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Abstract
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1 Introduction
During the last several years, a considerable amount of attention has been given to investi-
gate the boundedness for various kinds of integral operators on Triebel–Lizorkin spaces.
For examples, see [1, 4, 5] for singular integrals, [15, 17, 26, 27] for Marcinkiewicz in-
tegrals, [16, 27] for Littlewood–Paley functions, [14, 18, 20] for maximal functions, and
[21, 22] for maximal singular integrals. The main purpose of this paper is to prove the
boundedness and continuity of the maximal singular integral and maximal operators re-
lated to homogeneous mappings on Triebel–Lizorkin spaces when their kernels are given
by function � in the Hardy space H1(Sn–1). Let n, d ≥ 2 and m = (m1, . . . , md) ∈R

d . We say
that � : Rn →R

d is a (nonisotropic) homogeneous mapping of degree m if

�(ty) = δt
(
�(y)

)

holds for all t > 0 and y ∈ R
d . Here, {δt}t>0 is a family of dilations on R

d defined by

δt(x1, . . . , xd) =
(
tm1 x1, . . . , tmd xd

)
.

Before stating our main results, let us recall some pertinent notations, definitions, and
background. Let Sn–1 be the unit sphere in R

n equipped with the induced Lebesgue mea-
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sure dσ . Let � be integrable over Sn–1 and satisfy

∫

Sn–1
�(u) dσ (u) = 0. (1.1)

For a suitable mapping � : Rn →R
d , we define the singular integral operator T�,� by

T�,�f (x) := p.v.
∫

Rn
f
(
x – �(y)

)�(y/|y|)
|y|n dy, (1.2)

where f ∈ S(Rd) (the Schwartz class on R
d). When n = d and �(y) = y, the operator T�,�

reduces to the classical Calderón–Zygmund singular integral operator, which is denoted
by T�. In their fundamental work on singular integrals, Calderón and Zygmund [3] first
proved that T� is bounded on Lp(Rn) for 1 < p < ∞ if � ∈ L log L(Sn–1). The same con-
clusion was obtained independently by Coifman and Weiss [7] and Connett [8] under the
less restrictive condition that � ∈ H1(Sn–1). Here, H1(Sn–1) denotes the Hardy space on the
unit sphere and contains L log L(Sn–1) as a proper subspace. The above results were later
extended to singular Radon transforms by many authors (see [2, 6, 9, 10]). In particular,
Cheng [6] proved the following result.

Theorem A ([6]) Let � = (�1, . . . ,�d) be a homogeneous mapping of degree m = (m1, . . . ,
md) with each mi �= 0. Assume that � ∈ H1(Sn–1) satisfies (1.1) and �|Sn–1 is real-analytic.
Then, for 1 < p < ∞, there exists a positive constant Cp such that

‖T�,�f ‖Lp(Rd) ≤ Cp‖f ‖Lp(Rd).

In this paper, we study the maximal singular integrals and maximal operators related
to homogeneous mappings. Let �,� be given as in (1.2). The maximal singular integral
operator T∗

�,� and the maximal operator M�,� are defined by

T∗
�,�f (x) := sup

ε>0

∣
∣∣
∣

∫

|y|>ε

f
(
x – �(y)

)�(y/|y|)
|y|n dy

∣
∣∣
∣,

M�,�f (x) = sup
t>0

1
tn

∫

|y|<t

∣∣f
(
x – �(y)

)∣∣∣∣�
(
y/|y|)h

(|y|)∣∣dy.

For the sake of simplification, we denote T∗
�,� = T� and M�,� = M� when n = d and

�(y) = y. Particularly, when � = P is a real-valued polynomial mapping from R
n to R

d ,
we denote T∗

�,� = T∗
�,P and M�,� = M�,P . In 1997, Fan and Pan [10] proved that T∗

�,P is
bounded on Lp(Rd) for 1 < p < ∞, provided that � ∈ H1(Sn–1). It follows from a theorem
of Stein and Wainger that M�,P is bounded on Lp(Rd) for 1 < p ≤ ∞ if � ∈ L1(Sn–1). Other
relevant results on the Lp bounds for M�,P can be found in [2, 24].

Based on the above, a natural question is the following:

Question A Are the operators T∗
�,� and M�,� bounded on Lp(Rd) for all 1 < p < ∞ if �

and � are given as in Theorem A?

This question can be addressed by the following theorem.
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Theorem 1.1 Let � = (�1, . . . ,�d) be a homogeneous mapping of degree m = (m1, . . . , md)
with each mi �= 0 and �|Sn–1 real-analytic. Assume that � ∈ H1(Sn–1) satisfies (1.1). Then,
for 1 < p < ∞, there exists a positive constant Cp such that

∥
∥T∗

�,�f
∥
∥

Lp(Rd) ≤ Cp‖�‖H1(Sn–1)‖f ‖Lp(Rd),

‖M�,�f ‖Lp(Rd) ≤ Cp‖�‖H1(Sn–1)‖f ‖Lp(Rd).

Here, the above constant C > 0 is independent of �.

Remark 1.1 We point out the following remarks, which are useful in comprehending The-
orem 1.1.

(i) Theorem 1.1 is expectant. Actually, Theorem 1.1 can be proved by applying the ar-
guments similar to those used in deriving [6, Theorem 1] and [10, Lemma 6.3]. However,
our main arguments in proving Theorem 1.1 are different from those of [6, Theorem 1].

(ii) Theorem 1.1 is new. In a very recent paper [19], the authors have established the
Lp(1 < p < ∞) bounds for the singular integral operator and maximal singular integral
operator related to homogeneous mappings when their integral kernels are given by the
unit sphere kernel in H1(Sn–1) and the weak size radial kernel, which contradicts the main
result of [13].

