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Abstract
The aim of this work is to usher in tripled b-metric spaces, triple weakly αs-admissible,
triangular partially triple weakly αs-admissible and their properties for the first time.
Also, we prove some theorems about coincidence and common fixed point for six
self-mappings. On the other hand, we present a new model, talk over an application
of our results to establish the existence of common solution of the system of
Volterra-type integral equations in a triple b-metric space. Also, we give some
example to illustrate our theorems in the section of main results. Finally, we show an
application of primary results.
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1 Introduction and preliminaries
The Banach contraction principle plays a central part in metric fixed point theory, and a
great number of researchers revealed many fruitful generalizations of this resolution in
diverse ways. In 1989, Bakhtin investigated the concept of b-metric space [1]. However,
Czerwik initiated the study of fixed point of self-mappings in a b-metric space and proved
an analogue of Banach’s fixed point theorem [2]. Since then, numerous research articles
have been published comprising fixed point theorems for several classes of single-valued
and multi-valued operators in b-metric spaces (for example, consider [3–6]). In 2012, the
concept of F-contraction, which is one of these generalizations, was introduced by War-
dowski [7]. He presented that every F-contraction defined in a complete metric space has
a unique fixed point. Subsequently, the subject of F-contraction proved to be a milestone
in the fixed point theory, and numerous research papers on F-contraction have been pub-
lished (for instance, see [4, 8–19]). In the same year, Samet et al. investigated the idea
of (α,ψ )-contractive and α-admissible mappings and established some significant fixed
point solutions for such a variety of functions defined on a complete metric space (for
more details, see [20]). Some authors such as Salimi, Latif, Hussain et al. improved the
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concept of α-admissibility and proved some important (common) fixed point theorems
as well (for more information, see [21–24].

Recently, Cosentino and Vetro established a fixed point result for Hardy–Rogers-type F-
contraction [25]. Also, Minak, Helvaci, and Altun presented a fixed point result for Ćirić-
type generalized F-contraction [26]. In 2018, Nazam, Muhammad, and Postolache inves-
tigated some common fixed point results for four self-mappings satisfying such kind of
contractions on the αs-complete b-metric space and applied their conclusion to infer sev-
eral new and old results, based on the idea of Ćirić-type and Hardy–Rogers-type (αs, F)-
contractions [27].

In this study, motivated by [27] and among these achievements, we are working to
stretch out the Ćirić-type and Hardy–Rogers-type (αs, F)-contractions based on six self-
mappings defined on a b-metric space. Also, some common fixed point results for six self-
mappings satisfying such kind of contractions are shown in the (T ,αs, F)-complete tripled
b-metric space. Consequently, we discuss an application of the main result to show the
existence of common solution of the system of Volterra-type integral equations.

Let X be a nonempty set, R+ = (0,∞), R+
0 = [0,∞), and s > 1 be a real constant. Suppose

that db maps X × X × X into R
+
0 somehow that for all x, y, z, and ai with i ∈ {1, 2, 3, 4}

belong to X satisfying the following conditions [9]:
• db(x, y, z) = 0 if and only if x = y = z.
• db(x, y, z) > 0 if and only if x �= y or x �= z or y �= z.
• db(x, y, z) = db(x, z, y) = db(z, y, x) = db(y, x, z) = db(z, x, y) = db(y, z, x).
• db(x, x, y) = db(x, y, y).
• db(x, x, y) ≤ db(x, y, z), db(x, x, z) ≤ db(x, y, z), db(y, y, z) ≤ db(x, y, z).
• db(x, y, z) ≤ s[db(x, a1, a2) + db(y, a3, a4) + db(z, a2, a3)].
We say that (X, db, s) is a tripled b-metric space.

Example 1.1 Let X = R
+
0 . We define db : X3 →R

+
0 as follows:

db(x, y, z) = max
{|x – y|2, |x – z|2, |y – z|2}.

Then (X, db, s) is a tripled b-metric space with s = 2.

We bring back into reader’s mind some definitions and properties of b-metric.

