)
In this part of study we intend to compute the lower bound of transposed Hausdorff op-
erators on the Copson matrix domain.

Theorem 3.2 The transposed Hausdorff matrix Hμt has a lower bound from �p into �p(Cn)
and

L
(
Hμt)

�p ,�p(Cn) =
�(n + 1)�(1/p)

�(n + 1/p)

∫ 1

0
θ

1–p
p dμ(θ ).

In particular, the transposed Cesàro, Gamma, Hölder, and Euler matrices of orders m have
the following lower bounds:

L
(
Cmt)

�p ,�p(Cn) =
�(n + 1)�(m + 1)(�(1/p))2

�(n + 1/p∗)�(m + 1/p)
(n, m > 0),

L
(
�mt)

�p ,�p(Cn) =
mp∗�(n + 1)�(1/p)
(mp∗ – 1)�(n + 1/p)

(m > 1/p, n > 0),

L
(
Hmt)

�p ,�p(Cn) =
pm�(n + 1)�(1/p)

�(n + 1/p)
(n, m > 0),

L
(
Emt)

�p ,�p(Cn) =
m–1/p∗

�(n + 1)�(1/p)
�(n + 1/p)

(n > 0, 0 < m < 1).

Proof According to Lemma 3.1, Theorem 1.3, and relation (1.3), we have

L
(
Hμt)

�p ,�p(Cn) = L
(
CnHμt) = L

(
Cn)L

(
Hμt)

=
�(n + 1)�(1/p)

�(n + 1/p)

∫ 1

0
θ

1–p
p dμ(θ ). �

3.2 Lower bound of operators from �p(Cn) into �p

In this section, we intend to find the lower bound of the transposed Hausdorff operators
from �p(Cn) into �p.

Theorem 3.3 The transposed Hausdorff operator Hμt has the lower bound from �p(Cn)
into �p and

L
(
Hμt)

�p(Cn),�p
=

�(n + 1/p)
�(n + 1)�(1/p)

∫ 1

0
θ

1–p
p dμ(θ ). (3.1)

In particular, the transposed Cesàro, Gamma, Hölder, and Euler matrices of orders m are
bounded operators from �p(Cn) into �p and

L
(
Cmt)

�p(Cn),�p
=

�(m + 1)�(n + 1/p)
�(n + 1)�(m + 1/p)

(n, m > 0),

L
(
�mt)

�p(Cn),�p
=

mp∗�(n + 1/p)
(mp∗ – 1)�(n + 1)�(1/p)

(m > 1/p, n > 0),

L
(
Hmt)

�p(Cn),�p
=

pm�(n + 1/p)
�(n + 1)�(1/p)

(n, m > 0),

L
(
Emt)

�p(Cn),�p
=

m–1/p∗
�(n + 1/p)

�(n + 1)�(1/p)
(n > 0, 0 < m < 1).
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Proof Following Bennett [8, p. 120], the Hausdorff operator Hμ has a factorization of the
form Hμ = HϕCn, where ϕ is a quotient measure. So Hμt = HϕtCnt , hence Lemma 3.1,
Theorem 1.3, and relation (1.3) imply that

L
(
Hμt)

�p(Cn),�p
= L

(
HϕtCn)

�p(Cn),�p
= L

(
Hϕt) = L

(
Hμt)/L

(
Cn)

=
�(n + 1/p)

�(n + 1)�(1/p)

∫ 1

0
θ

1–p
p dμ(θ ). �

Remark 3.4 As an example of factorization of Hausdorff operators we have Cm = HϕCn,
where Cn is the Cesàro matrix of order n and the quotient measure, Hϕ is a Hausdorff
matrix associated with the measure

dϕ(θ ) =
�(m + 1)

�(n + 1)�(m – n)
θn(1 – θ )m–n–1 dθ ,

and by Hardy’s formula has the �p-norm

∥∥Hϕ
∥∥

�p
=

�(m + 1)�(n + 1/p∗)
�(n + 1)�(m + 1/p∗)

.

3.3 Lower bound of operators on �p(Cn)
In this part of the study, we try to find the lower bound of the transposed Hausdorff op-
erators on the space �p(Cn).

Theorem 3.5 The transposed Hausdorff operator Hμt has a lower bound on �p(Cn) and

L
(
Hμt)

�p(Cn) = L
(
Hμt) =

∫ 1

0
θ

1–p
p dμ(θ ).