On the other hand, the boundedness properties of maximal singular integral operator
and maximal operator in Triebel–Lizorkin spaces have also received some attention of
many authors. Let S ′(Rd) be the tempered distribution class on R

d . For α ∈ R and 0 <
p, q ≤ ∞(p �= ∞), the homogeneous Triebel–Lizorkin spaces Ḟp,q

α (Rd) are defined by

Ḟp,q
α

(
R

d) :=
{

f ∈ S ′(
R

d) : ‖f ‖Ḟp,q
α (Rd) =

∥∥
∥∥

(∑

i∈Z
2–iαq|�i ∗ f |q

)1/q∥∥
∥∥

Lp(Rd)
< ∞

}
, (1.3)

where �̂i(ξ ) = φ(2iξ ) for i ∈ Z and φ ∈ C∞
c (Rd) satisfies the conditions: 0 ≤ φ(x) ≤ 1;

supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2}; φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. The inhomogeneous version
of Triebel–Lizorkin spaces, which is denoted by Fp,q

α (Rd), is obtained by adding the term
‖�∗ f ‖Lp(Rd) to the right-hand side of (1.3) with

∑
i∈Z replaced by

∑
i≥1, where � ∈ S(Rd),

supp(�̂) ⊂ {ξ : |ξ | ≤ 2}, �̂(x) > c > 0 if |x| ≤ 5/3. It is well known that the following are valid
(see [11, 25] for more details):

Ḟp,2
0

(
R

d) = Lp(
R

d) for 1 < p < ∞;

Fp,q
α

(
R

d) ∼ Ḟp,q
α

(
R

d) ∩ Lp(
R

d) and

‖f ‖Fp,q
α (Rd) ∼ ‖f ‖Ḟp,q

α (Rd) + ‖f ‖Lp(Rd) for α > 0.

(1.4)

Recently, Liu et al. [21, 22] have established the bounds for T∗
�,P and M�,P on Triebel–

Lizorkin spaces when � ∈ L log L(Sn–1) or � ∈ Fβ (Sn–1) (the Grafakos–Stefanov function
class (see [12])). It should be pointed out that the following relationships are valid:

L(log L)α1
(
Sn–1)

� L(log L)α2
(
Sn–1) for 0 < α2 < α1;

L(log L)α
(
Sn–1)

� H1(Sn–1)
� L1(Sn–1) for α ≥ 1;
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L(log L)α
(
Sn–1)

� H1(Sn–1)
� L(log L)α

(
Sn–1) for 0 < α < 1;

⋂

β>1

Fβ

(
Sn–1)

� H1(Sn–1)
�

⋃

β>1

Fβ

(
Sn–1);

⋂

β>1

Fβ

(
Sn–1)

� L log L
(
Sn–1).

As far as I know the bounds for T∗
�,P and M�,P on the Triebel–Lizorkin spaces and

Besov spaces are unknown under the condition that � ∈ H1(Sn–1), even in the special case
n = d and P(y) = y.

A natural question, which arises from the above, is the following:

Question 1.1 Are the operators T∗
� and M� bounded on the Triebel–Lizorkin spaces if

� ∈ H1(Sn–1)?

Question 1.1 is the main motivation for this work. In this paper we give an affirmative
answer to the above question by treating more general operators. Our main result can be
stated as follows.

Theorem 1.2 Let � = (�1, . . . ,�d) be a homogeneous mapping of degree m = (m1, . . . , md)
with each mi ∈ N \ {0} and �|Sn–1 real-analytic. Assume that � ∈ H1(Sn–1) satisfies (1.1).
Then

(i) For any α ∈ (0, 1) and 1 < p, q < ∞, there exists a constant C > 0 such that

∥
∥T∗

�,�f
∥
∥

Ḟp,q
α (Rd) ≤ C‖�‖H1(Sn–1)‖f ‖Ḟp,q

α (Rd),

where C > 0 is independent of �.
(ii) T∗

�,� is continuous from Fp,q
α (Rd) to Ḟp,q

α (Rd) for all α ∈ (0, 1) and 1 < p, q < ∞.
The same conclusions hold for M�,�.

The rest of this section is to present the bounds and continuity for T∗
�,� and M�,� on

Besov spaces. For α ∈R and 0 < p, q ≤ ∞(p �= ∞), the homogeneous Besov spaces Ḃp,q
α (Rd)

are defined by

Ḃp,q
α

(
R

d) :=
{

f ∈ S ′(
R

d) : ‖f ‖Ḃp,q
α (Rd) =

(∑

i∈Z
2–iαq‖�i ∗ f ‖q

Lp(Rd)

)1/q

< ∞
}

, (1.5)

where �̂i is given as in (1.3). The inhomogeneous version of Besov spaces Bp,q
α (Rd) is ob-

tained by adding the term ‖� ∗ f ‖Lp(Rd) to the right-hand side of (1.5) with
∑

i∈Z replaced
by

∑
i≥1, where � is given as in the definition of Fp,q

α (Rd). The following property is well
known (see [11, 25] for more details):

Bp,q
α

(
R

d) ∼ Ḃp,q
α

(
R

d) ∩ Lp(
R

d) and

‖f ‖Bp,q
α (Rd) ∼ ‖f ‖Ḃp,q

α (Rd) + ‖f ‖Lp(Rd) for α > 0.
(1.6)

Recently, Liu and Wu [20] established a criterion on the boundedness and continuity of
a class of operators on Besov spaces, which is listed as follows.
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Proposition 1.1 ([20]) Let T be a sublinear operator and be bounded on Lp(Rd) for some
p ∈ (1,∞). Assume that

∣
∣
ζ (Tf )(x)

∣
∣ ≤ ∣

∣T(
ζ f )(x)
∣
∣ (1.7)

for any x, ζ ∈ R
d , where 
ζ f (x) = f (x + ζ ) – f (x) for all x, ζ ∈ R

d . Then T is bounded on
Ḃp,q

α (Rd) for any α ∈ (0, 1) and q ∈ (1,∞). Specially, if T satisfies the following:

|Tf – Tg| ≤ ∣
∣T(f – g)

∣
∣ (1.8)

for arbitrary function f , g defined on R
d , then T is continuous from Bp,q

α (Rd) to Ḃp,q
α (Rd) for

any α ∈ (0, 1) and q ∈ (1,∞).

It is easy to check that both the operators T∗
�,� and M�,� satisfy conditions (1.7) and

(1.8). This together with Theorem 1.1 and Proposition 1.1 implies the following theorem.

Theorem 1.3 Let �,� be given as in Theorem 1.1. Then:
(i) For any α ∈ (0, 1) and 1 < p, q < ∞, there exists a constant C > 0 such that

∥
∥T∗

�,�f
∥
∥

Ḃp,q
α (Rd) ≤ C‖�‖H1(Sn–1)‖f ‖Ḃp,q

α (Rd),

where C > 0 is independent of �.
(ii) T∗

�,� is continuous from Bp,q
α (Rd) to Ḃp,q

α (Rd) for all α ∈ (0, 1) and 1 < p, q < ∞.
The same conclusions hold for M�,�.

