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Abstract
In this paper, we study variational discretization method for parabolic optimization
problems. Firstly, we obtain some convergence and superconvergence analysis
results of the approximation scheme. Secondly, we derive a posteriori error estimates
of the approximation solutions. Finally, we present variational discretization
approximation algorithm and adaptive variational discretization approximation
algorithm for parabolic optimization problems and do some numerical experiments
to confirm our theoretical results.
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1 Introduction
Optimal control problems (OCPs) play an important role in scientific and engineering nu-
merical simulation, and nowadays are strongly utilized in biology, economics, and finance.
Finite element approximation is one of the widely used numerical methods in computing
OCPs. A systematic introduction of finite element method (FEM) for partial differential
equations or OPCs can be found in [1, 2, 8, 20, 30, 33].

There have been abundant researches on FEM approximation for elliptic optimal control
problems (EOCPs). The pioneering work of the late 1970s in the area of finite element ap-
proximation for EOCPs includes [10, 11], where a priori error estimates were established.
Then a lot of superconvergence and a posteriori error estimate results of FEM solving
different kinds of EOCPs were obtained. For instance, superconvergence of FEM for lin-
ear, bilinear, and semilinear EOCPs were derived in [27, 32], and [4], respectively, while
residual- and recovery-based a posteriori error estimates of FEM for distributed OCPs
were constructed in [22] and [18], respectively. Moreover, adaptive FEM for EOCPs were
presented in [3, 13, 17]. It is worth mentioning that some similar results of mixed FEM for
EOCPs can be found in [5, 7, 16].

In the last decade, numerical solution of parabolic optimal control problems (POCPs)
became a hot research topic. A priori error estimates of FEM, space-time FEM, and
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Petrov–Galerkin Crank–Nicolson approximation for POCPs were given in [12, 25], and
[26], respectively. In [24], the authors constructed an adaptive space-time FEM for POCPs.
There are also some results on residual-type a posteriori error estimates of FEM or mixed
FEM for POCPs which can be found in [6, 23, 31], where the authors do not give any
adaptive FEM approximation for POCPs.

Hinze presented a variational discretization (VD) concept for control constrained opti-
mization problems in [14]. It can not only save some computation cost but also improve
the error of the control variable. Recently, VD approximation of convection dominated
diffusion EOCP with control constraints and POCP with pointwise state constraints were
investigated in [15] and [9], respectively. We have investigated VD approximation for a
linear POCP in [28].

The purpose of this work is to investigate VD approximation for a POCP with control
constraints. We first analyze the convergence and superconvergence of the VD approx-
imation scheme and derive a posteriori error estimates, then construct an adaptive VD
approximation algorithm for the POCP. Finally, two numerical examples are provided to
verify theoretical results.

We are interested in the following POCP:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
u(x,t)∈K

1
2
∫ T

0 (‖y(x, t) – yd(x, t)‖2 + ν‖u(x, t)‖2) dt,

yt(x, t) – div(A(x)∇y(x, t)) = f (x, t) + u(x, t), x ∈ �, t ∈ J ,

y(x, t) = 0, x ∈ ∂�, t ∈ J ,

y(x, 0) = y0(x), x ∈ �,

(1)

where ν > 0 represents the weight of the cost of the control, � is a bounded domain
in R

2 with a Lipschitz boundary ∂�, 0 < T < +∞ and J = [0, T]. The coefficient A(x) =
(aij(x))2×2 ∈ (W 1,∞(�̄))2×2 is such that for any ξ ∈ R

2, (A(x)ξ ) · ξ ≥ c|ξ |2 with c > 0. We
assume that K is a nonempty closed convex set in L2(J ; L2(�)), defined by

K =
{

v(x, t) ∈ L∞(
J ; L2(�)

)
: a ≤ v(x, t) ≤ b, a.e. (x, t) ∈ � × J

}
,

where a and b are constants.
In this paper, we adopt the standard notation W m,q(�) for Sobolev spaces on � with

norm ‖ · ‖W m,q(�) and seminorm | · |W m,q(�). We denote W m,2(�) by Hm(�) and set
H1

0 (�) ≡ {v ∈ H1(�) : v|∂� = 0}. We denote by Ls(J ; W m,q(�)) the Banach space of Ls inte-
grable functions from J into W m,q(�) with norm ‖v‖Ls(J ;W m,q(�)) = (

∫ T
0 ‖v‖s

W m,q(�) dt) 1
s for

s ∈ [1,∞) and the standard modification for s = ∞. As in [21], we can define the space
Hl(J ; W m,q(�)). In addition, c or C denotes a generic positive constant independent of h
and k.