Definition 1.2 (see [2]) Let A be a nonempty set, and let s > 1 be a real number. A mapping
d∗ : A2 →R

+
0 is said to be a b-metric if, for all a, b, and c ∈ A, we have:

• a = b if and only if d∗(a, b) = 0;
• d∗(a, b) = d∗(b, a);
• d∗(a, b) ≤ s[d∗(a, c) + d∗(c, b)].
In this case, the triple (A, d∗, s) is called a b-metric space (with coefficient s).

Remark 1.3 Definition 1.2 allows us to remark that b-metric space is effectually more
general than metric space as a b-metric is a metric when s = 1. It is worth to mention that
the b-metric structure produces some differences to the classical case of metric spaces: the
b-metric on a nonempty set M need not be continuous, open balls in such spaces need not
be open sets, and so on. The following example describes the significance of a b-metric.
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For the notions like convergence, completeness, Cauchy sequence in the setting of b-
metric spaces, the reader is referred to Aghajani et al. [28], Czerwik [2], Amini-Harandi
[29], Huang et al. [3], Khamsi and Hussain [5]. In line with Wardowski [7], Cosentino et al.
[30] investigated a nonlinear function F : R+ → R complying with the following axioms:

• F is strictly increasing;
• limr→∞ rn = 0 if and only if limn→∞ F(rn) = –∞;
• limr→∞ rn = 0 there exists a ∈ (0, 1) such that limrn→0+ (rn)aF(rn) = 0;
• τ + F(srn) ≤ F(rn–1) implies τ + F(snrn) ≤ F(sn–1rn–1) for each n ∈N and some τ > 0

for all sequence {rn} of positive numbers. We denote the set of all functions satisfying the
conditions (F1), (F2), (F3), and (F4) by Fs.

Example 1.4 (see [30]) Let F : R+ → R be defined by F(r) = ln r or F(r) = r + ln r. Then F
satisfies in the conditions.

Theorem 1.5 (see [31]) Let (X, d) be a complete metric space and T : X → X be a bijective
(ξ ,α,η)-expansive mapping of type B satisfying the following conditions:

• T–1 is α-admissible with respect to η;
• There exists x0 ∈ X such that α(x0, T–1x0) ≥ η(x0, T–1x0);
• T is continuous.

Then T has a fixed point.

Definition 1.6 (see [32]) Let (X, pb) be a partial b-metric space with the coefficient s ≥ 1.
A mapping T : X → X is said to be a generalized α – η – ψ-Geraghty contractive type
mapping if there exist ψ ∈ � , α,η : X × X → [0,∞), and β ∈F such that

α(x, y) ≥ η(x, y) implies ψ
(
spb(Tx, Ty)

) ≤ β
(
ψ

(
MT

s (x, y)
))

ψ
(
MT

s (x, y)
)

(1.1)

for all x, y ∈ X, where

MT
s (x, y) = max

{
pb(x, y), pb(x, Tx), pb(y, Ty),

pb(x, Ty) + pb(y, Tx)
2s

}
.

Theorem 1.7 (see [32]) Let (X, pb) be a pb-complete partial b-metric space with the coef-
ficient s ≥ 1. Let T : X → X be a generalized α – η – ψ-Geraghty contractive type mapping.
Suppose that the following conditions hold:

• T is a triangular α-orbital admissible mapping with respect to η;
• There exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);
• {xn} is α-regular with respect to η.

Then T has a fixed point.

Example 1.8 (see [32]) Let X = [0,∞) and with the partial b-metric pb : X × X → [0,∞)
defined by pb(x, y) = max{x, y}2 for all x, y ∈ X. Obviously, (X, pb) is a partial b-metric space
with s = 2. Define the mapping T : X → X given by

Tx =

⎧
⎨

⎩

x
9 if x ∈ [0, 1];

ln x + 3 if x ∈ (1,∞).
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Define ψ : [0,∞) → [0,∞) and β : [0,∞) → [0, 1) by ψ(t) = t and

β(t) =

⎧
⎨

⎩

e–t

1+t if x ∈ (0,∞);
1
2 if t = 0.