By (1.4), (1.6), and Theorems 1.1–1.3, we can get immediately the following result.

Theorem 1.4 Let �,� be given as in Theorem 1.2. Then both the operators T∗
�,� and M�,�

are bounded and continuous on Fp,q
α (Rd) and Bp,q

α (Rd) for α ∈ (0, 1) and 1 < p, q < ∞.

Remark 1.2 Theorems 1.2–1.4 are new, even in the special case n = d and �(y) = y.

The paper is organized as follows. Sect. 2 contains the atomic decomposition of Hardy
space and some estimates of oscillatory integrals, which play key roles in the estimates of
Fourier transforms on some measures. In Sect. 3, we prove Theorem 1.1 after presenting
a general criterion on the Lp bounds of the convolution operators (see Lemma 3.1). The
proof of Theorem 1.2 is given in Sect. 4. It should be pointed out that the proof of the
boundedness (resp., continuity) part in Theorem 1.2 is greatly motivated by the idea in
[21] (resp., [22]).

Throughout the paper, the letter C or c, sometimes with certain parameters, stands for
positive constants not necessarily the same one at each occurrence, but are independent
of the essential variables. For notational convenience, we set exp(it) = eit for any t ∈R.

2 Preliminary definitions and lemmas
We start with the definition of Hardy space on Sn–1 and its atomic decomposition. Recall
that the Poisson kernel on Sn–1 is defined by Prw(θ ) = 1–r2

|rw–θ |n for 0 ≤ r < 1 and θ , w ∈ Sn–1.
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The Hardy space H1(Sn–1) is the set of all L1(Sn–1) functions which satisfy

‖�‖H1(Sn–1) =
∫

Sn–1
sup

0≤r<1

∣∣
∣∣

∫

Sn–1
�(θ )Prw(θ ) dσ (θ )

∣∣
∣∣dσ (w) < ∞.

Definition 2.1 (H1(Sn–1) atoms) A function b(·) on Sn–1 is a regular atom if there exist
ε ∈ Sn–1 and � ∈ (0, 2] such that

(i) supp(b) ⊂ Sn–1 ∩ B(ε,�), where B(ε,�) = {y ∈R
n : |y – ε| < �};

(ii) ‖b‖L2(Sn–1) ≤ �(1–n)/2;
(iii)

∫
Sn–1 b(y) dσ (y) = 0.

The following atomic decomposition of Hardy space can be obtained by the idea in [7, 8].

Lemma 2.1 ([8]) If � ∈ H1(Sn–1) satisfies the cancelation condition (1.1), then there exist
a sequence of complex numbers {cj} and a sequence of (1,∞) atoms {�j} such that � =
∑

j cj�j and ‖�‖H1(Sn–1) ≈ ∑
j |cj|.

In our proofs of the main results we shall encounter oscillatory integrals with generalized
polynomials as their phase functions. Thus the following lemma of van der Corput type is
needed.

Lemma 2.2 ([6]) Let l ∈N\{0}, μ1, . . . ,μl ∈R, and d1, . . . , dl be distinct nonzero real num-
bers. Let ψ ∈ C1([1/2, 1]). Then

∣∣
∣∣

∫ τ

δ

exp
(
i
(
μ1td1 + · · · + μltdl

))
ψ(t) dt

∣∣
∣∣ ≤ C|μ1|–1/l

(∣
∣ψ(τ )

∣
∣ +

∫ τ

δ

∣
∣ψ ′(t)

∣
∣dt

)

holds for 1/2 ≤ δ < τ ≤ 1. Here, C > 0 is independent of {μj}l
j=1.

Applying Lemma 2.2 and the arguments similar to those used in deriving [6, Lemma 2.5],
we can get the following lemma.

Lemma 2.3 Let l ∈N \ {0}, s ∈N \ {0}, and h1, . . . , hl be distinct nonzero real numbers and

Q(t, u) = th1
∑

|α|≤s

aαuα +
l∑

j=2

thj wj(u),

where t ∈ R, u = (u1, . . . , un–1) ∈R
n–1, α ∈N

n–1, aα ∈R, and wj(·) are real-valued. Let r > 0
and b(·) be a measurable function on [–r, r]n–1 that satisfies ‖b‖L2([–r,r]n–1) ≤ r–(n–1)/2. Then
there exists a positive constant C independent of {aα}, {wj(·)}, r such that

∫ 1

1/2

∣∣
∣∣

∫

[–r,r]n–1
exp

(
iQ(t, u)

)
b(u) du

∣∣
∣∣dt ≤ C

(
rs

∑

|α|=s

|aα|
)–γ

, (2.1)

where γ = 1
2 min{1/h1, 1/l, 1/(s + 1)}.

Proof Without loss of generality, we may assume that |a(s,0,...,0)| ≈ ∑
|α|=s |aα|. Let η =

(u2, . . . , un–1) and R(u) =
∑

|α|≤s aαuα . By a change of variable and Hölder’s inequality, we
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have

∫ 1

1/2

∣∣∣
∣

∫

[–r,r]n–1
exp

(
iQ(t, u)

)
b(u) du

∣∣∣
∣dt

= rn–1
∫ 1

1/2

∣∣
∣∣

∫

[–1,1]n–1
exp

(
iQ(t, ru)

)
b(ru) du

∣∣
∣∣dt

≤ rn–1
∫

[–1,1]n–2

(∫ 1

1/2

∣∣
∣∣

∫ 1

–1
exp

(
iQ(t, ru1, rη)

)
b(ru1, rη) du1

∣∣
∣∣

2

dt
)1/2

dη

≤ rn–1
∫

[–1,1]n–2

(∫ 1

–1

∫ 1

–1

∣
∣∣∣

∫ 1

1/2
exp

(
i
(
Q(t, ru1, rη) – Q(t, rv1, rη)

))
dt

∣
∣∣∣

× ∣∣b(ru1, rη)b(rv1, rη)
∣∣du1 dv1

)1/2

dη

≤ rn–1
∫

[–1,1]n–2

(∫ 1

–1

∫ 1

–1

∣∣
∣∣

∫ 1

1/2
exp

(
i
(
Q(t, ru1, rη) – Q(t, rv1, rη)

))
dt

∣∣
∣∣

2

du1 dv1

)1/4

×
(∫ 1

–1

∫ 1

–1

∣
∣b(ru1, rη)b(rv1, rη)

∣
∣2 du1 dv1

)1/4

dη. (2.2)

Applying Lemma 2.2, we obtain

∣∣
∣∣

∫ 1

1/2
exp

(
i
(
Q(t, ru1, rη) – Q(t, rv1, rη)

))
dt

∣∣
∣∣ ≤ C

∣
∣R(ru1, rη) – R(rv1, rη)

∣
∣–2γ , (2.3)

where γ = 1
2 min{1/h1, 1/l, 1/(s + 1)}. Note that

R(ru1, rη) = a(s,0,...,0)rsus
1 + lower powers in u1.