The outline of the paper is as follows. In Sect. 2, we give a VD approximation for the
model problem. In Sect. 3, we derive some convergence and superconvergence analysis
results for the control, state, and costate variables. In Sect. 4, we establish a posteriori error
estimates for the approximation scheme. We present a VD approximation algorithm and
adaptive VD approximation algorithm for the POCP and do some numerical experiments
to confirm our theoretical results in the last section.
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2 VD approximation of POCP
In this section, we present a VD approximation for the model problem (1). For ease of ex-
position, we denote Lp(J ; W m,q(�)) by Lp(W m,q). Let W = H1

0 (�) and U = L2(�). Moreover,
we denote ‖ · ‖Hm(�) and ‖ · ‖L2(�) by ‖ · ‖m and ‖ · ‖, respectively.

Let

a(v, w) =
∫

�

(A∇v) · ∇w, ∀v, w ∈ W ,

(f1, f2) =
∫

�

f1 · f2, ∀f1, f2 ∈ U .

It follows from the assumptions on A that

a(v, v) ≥ c‖v‖2
1,

∣
∣a(v, w)

∣
∣ ≤ C‖v‖1‖w‖1, ∀v, w ∈ W .

Thus a possible weak formula for the model problem (1) reads:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
u∈K

1
2
∫ T

0 (‖y – yd‖2 + ν‖u‖2) dt,

(yt , w) + a(y, w) = (f + u, w), ∀w ∈ W , t ∈ J ,

y(x, 0) = y0(x), x ∈ �.

(2)

It is well known (see, e.g., [20, 23]) that problem (2) has a unique solution (y, u), and the
pair (y, u) ∈ (H1(L2) ∩ L2(H1)) × K is the solution of (2) if and only if there is an adjoint
state p ∈ H1(L2) ∩ L2(H1) such that the triplet (y, p, u) satisfies the following optimality
conditions:

(yt , w) + a(y, w) = (f + u, w), ∀w ∈ W , t ∈ J , (3)

y(x, 0) = y0(x), x ∈ �, (4)

–(pt , q) + a(q, p) = (yd – y, q), ∀q ∈ W , t ∈ J , (5)

p(x, T) = 0, x ∈ �, (6)

(νu – p, v – u) ≥ 0, ∀v ∈ K , t ∈ J . (7)

We introduce the following pointwise projection operator:

�[a,b]
(
g(x, t)

)
= min

(

b, max

(

a,
1
ν

g(x, t)
))

, ∀(x, t) ∈ � × J .

Similar to [15], the variational inequality (7) can be rewritten as

u(x, t) = �[a,b]
(
p(x, t)

)
, ∀(x, t) ∈ � × J . (8)

Let T h be regular triangulations of � and �̄ =
⋃

τ∈T h τ̄ . Let h = maxτ∈T h{hτ }, where hτ

denotes the diameter of the element τ . Moreover, we set

W h =
{

vh ∈ C(�̄) : vh|τ ∈ P1,∀τ ∈ T h, vh|∂� = 0
}

,

where P1 is the space of polynomials up to order 1.
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We now consider the time discretization for problem (2). Let k > 0, N = T/k ∈ Z
+, tn =

nk, n = 0, 1, . . . , N . Set ϕn = ϕ(x, tn) and

dtϕ
n =

ϕn – ϕn–1

k
, n = 1, 2, . . . , N .