Let α,η : X × X → [0,∞) be defined by

α(x, y) =

⎧
⎨

⎩
6 if x ∈ [0, 1];

0 if x ∈ (1,∞),

and

η(x, y) =

⎧
⎨

⎩
2 if x ∈ [0, 1];

1 if x ∈ (1,∞).

Let α(x, Tx) ≥ η(x, Tx). Thus x, Tx ∈ [0, 1] and so T2x = T(Tx) ∈ [0, 1], which implies
that α(Tx, T2x) ≥ η(Tx, T2x), that is, T is α-orbital admissible with respect to η. Now, let
α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), we get that x, y, Ty ∈ [0, 1] and so α(x, Ty) ≥ η(x, Ty).
Therefore T is triangular α-orbital admissible with respect to η. Let {xn} be a sequence
such that {xn} is pb-convergent to z and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈N. Then {xn} ⊆
[0, 1] for any n ∈ N and so z ∈ [0, 1], from which we have α(xn, z) ≥ η(xn, z). That is, {xn} is
α-regular with respect to η. The condition (ii) of Theorem 1.7 is satisfied with x1 = 1 ∈ X
since (α(1, T1) = 2 ≥ 2 = η(1, T1). We next prove that T is a generalized α-η-ψ-Geraghty
contraction type mapping. Let x, y ∈ X with α(x, y) ≥ η(x, y). Thus x, y ∈ [0, 1]. Without
loss of generality, we may assume that 0 ≤ y ≤ x ≤ 1. Therefore

pb(Tx, Ty) =
[

max

{
x
9

,
y
9

}]2

=
x2

81

and

MT
s (x, y) = max

{
x2, x2, y2,

x2 + [max{y, x
9 }]2

4

}
= x2.

Since 2
81 ≤ 1

2e ≤ e–x2

1+x2 , we obtain that

ψ
(
spb(Tx, Ty)

)
= ψ

(
2

x2

81

)
=

2x2

81
≤ e–x2

1 + x2 · x2

≤ β
(
ψ

(
x2))ψ

(
x2)

≤ β
(
ψ

(
MT

s (x, y)
))

ψ
(
MT

s (x, y)
)
.

Thus T is a generalized α-η-ψ-Geraghty contraction type mapping. Hence all the as-
sumptions in Theorem 1.7 are satisfied and thus T has a fixed point which is x = 0.
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Definition 1.9 (see [27]) Let (M, d∗, s) be a b-metric space, S : M → M and αs : M × M →
R

+
0 be two mappings. The mapping S is said to be αs-admissible if

αs(r1, r2) ≥ s2 ⇒ αs
(
S(r1), S(r2)

) ≥ s2 for all r1, r2 ∈ M.

Theorem 1.10 (see [27]) Let M be a nonempty set and αs be as defined in Definition 1.9.
Let f , g , S, T be αs – b-continuous self-mappings defined on an αs-complete b-metric space
(M, d∗, s) such that f (M) ⊆ T(M), g(M) ⊆ S(M). Suppose that, for all (r1, r2) ∈ γf ,g,αs , there
exist F ∈Fs and τ > 0 such that

τ + F
(
sd∗(f (r1), g(r2)

)) ≤ F
(
M1(r1, r2)

)
. (1.2)

Assume that the pairs (f , S), (g, T ) are αs-compatible and the pairs (f , g) and (g, f ) are
triangular partially weakly αs-admissible with respect to T and S, respectively. Then the
pairs (f , S), (g, T ) have the coincidence point (say) v in M. Moreover, if αs(Sv, Tv) ≥ s2, then
v is a common fixed point of f , g , S, T .