Then, by applying an inequality proved by Ricci and Stein (see [23, p. 182]), we get from
(2.2) and (2.3) that

∫ 1

–1

∣∣
∣∣

∫ 1

1/2
exp

(
i
(
Q(t, ru1, rη) – Q(t, rv1, rη)

))
dt

∣∣
∣∣

2

du1

≤
∫ 1

–1

∣
∣R(ru1, rη) – R(rv1, rη)

∣
∣–4γ du1 ≤ C

(
rs

∑

|α|=s

|aα|
)–4γ

, (2.4)

where C > 0 is independent of v1,η, r. On the other hand, by Hölder’s inequality and a
change of variable, we have

∫

[–1,1]n–2

(∫ 1

–1

∫ 1

–1

∣
∣b(ru1, rη)b(rv1, rη)

∣
∣2 du1 dv1

)1/4

dη

≤
∫

[–1,1]n–2

(∫ 1

–1

∣
∣b(ru1, rη)

∣
∣2 du1

)1/2

dη

≤ C
(∫

[–1,1]n–1

∣
∣b(ru)

∣
∣2 du

)1/2

≤ Cr–(n–1)/2‖b‖L2([–r,r]n–1) ≤ Cr–(n–1), (2.5)

where C > 0 is independent of r. (2.5) together with (2.2) and (2.4) yields (2.1). �
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Lemma 2.4 ([6]) For j ∈ {1, 2}, let Uj be a domain in R
nj and Kj be a compact subset of Uj.

Let h(·, ·) be a real-analytic function on U1 × U2 such that h(·, z) is a nonzero function for
every z ∈ U2. Then there exists a positive number δ = δ(h, K1, K2) such that

sup
z∈K2

∫

K1

∣
∣h(w, z)

∣
∣–δ dw < ∞.

3 Proof of Theorem 1.1
In order to prove Theorem 1.1, we need the following lemma, which is the main tool of
proving Theorem 1.1.

Lemma 3.1 ([19]) Let A > 0, � ∈ N \ {0} and {σk,s : 0 ≤ s ≤ � and k ∈ Z} be a family of
uniformly bounded Borel measures on R

n with σk,0(ξ ) = 0 for every k ∈ Z and ξ ∈ R
n. For

1 ≤ s ≤ �, let vs,ηs > 1, δs,βs > 0, {ak,s} be a sequence of real positive numbers, �s ∈ N \ {0}
and Ls : Rn →R

�s be a linear transformation. Suppose that
(i) max{|σ̂k,s(ξ )|, | ̂|σk,s|(ξ )|} ≤ CA min{1, |avs

k,sLs(ξ )|–δs/vs};
(ii) max{|σ̂k,s(ξ ) – σ̂k,s–1(ξ )|, | ̂|σk,s|(ξ ) – |̂σk,s–1|(ξ )|} ≤ CA|avs

k,sLs(ξ )|βs/vs ;
(iii) for every q > 1, there exists Cq > 0 independent of {Ls}�s=1 such that

∥∥
∥sup

k∈Z

∣
∣|σk,0| ∗ f

∣
∣
∥∥
∥

Lq(Rn)
≤ CqA‖f ‖Lq(Rn);

(iv) for any 1 ≤ s ≤ �, {ak,s} satisfies one of the following conditions:

(a) inf
k∈Z

ak+1,s

ak,s
≥ ηs, (b) inf

k∈Z
ak,s

ak+1,s
≥ ηs.

Then, for any 1 < p < ∞, there exists Cp > 0 such that

max

{∥
∥∥sup

k∈Z

∣
∣|σk,�| ∗ f

∣
∣
∥
∥∥

Lp(Rn)
,

∥∥
∥∥
∥

sup
k∈Z

∣∣
∣∣
∣

∞∑

j=k

σj,� ∗ f

∣∣
∣∣
∣

∥∥
∥∥
∥

Lp(Rn)

}

≤ CpA‖f ‖Lp(Rn).

Here, the constant Cp is independent of {Ls}�λ=1 and {vs}�s=1, but depends on �, p, {δs}�s=1, {βs}�s=1,
and {ηs}�s=1.

We now proceed with the proof of Theorem 1.1. For notational convenience, we denote
byVn–1 the set of polynomials in n–1 variables with real coefficients and set [x] := max{k ∈
Z : k ≤ x} for any x ∈ R. For s ∈ N, let Vn–1,s denote the subset of Vn–1 which contains
homogeneous polynomials of degree s.

Proof of Theorem 1.1 By Lemma 2.1 and Minkowski’s inequality, it suffices to show that

max
{∥∥T∗

�,�f
∥∥

Lp(Rd),‖M�,�‖Lp(Rd)
} ≤ Cp‖f ‖Lp(Rd), (3.1)

where � is an H1 atom on Sn–1 satisfying conditions (i)–(iii) of Definition 2.1.
In what follows, we assume that � is an H1 atom on Sn–1 satisfying conditions (i)–(iii)

of Definition 2.1 with � ∈ (0, 2]. Without loss of generality, we may assume the following:
(i) λ is the number of distinct mj;
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(ii) � = (�1, . . . ,�d) = (�1, . . . ,�λ), where �s = (�s,1, . . . ,�s,as ) with �s,j(ty) = tmrs �s,j(y)
for any 1 ≤ s ≤ λ and 1 ≤ j ≤ as;

(iii) {�s,1, . . . ,�s,os} forms a basis for span{�s,1, . . . ,�s,as} for any 1 ≤ s ≤ λ.
From assumption (ii) we see that

∑λ
s=1 as = d and {r1, . . . , rλ} ⊂ {1, . . . , d}. We get from

assumption (iii) that, for any 1 ≤ s ≤ λ and 1 ≤ j ≤ as, there exists a sequence of numbers
{bs,j,k}os

k=1 such that

�s,j(y) = bs,j,1�s,1(y) + · · · + bs,j,os�s,os (y).