We define for 1 ≤ p < ∞ the discrete time-dependent norms

‖|ϕ‖|lp(J ;W m,q(�)) :=

(

k
N–l∑

n=1–l

∥
∥ϕn∥∥p

W m,q(�)

) 1
p

,

where l = 0 for the control u and the state y and l = 1 for the adjoint state p, with the stan-
dard modification for p = ∞. Just for simplicity, we denote ‖| · ‖|lp(J ;W m,q(�)) by ‖| · ‖|lp(W m,q)

and let

lp
D
(
J ; W m,q(�)

)
:=

{
ϕ : ‖|ϕ‖|lp(W m,q) < ∞}

, 1 ≤ p ≤ ∞.

Then a VD approximation of (2) is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
un

h∈K
1
2
∑N

n=1 k(‖yn
h – yn

d‖2 + ν‖un
h‖2),

(dtyn
h, wh) + a(yn

h, wh) = (f n + un
h, wh), ∀wh ∈ W h, n = 1, 2, . . . , N ,

y0
h(x) = Phy0(x), x ∈ �,

(9)

where Ph is an elliptic projection operator which will be specified later.
It follows (see, e.g., [15, 23]) that the control problem (9) has a unique solution (yn

h, un
h),

n = 1, 2, . . . , N , and (yn
h, un

h) ∈ W h ×K , n = 1, 2, . . . , N , is the solution of (9) if and only if there
is an adjoint state pn–1

h ∈ W h, n = 1, 2, . . . , N , such that the triplet (yn
h, pn–1

h , un
h) ∈ W h ×W h ×

K , n = 1, 2, . . . , N , satisfies the following optimality conditions:

(
dtyn

h, wh
)

+ a
(
yn

h, wh
)

=
(
f n + un

h, wh
)
, ∀wh ∈ W h, (10)

y0
h(x) = Phy0(x), x ∈ �, (11)

–
(
dtpn

h, qh
)

+ a
(
qh, pn–1

h
)

=
(
yn

d – yn
h, qh

)
, ∀qh ∈ W h, (12)

pN
h (x) = 0, x ∈ �, (13)

(
νun

h – pn–1
h , v – un

h
) ≥ 0, ∀v ∈ K . (14)

Similar to [15], the optimality condition (14) can be equivalently expressed as

un
h = �[a,b]

(
pn–1

h
)
, n = 1, 2, . . . , N . (15)

3 Convergence and superconvergence analysis
For the approximation scheme (10)–(14), some convergence and superconvergence re-
sults will be derived in this section. We define the following intermediate variables. Let
(yn

h(u), pn–1
h (u)) ∈ W h × W h, n = 1, 2, . . . , N , satisfy the following system:

(
dtyn

h(u), wh
)

+ a
(
yn

h(u), wh
)

=
(
f n + un, wh

)
, ∀wh ∈ W h, (16)
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y0
h(u)(x) = Phy0(x), x ∈ �, (17)

–
(
dtpn

h(u), qh
)

+ a
(
qh, pn–1

h (u)
)

=
(
yn

d – yn
h(u), qh

)
, ∀qh ∈ W h, (18)

pN
h (u)(x) = 0, x ∈ �, (19)

and introduce elliptic projection operator Ph : W → W h, which satisfies, for any φ ∈ W ,

a(φ – Phφ, wh) = 0, ∀wh ∈ W h. (20)

It has the following approximation properties (see, e.g., [4]):

‖φ – Phφ‖ ≤ Ch2‖φ‖2, ∀φ ∈ H2(�). (21)

Lemma 3.1 Let (y, p, u) and (yh(u), ph(u)) be the solutions of (3)–(7) and (16)–(18), respec-
tively. Suppose that y, p ∈ l2

D(H2) ∩ H1(H2) ∩ H2(L2). Then

∥
∥
∣
∣yh(u) – y

∥
∥
∣
∣
l2(L2) +

∥
∥
∣
∣ph(u) – p

∥
∥
∣
∣
l2(L2) ≤ C

(
h2 + k

)
. (22)

Proof From the definition of Ph, (3) and (16), for any wh ∈ W h, n = 1, 2, . . . , N , we have

(
dtyn

h(u) – dtPhyn, wh
)

+ a
(
yn

h(u) – Phyn, wh
)

= –
(
dtPhyn, wh

)
– a

(
yn, wh

)
+

(
f n + un, wh

)

= –
(
dtPhyn – dtyn, wh

)
–

(
dtyn – yn

t , wh
)
.