Remark 1.11 (see [27]) If we suppose that αs(v, w) ≥ s2 for each pair of common fixed
point of f , g , S, T , then v is unique. Indeed, if w is another fixed point of f , g , S, T and
assuming on the contrary that d∗(fv, gw) > 0, then from (1.2) we have

F
(
sd∗(v, w)

)
= F

(
sd∗(S(v), T(w)

)) ≤ F
(
M1(v, w)

)
– τ , (1.3)

where

M1(v, w) = max

{
d∗(S(v), T(w)

)
, d∗(f (v), S(v)

)
,

d∗(g(w), T(w)
)d∗(S(v), g(w)) + d∗(f (v), T(w))

2s

}
.

Thus, by (1.3), we have

F
(
sd∗(v, w)

)
< F

(
d∗(v, w)

)
,

which is a contradiction. Hence, v = w and v is a unique common fixed point of self-
mappings f , g , S, T .

Theorem 1.12 (see [27]) Let f , g , S, T be self-mappings defined on an αs-regular and αs-
complete metric space (M, d∗, s) such that f (M) ⊆ T(M), g(M) ⊆ S(M), and T(M) and S(M)
are closed subsets of M. Suppose that, for all (r1, r2) ∈ γf ,g,αs , there exist F ∈ Fs and τ > 0
such that

τ + F(sd∗(f (r1), g(r2)
) ≤ F

(
M1(r1, r2)

)
. (1.4)

Assume that the pairs (f , S), (g, T ) are weakly compatible and the pairs (f , g) and (g, f )
are triangular partially weakly αs-admissible with respect to T and S, respectively. Then
the pairs (f , S), (g, T ) have the coincidence point v in M. Moreover, if αs(Sv, Tv) ≥ s2, then v
is a coincidence point of f , g , S, T .
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Theorem 1.13 (see [27]) Let f , g , S, T be αs-continuous self-mappings defined on an αs-
complete b-metric space (M, d∗, s) such that f (M) ⊆ T(M), g(M) ⊆ S(M). Suppose that, for
all (r1, r2) ∈ γf ,g,αs , there exist F ∈Fs and τ > 0 such that

τ + F(sd∗(f (r1), g(r2)
) ≤ F

(
Mi(r1, r2)

)
(1.5)

holds for one of i = 2, 3, 4, 5, 6, where

M2(r1, r2) = a1d∗(S(r1), T(r2)
)

+ a2d∗(f (r1), S(r1)
)

+ a3d∗(g(r2), T(r2)
)

+ a4
[
d∗(S(r1), g(r2)

)
+ d∗(f (r1), T(r2)

)]

with ai ≥ 0, i = 1, 2, 3, 4, such that a1 + a2 + a3 + 2sa4 = 1;

M3(r1, r2) = a1d∗(S(r1), T(r2)
)

+ a2d∗(f (r1), S(r1)
)

+ a3d∗(g(r2), T(r2)
)
,

with a1 + a2 + a3 = 1;

M4(r1, r2) = k max
{

d∗(f (r1), S(r1)
)
, d∗(g(r2), T(r2)

)}
with k ∈ [0, 1);

M5(r1, r2) = a1(r1, r2)d∗(S(r1), T(r2)
)

+ a2(r1, r2)d∗(f (r1), S(r1)
)

+ a3(r1, r2)d∗(g(r2), T(r2)
)

+ a4(r1, r2)
[
d∗(S(r1), g(r2)

)
) + d∗(f (r1), T(r2)

)]

with ai(r1, r2), i = 1, 2, 3, 4 are nonnegative functions such that

sup
r1,r2∈M

{
a1(r1, r2) + a2(r1, r2) + a3(r1, r2) + 2sa4(r1, r2)

}
= 1;

M6(r1, r2) = a1d∗(S(r1), T(r2)
)

+
a2 + a3

2
[
d∗(f (r1), S(r1)

)
+ d∗(g(r2), T(r2)

)]

+
a4 + a5

2s
[
d∗(S(r1), g(r2)

)
+ d∗(f (r1), T(r2)

)]

with a1 + a2 + a3 + a4 + a5 = 1.
Assume that the pairs (f , S), (g, T ) are αs-compatible and the pairs (f , g) and (g, f ) are

triangular partially weakly αs-admissible pairs of mappings with respect to T and S, re-
spectively. Then the pairs (f , S), (g, T ) have the coincidence point v in M. Moreover, if
αs(Sv, Tv) ≥ s2, then v is a common point of f , g , S, T .