In particular, the transposed Cesàro, Gamma, Hölder, and Euler matrices of order m are
bounded operators on �p(Cn) and

L
(
Cmt)

�p(Cn) =
�(m + 1)�(1/p)

�(m + 1/p)
(m > 0),

L
(
�mt)

�p(Cn) =
mp∗

mp∗ – 1
(mp > 1),

L
(
Hmt)

�p(Cn) = pm (m > 0),

L
(
Emt)

�p(Cn) = m
–1
p∗ (0 < m < 1).

Proof Since Hausdorff matrices commute, we have CnHμt = HμtCn. Thus, part (iii) of
Lemma 3.1 and relation (1.3) complete the proof. �

Throughout the next two sections we assume that 1 ≤ p < ∞.

4 Lower bound of operators on the Copson matrix domain for 1 ≤ p < ∞
In this section, we intend to compute the lower bound of operators from �p into �p(Cn),
from �p(Cn) into �p, and from �p(Cn) into itself.
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Recall the Hilbert matrix H = (hj,k), which was introduced by David Hilbert in 1894 to
study a question in approximation theory:

hj,k =
1

j + k + 1
(j, k = 0, 1, . . .).

We know that for p ≥ 1, the Hilbert operator H is a bounded operator on �p with ‖H‖�p =
π csc(π/p) (see [12, Theorem 323]) and the lower bound ζ (p)1/p (see [6, Theorem 5]).

For a positive integer n, we define the Hilbert matrix of order n, Hn = (hn
j,k), by

hn
j,k =

1
j + k + n + 1

(j, k = 0, 1, . . . ).

Note that for n = 0, H0 = H is the well-known Hilbert matrix. For more examples,

H1 =

⎛

⎜⎜⎜⎜⎝

1/2 1/3 1/4 . . .
1/3 1/4 1/5 . . .
1/4 1/5 1/6 . . .

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠
, H2 =

⎛

⎜⎜⎜⎜⎝

1/3 1/4 1/5 . . .
1/4 1/5 1/6 . . .
1/5 1/6 1/7 . . .

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠
.

For nonnegative integers n, j, and k, let us define the matrix Bn = (bn
j,k) by

bn
j,k =

(j + 1) · · · (j + n)
(j + k + 1) · · · (j + k + n + 1)

=
(

n + j
j

)
β(j + k + 1, n + 1), (4.1)

where the β function is

β(m, n) =
∫ 1

0
zm–1(1 – z)n–1 dz (m, n = 1, 2, . . .).

Consider that for n = 0, B0 = H , where H is the Hilbert matrix.

Lemma 4.1 ([23, Remark 2.4]) Let H and Hn be the Hilbert and Hilbert matrix of order n,
respectively. We have the following identities:

• H = CnBn,
• Hn = BnCn,
• HCn = CnHn,
• Bn is a bounded operator on �p and ‖Bn‖�p = �(n+1/p)�(1/p∗)

�(n+1) .

We say that Q = (qn,k) is a quasisummability matrix if it is an upper-triangular matrix,
i.e., qn,k = 0 for n < k, and

∑k
n=0 qn,k = 1 for all k. The product of two quasisummability

matrices is also a quasisummability matrix and all these matrices have the lower bound 1
on �p, according to the following theorem.

Theorem 4.2 ([7, Theorem 2]) Let p be fixed, 1 < p < ∞, and let T be a quasisummability
matrix. If x ∈ �p satisfies x0 > x1 > · · · > 0, then

‖Tx‖�q ≥ ‖x‖�p .
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4.1 Lower bound of operators from �p into �p(Cn)
In this part of study we compute the lower bound of some well-known operators like
Hilbert and transposed Hausdorff operators on the domain of Copson matrix.

Theorem 4.3 The matrix Bn defined in relation (4.1) has a lower bound from �p into
�p(Cn) and L(Bn)�p ,�p(Cn) = ζ (p)1/p.

Proof According to Lemmas 3.1 and 4.1, we have

L
(
Bn)

�p ,�p(Cn) = L
(
CnBn) = L(H) = ζ (p)1/p. �

Lemma 4.4 ([24, Theorem 3.7]) Let α and n be two nonnegative integers such that α >
n ≥ 0. The Copson matrix of order α has a factorization of the form Cα = CnSα,n = Sα,nCn,
where Cn is the Copson matrix of order n while Sα,n = (sα,n

j,k ) is a bounded operator on �p

with the entries

sα,n
j,k =

(n+j
j
)(

α–n+k–j–1
k–j

)

(
α+k

k
) (j, k = 0, 1, . . .) (4.2)

and �p-norm

∥∥Sα,n∥∥
�p

=
�(α + 1)�(n + 1/p)
�(n + 1)�(α + 1/p)

.