Let ξ = (ξ1, . . . , ξd) = (ξ 1, . . . , ξλ) with ξ s = (ξs,1, . . . , ξs,as ) for 1 ≤ s ≤ λ. For any 1 ≤ s ≤ λ, let
�̃s = (�s,1, . . . ,�s,os ) and ξ̃ s = (ξs,1, . . . , ξs,os ). We define two sequences of linear transforma-
tions {Hs,i}as

i=1 : Ros →R and {Rs,j}os
j=1 : Ras →R as follows:

Hs,i
(
ξ̃ s) = bs,i,1ξs,1 + · · · + bs,i,osξs,os , 1 ≤ i ≤ as;

Rs,j
(
ξ s) = bs,1,jξs,1 + · · · + bs,as ,jξs,as , 1 ≤ j ≤ os.

Define two sequences of linear transformations {Hs}λs=1 and {Rs}λs=1 by

Hs
(
ξ̃ s) =

(
Hs,1

(
ξ̃ s), . . . , Hs,as

(
ξ̃ s)), Rs

(
ξ s) =

(
Rs,1

(
ξ s), . . . , Rs,os

(
ξ s)).

It is not difficult to see that

ξ s · �s = ξ s · Hs
(
�̃s) = Rs

(
ξ s) · �̃s, 1 ≤ s ≤ λ. (3.2)

For any 1 ≤ s ≤ λ and z ∈ Sos–1, we have that z · �̃i(·) is a nonzero real-analytic function
since {�s,1, . . . ,�s,os} is linearly independent. Invoking Lemma 2.4, there exists δs > 0 such
that

sup
z∈Sos–1

∫

Sn–1

∣∣z · �̃s(y)
∣∣–δs dσ (y) < ∞. (3.3)

Let εs = min{1/s, δs/2}. It follows from [9, (5.30)], for any 1 ≤ s ≤ λ, that there exist an
orthogonal n × n matrix U such that εU = e = (0, . . . , 0, 1) ∈ Sn–1 and a polynomial Ps,j ∈
Vn–1 such that deg(Ps,j) ≤ [ n–1

εs
] and

∣∣�s,j
(
yU–1) – Ps,j(ỹ)

∣∣ ≤ C�(n–1)/εs (3.4)

for every y ∈ B(e,�) ∩ Sn–1 and 1 ≤ j ≤ as, where ỹ = (y1/|y|, . . . , yn–1/|y|). For any 1 ≤ s ≤ λ,
let Ps = (Ps,1, . . . , Ps,as ) and deg(Ps) = max1≤j≤as deg(Ps,j). Then there are integers 0 ≤ �s,1 <
· · · < �s,Ms ≤ deg(Ps) and Qs,j,�s,l ∈ Vn–1,�s,l for 1 ≤ j ≤ as and 1 ≤ l ≤ Ms such that

Ps =
Ms∑

l=1

Qs,�s,l ,
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where Qs,�s,l = (Qs,1,�s,l , . . . , Qs,as ,�s,l ) and Qs,�s,l �= (0, . . . , 0) for any 1 ≤ l ≤ Ms. For any 1 ≤
l ≤ Ms, let Q̃s,�s,l = (Qs,1,�s,l , . . . , Qs,os ,�s,l ) and

P̃s =
Ms∑

l=1

Q̃s,�s,l .

It follows from (3.4) that

∣
∣�̃s(y) – P̃s(ỹU)

∣
∣ ≤ C�(n–1)/εs (3.5)

for every y ∈ B(ε,�) ∩ Sn–1 and 1 ≤ s ≤ λ. For 1 ≤ s ≤ λ, 1 ≤ l ≤ Ms, and 1 ≤ j ≤ as, we set

Qs,j,�s,l (y) =
∑

|β|=�s,l

bs,j,l,βyβ . (3.6)

Let � (u) =
∑u

s=1(Ms + 1) for 1 ≤ u ≤ λ, � (0) = 0, and define the mappings �0, . . . ,�� (λ)

by

�0(y) = (0, . . . , 0), �� (λ)(y) = �(y) (3.7)

and

�� (u)+θ (y)

=

(

�1(y), . . . ,�u(y), |y|mru+1 Hu+1

(
θ∑

l=1

Q̃u+1,�u+1,l

(|y|–1ỹU
)
)

, 0, . . . , 0

)

(3.8)

for 0 ≤ u ≤ λ – 1, 0 ≤ θ < � (u + 1) – � (u). In particular,

�� (u)–1(y) =
(
�1(y), . . . ,�u–1(y), |y|mru Hu

(
P̃u

(|y|–1ỹU
))

, 0, . . . , 0
)
, 1 ≤ u ≤ λ. (3.9)

For 0 ≤ s ≤ � (λ), define two families of measures {σk,s} and {|σk,s|} by

∫

Rd
f (x) dσk,s(x) =

∫

2k–1<|y|≤2k
f
(
�s(y)

)�(y/|y|)
|y|n dy.