2 Main results
In this section, first we introduce some definitions in a tripled b-metric space (X, db) and
present several examples.

Definition 2.1 Let (X, db, s) be a tripled b-metric space, T : X → X and αs : X3 → R
+
0

be two mappings. The mapping T is said to be αs-admissible if αs(x, y, z) ≥ s2, then
αs(Tx, Ty, Tz) ≥ s2 for all x, y, z ∈ X.

Definition 2.2 Let (X, db, s) be a tripled b-metric space, T : X → X and αs : X3 → R
+
0 be

two mappings. The mapping T is said to be triangular αs-admissible if
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• αs(x, y, z) ≥ s2 implies that αs(Tx, Ty, Tz) ≥ s2 for all x, y, z ∈ X ;
• αs(x, y, z) ≥ s2 and αs(y, z, w) ≥ s2 imply αs(x, z, w) ≥ s2for all x, y, z, w ∈ X .

Definition 2.3 Let (X, db, s) be a tripled b-metric space, f , g, h : X → X and αs : X3 → R
+
0

be four mappings. The tripled (f , g, h) is said to be
• triple weakly αs-admissible if αs(f (x), gf (x), hgf (x)) ≥ s2, αs(g(x), hg(x), fhg(x)) ≥ s2,

and αs(h(x), fh(x), gfh(x)) ≥ s2 for all x ∈ X ;
• partially weakly αs-admissible if αs(f (x), gf (x), hgf (x)) ≥ s2 for all x ∈ X .

Definition 2.4 Let (X, db, s) be a tripled b-metric space and f , g, h,φ : X → X be four map-
pings such that f (X) ∪ g(X) ∪ h(X) ⊆ φ(X). The triple of mappings (f , g, h) is said to be

• triple weakly αs-admissible with respect to φ if and only if αs(f (x), g(y), h(z)) ≥ s2 for
all x ∈ X , for all y ∈ φ–1gf (x), for all z ∈ φ–1hgf (x) and αs(h(x), g(y), f (z)) ≥ s2 for all
x ∈ X , for all y ∈ φ–1gh(x), for all z ∈ φ–1fgh(x) and αs(g(x), f (y), h(z)) ≥ s2 for all x ∈ X ,
for all y ∈ φ–1fg(x), for all z ∈ φ–1hfg(x);

• partially triple weakly αs-admissible with respect to φ if and only if

αs
(
f (x), g(y), h(z)

) ≥ s2

for all x ∈ X , y ∈ φ–1gf (x), and z ∈ φ–1hgf (x).

Definition 2.5 Let (X, db, s) be a tripled b-metric space and f , g, h,φ : X → X be four map-
pings such that f (X) ∪ g(X) ∪ h(X) ⊆ φ(X). The triple of mappings (f , g, h) is said to be
triangular triple weakly αs-admissible with respect to φ if

• αs(h(x), g(y), f (z)) ≥ s2 for all x ∈ X , for all y ∈ φ–1gf (x), z ∈ φ–1hgf (x), and

αs
(
h(x), g(y), f (z)

) ≥ s2

for all x ∈ X , for all y ∈ φ–1gh(x), for all z ∈ φ–1fgh(x), and αs(g(x), f (y), h(z)) ≥ s2 for all
x ∈ X , for all y ∈ φ–1fg(x), for all z ∈ φ–1hfg(x);

• αs(x, y, z) ≥ s2 and αs(y, z, w) ≥ s2 imply αs(x, z, w) ≥ s2 for all x, y, z, w ∈ X .