Corollary 4.5 Let α, n be two nonnegative integers that α > n ≥ 0. The matrix Sα,n defined
in relation (4.2) has a lower bound from �p into �p(Cn) and

L
(
Sα,n)

�p ,�p(Cn) = 1.

Proof According to Lemmas 3.1 and 4.4 and Theorem 4.2, we have

L
(
Sα,n)

�p ,�p(Cn) = L
(
CnSα,n) = L

(
Cα

)
= 1. �

Corollary 4.6 For every quasisummability matrix Q, we have

L(Q)�p ,�p(Cn) = 1.

In particular, for every Hausdorff matrix Hμ, we have L(Hμt)�p ,�p(Cn) = 1.

4.2 Lower bound of operators from �p(Cn) into �p

In this part of study we compute the lower bound of transposed Hausdorff operators on
the domain of Copson matrix.

Theorem 4.7 The transposed Hausdorff matrix Hμt has a lower bound from �p(Cn) into
�p and L(Hμt)�p(Cn),�p = 1.

Proof Since the factor Hϕt in the factorization Hμt = CnHϕt is a quasisummability matrix,
the proof is similar to that of Theorem 2.1, so

L
(
Hμt)

�p(Cn),�p
= L

(
Hϕt) = 1. �
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4.3 Lower bound of operators on �p(Cn)
In this part of study we compute the lower bound of Hilbert and transposed Hausdorff
operators on the domain of Copson matrix.

Theorem 4.8 The Hilbert matrix of order n, Hn, has a lower bound on �p(Cn) and
L(Hn)�p(Cn) = ζ (p)1/p.

Proof According to Lemmas 3.1 and 4.1, we have L(Hn)�p(Cn) = L(H) = ζ (p)1/p. �

Theorem 4.9 The transposed Hausdorff operator Hμt has a lower bound on �p(Cn) and
L(Hμt)�p(Cn) = 1.

Proof Since every two transposed Hausdorff matrices commute hence the proof is the
direct result of Lemma 3.1 and Theorem 4.2. �

5 Lower bound of Copson operator on some sequence spaces
In this section, we investigate the problem of finding the lower bound of Copson operator
on some sequence spaces. Through out this section we assume that 1 ≤ p < ∞.

5.1 Lower bound of Copson operator on the difference sequence spaces
In this part of study, we investigate the lower bound of the Copson matrix of order n on
the difference sequence spaces. In so doing we need the following preliminaries.

Let n ∈N and �nF = (δnF
j,k ) be the forward difference operator of order n with entries

δ
nF
j,k =

⎧
⎨

⎩
(–1)k–j( n

k–j
)
, j ≤ k ≤ n + j,

0, otherwise.

We define the sequence space �p(�nF ) as the set {x = (xk) : �nF x ∈ �p} or

�p
(
�nF

)
=

{
x = (xk) :

∞∑

j=0

∣∣∣∣∣

n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣

p

< ∞
}

,

with seminorm, ‖ · ‖�p(�nF ), which is defined by

‖x‖�p(�nF ) =

( ∞∑

j=0

∣∣∣∣∣

n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣

p) 1
p

.

Note that this function will not be a norm, since if x = (1, 1, 1, . . .) then ‖x‖�p(�nF ) = 0
while x �= 0. The definition of the backward difference sequence space �p(�nB ) is similar
to �p(�nF ), except that ‖ · ‖�p(�nB ) is a norm.

For the special case n = 1, we use the notations �B and �F to indicate the backward and
forward difference matrices of order 1, respectively. These matrices are defined by

δB
j,k =

⎧
⎪⎪⎨

⎪⎪⎩

1, k = j,

–1, k = j – 1,

0, otherwise,

and δF
j,k =

⎧
⎪⎪⎨

⎪⎪⎩

1, k = j,

–1, k = j + 1,

0, otherwise,
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and their associated sequence spaces �p(�B) and �p(�F ) are

�p
(
�B)

=

{
x = (xn) :

∞∑

n=1

|xn – xn–1|p < ∞
}

,

and

�p
(
�F)

=

{
x = (xn) :

∞∑

n=1

|xn – xn+1|p < ∞
}

,

respectively. The domains c0(�F ), c(�F ), and �∞(�F ) of the forward difference matrix �F

in the spaces c0, c, and �∞ were introduced by Kizmaz [17]. Moreover, the domain bvp

of the backward difference matrix �B in the space �p has been recently investigated for
0 < p < 1 by Altay and Başar [1], and for 1 ≤ p ≤ ∞ by Başar and Altay [5].