(23)

By selecting wh = yn
h(u) – Phyn, n = 1, 2, . . . , N , we obtain

(
dtyn

h(u) – dtyn, yn
h(u) – Phyn) + a

(
yn

h(u) – Phyn, yn
h(u) – Phyn)

= –
(
dtPhyn – dtyn, yn

h(u) – Phyn) –
(
dtyn – yn

t , yn
h(u) – Phyn).

(24)

Note that a(yn
h(u) – Phyn, yn

h(u) – Phyn) ≥ 0, and

(
dtyn

h(u) – dtPhyn, yn
h(u) – Phyn)

≥ 1
k
(∥
∥yn

h(u) – Phyn∥∥2 –
∥
∥yn

h(u) – Phyn∥∥
∥
∥yn–1

h (u) – Phyn–1∥∥
)
.

(25)

It follows from (24)–(25) and Hölder’s inequality that

∥
∥yn

h(u) – Phyn∥∥

≤ ∥
∥yn–1

h (u) – Phyn–1∥∥ +
∥
∥(Ph – I)

(
yn – yn–1)∥∥ +

∥
∥yn – yn–1 – kyn

t
∥
∥.

(26)
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Summing over n from 1 to N∗ (1 ≤ N∗ ≤ N ), we get

∥
∥yN∗

h (u) – PhyN∗∥∥ ≤
N∗
∑

n=1

∥
∥(Ph – I)

(
yn – yn–1)∥∥ +

N∗
∑

n=1

∥
∥yn – yn–1 – kyn

t
∥
∥

≤
N∗
∑

n=1

Ch2∥∥yn – yn–1∥∥
2 +

N∗
∑

n=1

∫ tn

tn–1

∥
∥(tn–1 – t)ytt

∥
∥dt

≤ Ch2
N∗
∑

n=1

∫ tn

tn–1

‖yt‖2 dt + k
N∗
∑

n=1

∫ tn

tn–1

‖ytt‖dt

≤ Ch2
∫ tN∗

0
‖yt‖2 dt + k

∫ tN∗

0
‖ytt‖dt

≤ C
(
h2‖yt‖L2(H2) + k‖ytt‖L2(L2)

)
.

(27)

Thus, we have

∥
∥
∣
∣yh(u) – Phy

∥
∥
∣
∣
l∞(L2) ≤ C

(
h2 + k

)
. (28)

From (21), we derive

‖|Phy – y‖|2l2(L2) =
N∑

n=1

k
∥
∥Phyn – yn∥∥2 ≤ Ch4

N∑

n=1

k
∥
∥yn∥∥2

2 = Ch4‖|y‖|2l2(H2). (29)

According to embedding theorem and (28)–(29), we have

∥
∥
∣
∣yh(u) – y

∥
∥
∣
∣
l2(L2) ≤ C

(
h2 + k

)
. (30)

Similarly, we can prove that

∥
∥
∣
∣ph(u) – p

∥
∥
∣
∣
l2(L2) ≤ C

(
h2 + k

)
. (31)

Then (22) follows from (30) and (31). �

For the control variable, we derive the following convergence result.

Theorem 3.1 Let (y, p, u) and (yh, ph, uh) be the solutions of (3)–(7) and (10)–(14), respec-
tively. Assume that all the conditions in Lemma 3.1 are satisfied. Then, we have

‖|u – uh‖|l2(L2) ≤ C
(
h2 + k

)
. (32)
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Proof From (7) and (14), we obtain

ν‖|u – uh‖|2l2(L2)

=
N∑

n=1

k
(
ν
(
un – un

h
)
, un – un

h
)

≤
N∑

n=1

k
(
νun

h – pn–1
h (u), un

h – un) +
N∑

n=1

k
(
pn – pn–1

h (u), un – un
h
)

≤
N∑

n=1

k
(
pn–1

h – pn–1
h (u), un

h – un) +
N∑

n=1

k
(
pn – pn–1

h (u), un – un
h
)
.