Example 2.6 Let X = R
+
0 and

db(x, y, z) = max
{|x – y|2, |x – z|2, |y – z|2}

for all x, y, z ∈ X. Then (X, db, s) is a tripled b-metric with s = 2. We define f (x) = x, g(x) =
x 1

2 , h(x) = x 1
4 , and S(x) = x4 if x ∈ [0, 1) and f (x) = g(x) = h(x) = S(x) = 1, whenever x ∈

[1,∞) and αs : X3 →R
+
0 as follows:

α(x, y, z) =

⎧
⎨

⎩
max{4 + y – x, 4 + z – x, 4 + z – x}, x, y, z ∈ [0, 1),

0, otherwise.

Then, for all x ∈ [0, 1), y ∈ S–1(g(f (x))), z ∈ S–1(h(g(x))), we have y = x 1
8 , z = x 1

32 ,

αs
(
x, g

(
x

1
8
)
, h

(
x

1
32

))
= αs

(
x, x

1
16 , x

1
32×4

) ≥ s2.
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Thus the triple of mappings (f , g, h) is triangular weakly αs-admissible with respect to S.
Indeed, if αs(x, y, z) ≥ s2 and αs(y, z, w) ≥ s2, then αs(x, z, w) ≥ s2. Since y – x ≥ 0 or z – x ≥ 0
or z – y ≥ 0 and z – y ≥ 0 or w – z ≥ 0 or w – y ≥ 0. Thus w – x ≥ 0 or w – z ≥ 0 or z – x ≥ 0.

Definition 2.7 Let f , g, h,φ : X → X be four self-mappings defined on a tripled b-metric
space such that f (X) ∪ g(X) ∪ h(X) ⊆ φ(X). The triple of mappings (f , g, h) is said to be
triangular triple partially weakly αs-admissiblewith respect to φ if

• αs(f (x), g(y), h(z)) ≥ s2 for all x ∈ X , y ∈ φ–1(g(f (x))), z ∈ φ–1(hg(f (x))),
• αs(x, y, z) ≥ s2, αs(y, z, w) ≥ s2 imply αs(x, z, w) ≥ s2 for all x, y, z ∈ X .

Definition 2.8 Let (X, db, s) be a tripled b-metric space. The tripled b-metric space X
is said to be αs-complete if and only if every Cauchy sequence {xn} in X such that
αs(xn, xn+1, xn+2) ≥ s2 for all n ∈N converges in X. That is,

lim
n→∞ db(xn, x, x) = lim

n→∞ db(xn, xn, x) = 0.

If X is a complete tripled metric space, then X is also an αs-complete tripled metric
space, but the converse is not true. The following example explains this fact.

Example 2.9 Let X = R
+ and db : X3 →R

+
0 be the tripled b-metric. Define αs : X3 →R

+
0 ,

α(x, y, z) =

⎧
⎨

⎩
4 max{e|x–y|, e|y–z|, e|x–z|}, x, y, z ∈ [0, 5

2 ),

0, otherwise.

It is easy to see that (X, db, S) in not a complete tripled b-metric space, but (X, db, s) is an
αs-complete tripled b-metric.

Definition 2.10 Let (X, db, s) be a tripled b-metric space. We say that the self-mapping T
is an αs-continuous mapping on (X, db, s) if, for given x ∈ X and sequence {xn},

lim
n→∞ db(xn, x, x) = lim

n→∞ db(xn, xn, x) = 0,

and α(xn, xn+1, xn+2) ≥ s2 for all n ∈N implies

lim
n→∞ db(Txn, Tx, Tx) = lim

n→∞ db(Txn, Txn, Tx) = 0.

Example 2.11 Let X = R
+
0 and db : X3 →R

+
0 for all x, y, z ∈ X, define by db(x, y, z) = max{|x–

y|2, |x – z|2, |y – z|2} and

T(x) =

⎧
⎨

⎩
sinπx, x ∈ [0, 1],

cosπx + 2, x ∈ (1,∞),

αs(x, y, z) =

⎧
⎨

⎩
x2 + y2 + 4, x, y, z ∈ [0, 1],

0, otherwise.