The measure |σk,s| is defined in the same way as σk,s, but with � replaced by |�|. By (1.1)
and (3.7) we have

σk,0(ξ ) = 0 for k ∈ Z. (3.10)

It is easy to check that

max
{∣∣σ̂k,s(ξ )

∣
∣,

∣
∣ ̂|σk,s|(ξ )

∣
∣} ≤ C‖�‖L1(Sn–1). (3.11)

For any 1 ≤ s ≤ � (λ), by a change of variable, we have

σ̂k,s(ξ ) =
∫ 2k

2k–1

∫

Sn–1
�

(
y′) exp

(
–2π iξ · �s

(
ty′))dσ

(
y′)dt

t



Zhang and Liu Journal of Inequalities and Applications        (2020) 2020:237 Page 11 of 16

=
∫ 1

1/2

∫

Sn–1
�

(
y′) exp

(
–2π iξ · �s

(
2kty′))dσ

(
y′)dt

t
. (3.12)

Note that 2εu ≤ δu. By (3.3), (3.12), Hölder’s inequality and invoking Lemma 2.2, one finds
that

∣
∣σ̂k,� (u)(ξ )

∣
∣ ≤

∫

Sn–1

∣
∣�

(
y′)∣∣

∣∣
∣∣

∫ 1

1/2
exp

(
–2π iξ · �� (u)

(
2kty′))dt

t

∣∣
∣∣dσ

(
y′)

≤
∫

Sn–1

∣
∣�

(
y′)∣∣

∣
∣∣∣
∣

∫ 1

1/2
exp

(

–2π i
u∑

j=1

Rj
(
ξ j) · �̃j(y′)(2kt

)mrj

)
dt
t

∣
∣∣∣
∣
dσ

(
y′)

≤ C
∣
∣2kmru Ru

(
ξu)∣∣–εu

∫

Sn–1

∣
∣�

(
y′)∣∣∣∣(Ru

(
ξu))′ · �̃u(y′)∣∣–εu dσ

(
y′)

≤ C
∣∣2kmru Ru

(
ξu)∣∣–εu‖�‖L2(Sn–1)

(∫

Sn–1

∣∣(Ru
(
ξu))′ · �̃u(y′)∣∣–2εu dσ

(
y′)

)1/2

≤ C
∣∣2kmru Ru

(
ξu)∣∣–εu‖�‖L2(Sn–1)

(∫

Sn–1

∣∣(Ru
(
ξu))′ · �̃u(y′)∣∣–δu dσ

(
y′)

)1/2

≤ C
∣∣2kmru �–(n–1)/(2εu)Ru

(
ξu)∣∣–εu (3.13)

for any 1 ≤ u ≤ λ, where (Ru(ξu))′ = Ru(ξu)
|Ru(ξu)| . Similarly, we can get

∣
∣ ̂|σk,� (u)|(ξ )

∣
∣ ≤ C

∣
∣2kmru �–(n–1)/(2εu)Ru

(
ξu)∣∣–εu (3.14)

for 1 ≤ u ≤ λ.
For 0 ≤ u ≤ λ – 1 and 0 < θ < � (u + 1) – � (u), we get from (3.8) and (3.12) that

∣
∣ ̂σk,� (u)+θ (ξ )

∣
∣ =

∣∣
∣∣
∣

∫ 1

1/2

∫

Sn–1
�

(
y′) exp(–2π i

( u∑

�=1

ξ� · ��
(
yU–1)(2kt

)mr�

+ ξu+1 · Hu+1

(
θ∑

l=1

Q̃u+1,�u+1,l (ỹ)
(
2kt

)mru+1

))
dt
t

∣
∣∣
∣∣
.

From (3.2) and (3.6) we have

ξu+1 · Hu+1

(
θ∑

l=1

Q̃u+1,�u+1,l (ỹ)

)

= Ru+1
(
ξu+1) ·

(
θ∑

l=1

Q̃u+1,�u+1,l (ỹ)

)

=
ou+1∑

j=1

Ru+1,j
(
ξu+1) ·

(
θ∑

l=1

Qu+1,j,�u+1,l (ỹ)

)

=
θ∑

l=1

∑

|β|=�u+1,l

(ou+1∑

j=1

bu+1,j,l,βRu+1,j
(
ξu+1)

)

(ỹ)β .

Invoking Lemma 2.3, there exists a positive constant γu,θ such that, for 0 ≤ u ≤ λ – 1 and
0 < θ < � (u + 1) – � (u),

∣∣ ̂σk,� (u)+θ (ξ )
∣∣ ≤ C

∣∣2kmru+1 ��u+1,θ L(�u+1,θ )(ξ )
∣∣–γu,θ , (3.15)
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where

L(�u+1,θ )(ξ ) =

(ou+1∑

j=1

bu+1,j,θ ,βRu+1,j
(
ξu+1)

)

|β|=�u+1,θ

.

Similarly, we get that, for 0 ≤ u ≤ λ – 1 and 0 < θ < � (u + 1) – � (u),

∣∣ ̂|σk,� (u)+θ |(ξ )
∣∣ ≤ C

∣∣2kmru+1 ��u+1,θ L(�u+1,θ )(ξ )
∣∣–γu,θ . (3.16)

On the other hand, by a change of variable, we get from (3.2), (3.5), and (3.8) that

max
{∣∣σ̂k,� (u)(ξ ) – ̂σk,� (u)–1(ξ )

∣
∣,

∣
∣ ̂|σk,� (u)|(ξ ) – ̂|σk,� (u)–1|(ξ )

∣
∣}

=
∫

2k–1<|y|≤2k

∣
∣exp

(
–2π iξ · �� (u)(y)

)
– exp

(
–2π iξ · �� (u)–1(y)

)∣∣ |�(y/|y|)|
|y|n dy

≤ C2kmru

∫

Sn–1

∣
∣�(y)

∣
∣
∣
∣ξu · �u(y) – ξu · Hu

(
Pu(ỹU)

)∣∣dσ (y)

≤ C2kmru

∫

Sn–1

∣
∣�(y)

∣
∣
∣
∣Ru

(
ξu) · (�̃u(y) – P̃u(ỹU)

)∣∣dσ (y)

≤ C‖�‖L1(Sn–1)2kmru
∣∣�(n–1)/εu Ru

(
ξu)∣∣ (3.17)

for 1 ≤ u ≤ λ. For 1 ≤ u ≤ λ – 1 and 1 ≤ θ < � (u) – � (u – 1), we have

max
{∣∣ ̂σk,� (u)+θ (ξ ) – ̂σk,� (u)+θ–1(ξ )

∣
∣,

∣
∣ ̂|σk,� (u)+θ |(ξ ) – ̂|σk,� (u)+θ–1|(ξ )

∣
∣}

=
∫

2k–1<|y|≤2k

∣∣exp
(
–2π iξ · �� (u)+θ (y)

)
– exp

(
–2π iξ · �� (u)+θ–1(y)

)∣∣ |�(y/|y|)|
|y|n dy

≤ C
∫

2k–1<|y|≤2k

∣∣2kmru+1 ξu+1 · Hu+1
(
Q̃u+1,�u+1,θ

(|y|–1ỹU
))∣∣ |�(y/|y|)|

|y|n dy

≤ C‖�‖L1(Sn–1)2kmru+1
∣∣��u+1,θ L(�u+1,θ )(ξ )

∣∣. (3.18)

Define the sequence of linear transformations {Ls}� (λ)
s=1 by

Ls(ξ ) :=

⎧
⎨

⎩
��u+1,θ L(�u+1,θ )(ξ ), s = � (u) + θ , 0 ≤ u ≤ λ – 1, 0 < θ < � (u + 1) – � (u),

�(n–1)/(2εu)Ru(ξu), s = � (u), 1 ≤ u ≤ λ.