(33)

It follows from (10)–(12) and (16)–(18) that

N∑

n=1

k
(
pn–1

h – pn–1
h (u), un

h – un) = –
∥
∥
∣
∣yh – yh(u)

∥
∥
∣
∣2
l2(L2) ≤ 0. (34)

By using Hölder and Young inequalities, we get

N∑

n=1

k
(
pn – pn–1

h (u), un – un
h
)

=
N∑

n=1

k
(
pn–1 – pn–1

h (u), un – un
h
)

+
N∑

n=1

k
(
pn – pn–1, un – un

h
)

≤ C(δ)
N∑

n=1

k
∥
∥pn–1 – pn–1

h (u)
∥
∥2 + C(δ)

N∑

n=1

k
∥
∥pn – pn–1∥∥2 + δ

N∑

n=1

k
∥
∥un – un

h
∥
∥2

≤ C(δ)
(∥
∥
∣
∣p – ph(u)

∥
∥
∣
∣2
l2(L2) + (k)2‖pt‖2

L2(J ;L2(�))
)

+ δ‖|u – uh‖|2l2(L2).

(35)

From (22) and (33)–(35), we obtain (32). �

For the control, state and costate variables, we have the following results.

Theorem 3.2 Let (y, p, u) and (yh, ph, uh) be the solutions (3)–(7) and (10)–(14), respec-
tively. Assume that all the conditions in Theorem 3.1 are valid. Then

‖|Phy – yh‖|l2(H1) + ‖|Php – ph‖|l2(H1) ≤ C
(
h2 + k

)
. (36)

Proof From (3) and (10), for any wh ∈ W h, n = 1, 2, . . . , N , we obtain the following error
equation:

(
yn

t – dtyn
h, wh

)
+ a

(
yn – yn

h, wh
)

=
(
un – un

h, wh
)
. (37)

By choosing wh = Phyn – yn
h and using the definition of Ph, we get

(
dtPhyn – dtyn

h, Phyn – yn
h
)

+ a
(
Phyn – yn

h, Phyn – yn
h
)

=
(
dtPhyn – dtyn + dtyn – yn

t + un – un
h, Phyn – yn

h
)
.

(38)
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Note that

(
dtPhyn – dtyn

h, Phyn – yn
h
) ≥ 1

2k
(∥
∥Phyn – yn

h
∥
∥2 –

∥
∥Phyn–1 – yn–1

h
∥
∥2) (39)

and

(
dtPhyn – dtyn, Phyn – yn

h
) ≤ ∥

∥dtPhyn – dtyn∥∥
∥
∥Phyn – yn

h
∥
∥

≤ Ch2∥∥dtyn∥∥
2

∥
∥Phyn – yn

h
∥
∥

≤ Ch2k–1
∫ tn

tn–1

‖yt‖2 dt
∥
∥Phyn – yn

h
∥
∥

≤ Ch2k– 1
2 ‖yt‖L2(tn–1,tn ;H2(�))

∥
∥Phyn – yn

h
∥
∥.

(40)

Additionally,

(
dtyn – yn

t , Phyn – yn
h
)

= k–1(yn – yn–1 – kyn
t , Phyn – yn

h
)

≤ k–1∥∥yn – yn–1kyn
t
∥
∥
∥
∥Phyn – yn

h
∥
∥

= k–1
∥
∥
∥
∥

∫ tn

tn–1

(tn–1 – t)ytt dt
∥
∥
∥
∥

∥
∥Phyn – yn

h
∥
∥

≤ Ck
1
2 ‖ytt‖L2(tn–1,tn ;L2(�))

∥
∥Phyn – yn

h
∥
∥.