Then T is not continuous on X; however, T is αs-continuous.
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Definition 2.12 Let (X, db, s) be a tripled b-metric space. The pairs of self-mappings (f , g),
(g, h), and (f , h) are said to be αs-compatible if

lim
n→∞ db

(
gh(xn), hg(xn), g(xn)

)
= 0,

lim
n→∞ db

(
fg(xn), gf (xn), f (xn)

)
= 0,

lim
n→∞ db

(
hf (xn), fh(xn), h(xn)

)
= 0,

or limn→∞ db(gh(xn), hg(xn), h(xn)) = 0 or limn→∞ db(fg(xn), gf (xn), g(xn)) = 0 or

lim
n→∞ db

(
hf (xn), fh(xn), f (xn)

)
= 0,

whenever {xn} is a sequence in X such that α(xn, xn+1, xn+1) ≥ s2, and

lim
n→∞ f (xn) = lim

n→∞ g(xn) = lim
n→∞ h(xn) = t

for some t ∈ X.

Example 2.13 Let X = [1,∞) and db : X × X × X → R
+
0 be defined by

db(x, y, z) = max
{|x – y|2, |x – z|2, |y – z|2}

for all x, y, z ∈ X, then (X, db, s = 2) is a tripled b-metric space. Define f (x) = 4, g(x) = 16–3x
if x ∈ [1, 4] and f (x) = 8 and g(x) = 9 whenever x ∈ (4,∞) and

α(x, y, z) =

⎧
⎨

⎩
6, x, y, z ∈ [1, 4],

0, otherwise.

Let us consider {xn} to be a sequence such that α(xn, xn+1, xn+2) ≥ s2, and let

lim
n→∞ f (xn) = lim

n→∞ g(x),

then xn = 4. It is clear that limn→∞ f (xn) = limn→∞ g(x) = 4. We obtain that

lim
n→∞ db

(
fg(xn), gf (xn), f (xn)

)
= lim

n→∞ db
(
fg(xn), gf (xn), g(xn)

)

= db(4, 4, 4) = 0.

Hence (f , g) is an αs-compatible pair. Now, if we consider xn = 4 – 1
n , then

lim
n→∞ f (xn) = lim

n→∞ g(xn) = 4.

But limn→∞ gf (xn) = 4,

lim
n→∞ fg(xn) = lim

n→∞ f
(

16 – 3
(

4 –
1
n

))
= lim

n→∞ f
(

4 +
3
n

)
= 8,

and limn→∞ db(fg(xn), gf (xn), fxn) �= 0. Consequently, (f , g) is not compatible.
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Definition 2.14 Let f , g , and T be self-mappings defined on a nonempty set X. If f (x) =
g(x) = T(x) for some x ∈ X, then x is called a coincidence point of f , g , and T . Three self-
mappings f , g , and T defined on X are said to be weakly compatible if {f , g}, {g, T}, and
{f , T} commute at their coincidence points.

Definition 2.15 Let (X, db, s) be a tripled b-metric space. The space (X, db, s) is said to
be αs-regular if, for any sequence {xn} in X, the following condition holds: if xn → x as
n → ∞ and αs(xn, xn+1, xn+2) ≥ s2 for all n ∈ N, then αs(xn, x, x) ≥ s2 and αs(xn, sn, x) ≥ s2

for all n ∈N.

Now, we are ready to prove our results.

Lemma 2.16 Let (X, db, s) be a tripled b-metric space. If there exist three sequence {xn},
{yn}, and {zn} such that limn→∞ db(xn, yn, zn) = 0 and limn→∞ xn = limn→∞ yn = t for some
t ∈ X, then limn→∞ zn = t.

Proof By the triangle inequality, we have

db(zn, t, t) ≤ s
[
db(zn, xn, yn) + db(t, t, t) + db(t, yn, t)

]
.