Also, we define N1, . . . , N� (λ) and η1, . . . ,η� (λ) by

Ns :=

⎧
⎨

⎩
γu,θ , s = � (u) + θ , 0 ≤ u ≤ λ – 1, 0 < θ < � (u + 1) – � (u),

εu, s = � (u), 1 ≤ u ≤ λ;

ηs :=

⎧
⎨

⎩
mru+1 , s = � (u) + θ , 0 ≤ u ≤ λ – 1, 0 < θ < � (u + 1) – � (u),

mru , s = � (u), 1 ≤ u ≤ λ.

It follows from (3.11) and (3.13)–(3.18) that, for any 1 ≤ s ≤ � (λ),

max
{∣∣σ̂k,s(ξ ) – σ̂k,s–1(ξ )

∣∣,
∣∣ ̂|σk,s|(ξ ) – |̂σk,s–1|(ξ )

∣∣} ≤ C
∣∣2kηs Ls(ξ )

∣∣; (3.19)
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max
{∣∣σ̂k,s(ξ )

∣∣,
∣∣ ̂|σk,s|(ξ )

∣∣} ≤ C min
{

1,
∣∣2kηs Ls(ξ )

∣∣–Ns}. (3.20)

On the other hand, we get from (3.7) that

sup
k∈Z

∣∣|σk,0| ∗ f (x)
∣∣ ≤ C

∣∣f (x)
∣∣. (3.21)

From (3.21) we have

∥
∥∥sup

k∈Z

∣∣|σk,0| ∗ f
∣∣
∥
∥∥

Lq(Rd)
≤ C‖f ‖Lq(Rd), 1 < q ≤ ∞. (3.22)

Invoking Lemma 3.1, we get from (3.10), (3.11), (3.19), (3.20), and (3.22) that

∥
∥∥sup

k∈Z

∣∣|σk,� (λ)| ∗ f
∣∣
∥
∥∥

Lp(Rd)
≤ C‖f ‖Lp(Rd), 1 < p < ∞, (3.23)

∥∥
∥∥
∥

sup
k∈Z

∣∣
∣∣
∣

∞∑

j=k

σj,� (λ) ∗ f

∣∣
∣∣
∣

∥∥
∥∥
∥

Lp(Rd)

≤ C‖f ‖Lp(Rd), 1 < p < ∞. (3.24)

For any ε > 0, there exists an integer k such that 2k–1 ≤ ε < 2k . It follows that

T∗
�,�f ≤ sup

k∈Z

∣∣|σk,� (λ)| ∗ |f |∣∣ + sup
k∈Z

∣∣
∣∣
∣

∞∑

j=k

σj,� (λ) ∗ f

∣∣
∣∣
∣
. (3.25)

On the other hand, one can easily check that

M�,�f (x) ≤ C sup
k∈Z

∣
∣|σk,� (λ)|∗

∣
∣f

∣
∣(x)

∣
∣ for x ∈R

d. (3.26)

Then (3.26) together with (3.23)–(3.25) yields (3.1) and completes the proof of Theo-
rem 1.1. �

4 Proof of Theorem 1.2
This section is devoted to proving Theorem 1.2. Before presenting the proof of Theo-
rem 1.2, let us recall some useful lemmas. In what follows, we set Rd = {ξ ∈ R

d; 1/2 <
|ξ | ≤ 1}.

Lemma 4.1 ([26]) Let α ∈ (0, 1), p ∈ (1,∞), q ∈ (1,∞], and r ∈ [1, min{p, q}). Then

‖f ‖Ḟp,q
α (Rd) ∼

∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

|
2–lζ f |r dζ

)q/r)1/q∥∥
∥∥

Lp(Rd)
.

Lemma 4.2 ([21]) Let v ≥ 1, � ∈ N \ {0}, and {σ s
k : k ∈ Z, 1 ≤ s ≤ �} be a family of Borel

measures on R
d with σ 0

k = 0 for all k ∈ Z. Let |σ s
k | be the total variation of σ s

k . For 1 ≤ s ≤ �,
let βs,γs > 0, Ms ∈N\ {0}, and Ls : Rd →R

Ms be linear transformations. Suppose that there
exist C, A > 0 independent of v such that, for 1 ≤ s ≤ �, k ∈ Z, and ξ ∈ R

d , the following
conditions are satisfied:

(a) max{|σ̂ s
k (ξ ) – σ̂ s–1

k (ξ )|, ||̂σ s
k |(ξ ) – ̂|σ s–1

k |(ξ )|} ≤ CA|2kvγs Ls(ξ )|1/v;
(b) max{|σ̂ s

k (ξ )|, ||̂σ s
k |(ξ )|} ≤ CA min{1, |2kvγs Ls(ξ )|–βs/v};
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(c) There exists ϑ ∈R
d such that supk∈Z ||σ 0

k | ∗ f (x)| ≤ CA|f (x + ϑ)| for any k ∈ Z;
(i) Suppose that there exist p0, q0 > 1 satisfying (p0, q0) �= (2, 2), 1 < r0 < min{p0, q0}, and

2 ≤ u < ∞ such that the following condition (d) holds for 1 ≤ s ≤ �:
(d)

∥
∥∥
∥

(∑

l∈Z

∥
∥∥
∥

(∑

k∈Z

∣∣∣∣σ s
k
∣∣ ∗ gl,ζ ,k

∣∣u
)1/u∥∥∥

∥

q0

Lr0 (Rd)

)1/q0∥∥∥
∥

Lp0 (Rd)

≤ CA
∥
∥∥
∥

(∑

l∈Z

∥
∥∥
∥

(∑

k∈Z
|gl,ζ ,k|u

)1/u∥∥∥
∥

q0

Lr0 (Rd)

)1/q0∥∥∥
∥

Lp0 (Rd)
.