(41)

Multiplying both sides of (38) by 2k, summing over n from 1 to N , and by using Hölder
and Young inequalities, we have

∥
∥PhyN – yN

h
∥
∥2 + c

N∑

n=1

k
∥
∥Phyn – yn

h
∥
∥2

1

≤ C(δ)
(
h4‖yt‖2

L2(H2) + k2‖ytt‖2
L2(L2) + ‖|u – uh‖|2l2(L2)

)
+ δ

N∑

n=1

k
∥
∥Phyn – yn

h
∥
∥2.

(42)

From (32) and (42), we get

‖|Phy – yh‖|l2(H1) ≤ C
(
h2 + k

)
. (43)

Similarly, we can prove that

‖|Php – ph‖|l2(H1) ≤ C
(
h2 + k

)
. (44)

Then (36) follows from (43)–(44). �

Theorem 3.3 Assume that u ∈ l2(H1) and all the conditions in Theorem 3.2 are valid.
Then

‖|Phu – uh‖|l2(H1) ≤ C
(
h2 + k

)
. (45)
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Proof Notice that �[a,b] is Lipschitz continuous with constant 1. From (8) and (15), we
have

‖|Phu – uh‖|l2(H1) ≤ C
∥
∥
∣
∣�[a,b](Php – ph)

∥
∥
∣
∣
l2(H1)

≤ C‖|Php – ph‖|l2(H1).
(46)

From (36) and (46), we obtain (45). �

4 A posteriori error estimates
In this section, a posteriori error estimates of recovery type will be established by utilizing
the superconvergence results derived in Sect. 3. Similar to the Z–Z patch recovery in [34,
35], we introduce recovery operators Rh and Gh for the state and the adjoint state. Let Rhv
be a continuous piecewise linear function (without zero boundary constraint) and let the
values of Rhv on the nodes be defined by a least-squares argument on element patches
surrounding the nodes. The gradient recovery operator Ghv = (Rhvx1 , Rhvx2 ). The details
also can be found in [18].

Theorem 4.1 Let (y, p, u) and (yh, ph, uh) be the solutions of (3)–(7) and (10)–(14), respec-
tively. Suppose that all the conditions in Theorem 3.2 are valid and y, p ∈ L2

D(J ; H3(�)).
Then

‖|Ghyh – ∇y‖|l2(L2) + ‖|Ghph – ∇p‖|l2(L2) ≤ C
(
h2 + k

)
. (47)

Proof Let yI be the piecewise linear Lagrange interpolation of y. From Theorem 2.1.1 in
[19], we have

‖Ghy – yI‖1 ≤ Ch2‖y‖3. (48)

According to the standard interpolation error estimate technique (see, e.g., [8]), we have

‖GhyI – ∇y‖ ≤ Ch2|y|3. (49)

By using (47)–(48), we get

∥
∥Ghyn

h – ∇yn∥∥ =
∥
∥Ghyn

h – GhPhyn∥∥ +
∥
∥GhPhyn – Ghyn

I
∥
∥ +

∥
∥Ghyn

I – ∇yn∥∥

≤ C
∥
∥yn

h – Phyn∥∥
1 + C

∥
∥Phyn – yn

I
∥
∥

1 +
∥
∥Ghyn

I – ∇yn∥∥

≤ C
∥
∥yn

h – Phyn∥∥
1 + Ch2∥∥yn∥∥

3.

(50)

Therefore,

N∑

n=1

k
∥
∥Ghyn

h – ∇yn∥∥2 ≤ C
N∑

n=1

k
∥
∥yn

h – Phyn∥∥2
1 + Ch4

N∑

n=1

k
∥
∥yn∥∥2

3. (51)

From Theorem 3.2 and (51), we derive

‖|Ghyh – ∇y‖|l2(L2) ≤ C
(
h2 + k

)
. (52)
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Similarly, we can prove that

‖|Ghph – ∇p‖|l2(L2) ≤ C
(
h2 + k

)
. (53)

Then (47) follows from (52)–(53). �

By using the above superconvergence properties, it is easy to prove the following a pos-
teriori error estimate results.