Theorem 5.1 ([7, Theorem 1]) Let p ≥ 1, and let Hμ be a bounded Hausdorff matrix on
�p. Then,

∥∥Hμx
∥∥

�p
≥ L‖x‖�p (5.1)

for every decreasing sequence x of nonnegative terms, where

Lp =
∞∑

k=0

(∫ 1

0
(1 – θ )k dμ(θ )

)p

.

The constant in (5.1) is the best possible, and there is equality only when x = 0 or p = 1, or
when dμ(θ ) is the point mass at 1.

For example, by choosing dμ(θ ) = n(1 – θ )n–1 dθ , the lower bound of the Cesàro matrix
of order n is

L
(
Cnt) =

{ ∞∑

k=0

(
n

n + k

)p
}1/p

. (5.2)

In particular, for n = 1, the well-known Cesàro operator has the lower bound L(Ct) =
ζ (p)1/p.

Theorem 5.2 The Copson matrix of order n, Cn, is a bounded operator from �p(�nB ) into
�p(�nF ) and

L
(
Cn)

�p(�nB ),�p(�nF ) =

{ ∞∑

k=0

(
n

n + k

)p
}1/p

.

In particular, the Copson matrix is a bounded operator from �p(�B) into �p(�F ) and
L(C)�p(�B),�p(�F ) = ζ (p)1/p.
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Proof Let �nF Cn = Dn. It has proved by Theorem 4.1 in [24] that the matrix Dn = (dn
i,j) =

Ii,j/
(n+j

j
)

is a diagonal matrix, where I is the identity matrix. The facts that �nB is the trans-
pose of �nF and �nF Cn is a diagonal matrix result in the identity �nF Cn = Cnt�nB . Now,
by applying Lemma 3.1 and relation (5.2), we have

L
(
Cn)

�p(�nB ),�p(�nF ) = L
(
Cnt) =

{ ∞∑

k=0

(
n

n + k

)p
}1/p

,

which completes the proof. �

5.2 Lower bound of Copson operator on the domain of Hilbert matrix
Let n be a nonnegative integer and hil(n, p) be the sequence space associated with the
Hilbert matrix of order n, Hn, which is

hil(n, p) =

{
x = (xk) ∈ ω :

∞∑

j=0

∣∣∣∣∣

∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣

p

< ∞
}

,

and has the norm

‖x‖hil(n,p) =

( ∞∑

j=0

∣∣∣∣∣

∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣

p) 1
p

.

Note that, by letting n = 0 in the above definition, we obtain the domain of Hilbert matrix
hil(p).

Corollary 5.3 The Copson operator of order n, Cn, is a bounded operator from hil(n, p)
into hil(p) and

L
(
Cn)

hil(n,p),hil(p) = 1.

Proof According to Lemma 4.1, we have HCn = CnHn. Now, Lemma 3.1 and Theorem 4.2
complete the proof. �

5.3 Lower bound of Copson operator on the domain of the transposed Hausdorff
matrix

Let haut(p) be the domain of the transposed Hausdorff matrix in the space �p, that is,
{x ∈ �p : Hμtx ∈ �p}. Then

Corollary 5.4 The Copson operator of order n, Cn, is a bounded operator from
• �p into haut(p) and L(Cn)�p ,haut (p) = 1,
• haut(p) into �p and L(Cn)haut (p),�p = 1,
• haut(p) into itself and L(Cn)haut (p) = 1.

Proof According to Lemma 3.1, L(Cn)�p ,haut (p) = L(HμtCn). Now, since the product of any
two quasi-Hausdorff matrices is also a quasi-Hausdorff matrix, Theorem 4.2 completes
the proof.
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Let ν be the quotient measure in the factorization of the Copson matrix Cn = HνHμt ,
where Hν is a quasi Hausdorff matrix. Now, by applying Lemma 3.1 and Theorem 4.2,
L(Cn)haut (p),�p = L(Hν) = 1.

The fact that the Hausdorff matrices commute is also valid for their transposes HμtCn =
CnHμt . Hence the proof is obvious by applying Lemma 3.1 and Theorem 4.2. �
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16. Kara, E.E., Başarır, M.: On compact operators and some Euler B(m) difference sequence spaces. J. Math. Anal. Appl.

379(2), 499–511 (2011)
17. Kizmaz, H.: On certain sequence spaces I. Can. Math. Bull. 25(2), 169–176 (1981)
18. Lascarides, C.G., Maddox, I.J.: Matrix transformations between some classes of sequences. Proc. Camb. Philos. Soc. 68,

99–104 (1970)
19. Luxemburg, W.A.J., Zaanen, A.C.: Some examples of normed Köthe spaces. Math. Ann. 162, 337–350 (1966)
20. Mursaleen, M.: Applied Summability Methods. Springer Briefs. Springer, Berlin (2014)
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