Let P1P2 be the line segment from P1 to P2 with P1 = ( 1
2 , 1

2 ) and P2 = ( 1
p0

, 1
q0

). Then, for
1 ≤ s ≤ �, α ∈ (0, 1), and ( 1

p , 1
q ) ∈ P1P2\{( 1

p0
, 1

q0
)}, there exists C > 0 independent of A and

v such that

∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

sup
k∈Z

∣
∣
∣
∣σ s

k
∣
∣ ∗ |
2–lζ f |∣∣dζ

)q)1/q∥∥
∥∥

Lp(Rd)
≤ CA‖f ‖Ḟp,q

α (Rd).

(ii) Suppose also that the following condition (e) holds for 1 ≤ s ≤ �:
(e)

∥∥
∥∥

(∑

j∈Z

(∑

k∈Z

∣
∣σ s

k ∗ gk,j
∣
∣2

)q0/2)1/q0∥∥
∥∥

Lp0 (Rd)
≤ CA

∥∥
∥∥

(∑

j∈Z

(∑

k∈Z
|gk,j|2

)q0/2)1/q0∥∥
∥∥

Lp0 (Rd)
.

Then, for α ∈ (0, 1) and ( 1
p , 1

q ) ∈ P1P2\{( 1
p0

, 1
q0

), ( 1
2 , 1

2 )}, there exists a constant C > 0 inde-
pendent of A and v such that

∥∥
∥∥
∥

(
∑

l∈Z
2lqα

(∫

Rd

sup
k∈Z

∣∣
∣∣
∣

∞∑

j=k

σ�
j ∗ 
2–lζ f

∣∣
∣∣
∣
dζ

)q)1/q∥∥
∥∥
∥

Lp(Rd)

≤ CA‖f ‖Ḟp,q
α (Rd).

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2 We first prove the boundedness part. One can easily check that T∗
�,�

and M�,� satisfy condition (1.7). This together with Lemma 4.1 yields that

∥
∥T∗

�,�f
∥
∥

Ḟp,q
α (Rd) ≤ C

∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

∣
∣
2–lζ

(
T∗

�,�f
)∣∣dζ

)q)1/q∥∥
∥∥

Lp(Rd)

≤ C
∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

∣
∣T∗

�,�(
2–lζ f )
∣
∣dζ

)q)1/q∥∥
∥∥

Lp(Rd)
, (4.1)

‖M�,�f ‖Ḟp,q
α (Rd) ≤ C

∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

∣
∣M�,�(
2–lζ f )

∣
∣dζ

)q)1/q∥∥
∥∥

Lp(Rd)
(4.2)

for α ∈ (0, 1) and 1 < p, q < ∞. By Lemma 2.1 and Minkowski’s inequality, it suffices to
show that

∥
∥∥∥

(∑

l∈Z
2lqα

(∫

Rd

∣∣T∗
�,�(
2–lζ f )

∣∣dζ

)q)1/q∥∥∥∥
Lp(Rd)

≤ C‖f ‖Ḟp,q
α (Rd), (4.3)
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∥∥
∥∥

(∑

l∈Z
2lqα

(∫

Rd

∣
∣M�,�(
2–lζ f )

∣
∣dζ

)q)1/q∥∥
∥∥

Lp(Rd)
≤ C‖f ‖Ḟp,q

α (Rd), (4.4)

where � is an H1 atom on Sn–1 satisfying conditions (i)–(iii) of Definition 2.1. Without
loss of generality, we may assume that �, � are given as in the proof of Theorem 1.1. We
also let {σk,s}� (λ)

s=0 and {|σk,s|}� (λ)
s=1 be defined as in the proof of Theorem 1.1. By [22, Lemmas

2.4–2.5], we obtain that, for any 1 ≤ s ≤ � (λ) and 1 < p, q, r < ∞,

∥
∥∥
∥

(∑

j∈Z

(∑

k∈Z
|σk,s ∗ gk,j|2

)q/2)1/q∥∥∥
∥

Lp(Rd)
≤ C

∥
∥∥
∥

(∑

j∈Z

(∑

k∈Z
|gk,j|2

)q/2)1/q∥∥∥
∥

Lp(Rd)
; (4.5)

∥∥
∥∥

(∑

j∈Z

∥∥
∥∥

(∑

k∈Z

∣
∣|σk,s| ∗ gj,ζ ,k

∣
∣2

)1/2∥∥
∥∥

q

Lr(Rd)

)1/q∥∥
∥∥

Lp(Rd)

≤ C
∥∥
∥∥

(∑

j∈Z

∥∥
∥∥

(∑

k∈Z
|gj,ζ ,k|2

)1/2∥∥
∥∥

q

Lr(Rd)

)1/q∥∥
∥∥

Lp(Rd)
. (4.6)

By (3.10), (3.19)–(3.21), (4.5), (4.6) and applying Lemma 4.2, we have that, for α ∈ (0, 1)
and 1 < p, q < ∞,

∥
∥∥
∥

(∑

l∈Z
2lqα

(∫

Rd

sup
k∈Z

∣∣|σk,� (λ)| ∗ |
2–lζ f |∣∣dζ

)q)1/q∥∥∥
∥

Lp(Rd)
≤ C‖f ‖Ḟp,q

α (Rd), (4.7)

∥
∥∥
∥∥

(
∑

l∈Z
2lqα

(∫

Rd

sup
k∈Z

∣
∣∣
∣∣

∞∑

j=k

σj,� (λ) ∗ 
2–lζ f

∣
∣∣
∣∣
dζ

)q)1/q∥∥∥
∥∥

Lp(Rd)

≤ C‖f ‖Ḟp,q
α (Rd). (4.8)

Then (4.1) follows from (3.25), (4.7), and (4.8). Inequality (3.26) together with (4.7) yields
(4.2). One can easily check that both the operators T∗

�,� and M�,� satisfy conditions (1.7)
and (1.8). This together with (1.4), (4.1), (4.2), Theorem 1.1, and the arguments similar to
those used to derive the continuity part in [22, Theorem 1.1]. We omit the details. �
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