Theorem 4.2 Assume that all the conditions in Theorem 4.1 are valid. Then

η1 := ‖|Ghyh – ∇yh‖|l2(L2) =
∥
∥
∣
∣∇(y – yh)

∥
∥
∣
∣
l2(L2) + O

(
h2 + k

)
, (54)

η2 := ‖|Ghph – ∇ph‖|l2(L2) =
∥
∥
∣
∣∇(p – ph)

∥
∥
∣
∣
l2(L2) + O

(
h2 + k

)
. (55)

5 Numerical experiments
We do some numerical experiments to demonstrate our theoretical results. For an ac-
ceptable error Tol, we present a VD approximation algorithm (see Algorithm 5.1) for the
constrained POCP (1). For ease of exposition, we have omitted the subscript h.

Similar to [18], by selecting the same meshes for the state and the adjoint state and using
η1 and η2 as mesh refinement indicators for the state and the adjoint state, for an acceptable
error Tol′, we construct adaptive VD approximation algorithm (see Algorithm 5.2).

The following numerical examples were solved with AFEPack which is freely available.
Just for simplicity, we let � = [0, 1] × [0, 1], T = 1, A(x) = E be the 2 × 2 identity matrix and
denote ‖| · ‖|l2(L2) and ‖| · ‖|l2(H1) by ‖| · ‖| and ‖| · ‖|1, respectively. The convergence order is

Algorithm 5.1 VD approximation algorithm
Step 1. Initialize u0.
Step 2. Solve the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

( yi
n–yi–1

n
k , w) + a(yi

n, w) = (f i + ui
n, w), yi

n, yi–1
n ∈ W h,∀w ∈ W h,

( pi–1
n –pi

n
k , q) + a(q, pi–1

n ) = (yi
d – yi

n, q), pi
n, pi–1

n ∈ W h,∀q ∈ W h,

ui
n+1 = �[a,b](pi–1

n ), i = 1, 2, . . . , N ;

Step 3. Calculate the iterative error, En+1 = ‖|un+1 – un‖|l2(L2);
Step 4. If En+1 > Tol, go to Step 1; else stop.

Algorithm 5.2 Adaptive VD approximation algorithm
Step 1. Solve the discretized optimization problem (9) with the Algorithm 5.1 on the cur-
rent meshes to obtain a numerical solution u′

n and calculate the error estimators η1 and
η2;
Step 2. Adjust the meshes by using the estimators η1 and η2, then update the numerical
solution u′

n and obtain u′
n+1 on new meshes;

Step 3. Calculate the iterative error, E′
n+1 = ‖|u′

n+1 – u′
n‖|l2(L2);

Step 4. If E′
n+1 > Tol′, go to Step 1; else stop.
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computed by the following formula: Rate = log(ei+1)–log(ei)
log(hi+1)–log(hi)

, where ei(ei+1) denotes the error
when the spatial partition size is hi(hi+1). We solve the following POCP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minu∈K
1
2
∫ T

0 (‖y(x, t) – yd(x, t)‖2 + ν‖u(x, t)‖2) dt,

yt(x, t) – div(A(x)∇y(x, t)) = f (x, t) + u(x, t), x ∈ �, t ∈ J ,

y(x, t) = 0, x ∈ ∂�, t ∈ J ,

y(x, 0) = y0(x), x ∈ �.

Moreover, we assume that

K =
{

v(x, t) ∈ L∞(
L2) : a ≤ v(x, t) ≤ b, (x, t) ∈ � × J

}
.

Example 1 The data are as follows:

ν = 1, a = –0.25, b = 0.25,

p(x, t) = sin(2πx1) sin(2πx2)(1 – t),

y(x, t) = sin(2πx1) sin(2πx2)t,

u(x, t) = max
(
–0.25, min

(
0.25, –p(x, t)

))
,

f (x, t) = yt(x, t) – div
(
A(x)∇y(x, t)

)
– u(x, t),

yd(x, t) = y(x, t) + pt(x, t) + div
(
A∗(x)∇p(x, t)

)
.

We use the Algorithm 5.1 to solve the first example. In Fig. 1, we plot the profile of the
numerical solution uh at t = 0.5 when h = 1

80 and k = 1
640 . In Table 1, the errors ‖|u – uh‖|,

‖|Phy – yh‖|1, and ‖|Php – ph‖|1 on a sequence of uniformly refined meshes are shown. It is
easy to see ‖|u – uh‖| = O(h2 + k), ‖|Phy – yh‖|1 = O(h2 + k), and ‖|Php – ph‖|1 = O(h2 + k),
which confirm our theoretical results.

Example 2 The data are as follows:

ν = 1, a = 0, b = 10,

p(x, t) =
(t – 1) sin(πx1) sin(πx2)

(x1 – 0.5)2 + (x2 – 0.5)2 + 0.05
,

Figure 1 The numerical solution uh at t = 0.5 when
h = 1

80 and k = 1
640
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Table 1 Numerical results, Example 1

h k ‖|u – uh‖| Rate ‖|Phy – yh‖|1 Rate ‖|Php – ph‖|1 Rate
1
10

1
10 4.59597e–02 – 7.21635e–03 – 9.51033e–03 –

1
20

1
40 1.23011e–02 1.90 1.70370e–03 2.08 2.24615e–03 2.08

1
40

1
160 3.11887e–03 1.97 4.22468e–04 2.01 5.55263e–04 2.01

1
80

1
640 7.81133e–04 1.99 1.05482e–04 2.00 1.38467e–04 2.00

Table 2 Numerical results on uniform meshes, Example 2

Uniform meshes 1 2 3 4
Nodes 121 441 1681 6561
‖|u – uh‖| 1.51170e–01 5.67167e–02 5.65961e–02 5.65652e–02
‖|∇y –∇yh‖| 5.22324e+00 2.69670e+00 1.35903e+00 6.80921e–01
‖|∇p –∇ph‖| 5.22335e+00 2.69667e+00 1.35902e+00 6.80944e–01
‖|Ghyh –∇yh‖| 5.50904e+00 2.78499e+00 1.37386e+00 6.82949e–01
‖|Ghph –∇ph‖| 5.51247e+00 2.78475e+00 1.37345e+00 6.82704e–01

Table 3 Numerical results on adaptive meshes, Example 2

Adaptive meshes 1 2 3 4
Nodes 139 445 716 739
‖|u – uh‖| 9.33794e–02 4.53875e–02 4.53241e–02 4.53216e–02
‖|∇y –∇yh‖| 4.29891e+00 2.19612e+00 1.45671e+00 1.42490e+00
‖|∇p –∇ph‖| 4.30707e+00 2.21794e+00 1.49066e+00 1.45962e+00
‖|Ghyh –∇yh‖| 4.78789e+00 2.29456e+00 1.46836e+00 1.43600e+00
‖|Ghph –∇ph‖| 4.71907e+00 2.26074e+00 1.44664e+00 1.41476e+00

y(x, t) =
t sin(πx1) sin(πx2)

(x1 – 0.5)2 + (x2 – 0.5)2 + 0.05
,

u(x, t) = min
(
10, max

(
0, –p(x, t)

))
,

f (x, t) = yt(x, t) – div
(
A(x)∇y(x, t)

)
– u(x, t),

yd(x, t) = y(x, t) + pt(x, t) + div
(
A∗(x)∇p(x, t)

)
.

We take a small time size k = 1
100 and solve the second example by using the Algo-

rithms 5.1 and 5.2, respectively. Numerical results based on a sequence of uniformly re-
fined meshes and adaptive meshes are listed in Tables 2 and 3, respectively. It is clear that
the adaptive meshes generated via the error estimators η1 and η2 are able to save substan-
tial computational work, in comparison with the uniform meshes.

6 Conclusions
Although there has been extensive research on FEMs for various POCPs, they mostly fo-
cused on convergence and superconvergence (see, e.g., [12, 23–26, 28, 29]), and the results
on convergence and superconvergence wereO(h+k) andO(h 3

2 +k), respectively. Recently,
VD were used to deal with different OCPs in [9, 14, 15, 28], while there was little work on
POCPs. Hence, our results on adaptive VD for POCPs are new.
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