By taking limit as n → ∞, the result follows. �

Definition 2.17 Let (X, db, s) be a tripled b-metric space, f , g, h, S1, S2, S3 : X → X be self-
mappings, and αs be as defined in Definition 2.1. We define the set λf ,g,h,αs by

λf ,g,h,αs =
{

(α,β ,γ ) ∈ X3 : αs
(
S1(α), S2(β), S3(γ )

) ≥ s2,

and db
(
f (α), g(β), h(γ )

)
> 0

}
. (2.1)

Let

M(α,β ,γ )

= max

{
db

(
S1(α), S2(β), S3(γ )

)
, db

(
f (α), S2(α), S3(α)

)
,

db
(
g(β), S1(β), S3(β)

)
, db

(
h(γ ), S1(γ ), S2(γ )

)
,

db(S1(α), g(β), h(γ )) + db(f (α), S2(β), h(γ )) + db(S3(γ ), g(β), f (α))
3s

}
. (2.2)

The following theorem is one of our main results.

Theorem 2.18 Let X be a nonempty set and αs be as defined in Definition 2.1. Let f , g ,
h, S1, S2, S3 be αs – b-continuous self-mappings defined an αs-complete tripled b-metric
space (X, db, s) such that f (X) ⊆ S1(X), g(X) ⊆ S2(X), and h(X) ⊆ S3(X). Suppose that, for
all (x, y, z) ∈ λf ,g,h,αs , there exist F ∈Fs and r > 0 such that

r + F
(
sdb

(
f (x), g(y), h(z)

)) ≤ F
(
M(x, y, z)

)
. (2.3)
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Assume that the pairs (f , S1), (g, S2), and (h, S3) are αs-compatible and the triples (f , g, h),
(g, f , h), and (h, g, f ) are triangular partially weakly αs-admissible with respect to S1, S2,
and S3, respectively. Then the pairs (f , S1), (g, S2), and (h, S3) have the coincidence fixed
point say v in X. Moreover, if αs(S1(v), S2(v), S3(v)) ≥ s2, then v is a common fixed point of
f , g , h, S1, S2, S3.

Proof Let x0 ∈ X be an arbitrary point. As f (X) ⊆ S1(X), there exists x1 ∈ X such that
f (x0) = S1(x1). Since g(x1) ∈ S2(X), we can choose x2 ∈ X such that g(x1) = S2(x2). Since
h(x2) ∈ S3(X), there exists x3 ∈ X such that h(x2) = S3(x3). In general, x2n, x2n+1, and x2n+2

are chosen in X such that f (x2n) = S1(x2n+1), g(x2n+1) = S2(x2n+2), and h(x2n+2) = S3(x2n+3).
Define a sequence {Jn} ∈ X such that, for all n ∈ N, J2n+1 = f (x2n) = S1(x2n+1), J2n+2 =
g(x2n+1) = S2(x2n+2), and J2n+2 = h(x2n+2) = S3(x2n+3). As x1 ∈ S–1

1 (f (x0)), x2 ∈ S–1
2 (g(x1)), x3 ∈

S–1
3 (h(x2)), and (f , g, h), (h, g, f ), and (g, f , h) are triangular partially weakly αs-admissible

triples of mappings with respect to S1, S2, and S3, respectively, we have

αs
(
f (x0), g(x1), h(x2)

)
= αs

(
S1(x1), S2(x2), S3(x3)

) ≥ s2,

αs
(
h(x2), g(x1), f (x0)

)
= αs

(
S3(x3), S2(x2), S1(x1)

) ≥ s2,

and

αs
(
g(x1), f (x0), h(x2)

)
= αs

(
S2(x2), S1(x1), S3(x3)

) ≥ s2.

Continuing this way, we obtain

αs
(
S1(x2n+1), S2(x2n+2), S3(x2n+3)

) ≥ s2,

αs
(
S3(x2n+3), S2(x2n+2), S1(x2n+1)

) ≥ s2,

and αs(S2(x2n+2), S1(x2n+1), S3(x2n+3)) ≥ s2. Thus, we have

αs(J2n+1, J2n+2, J2n+3) ≥ s2,

αs(J2n+3, J2n+2, J2n+1) ≥ s2,

and αs(J2n+2, J2n+1, J2n+3) ≥ s2 for all n ∈N. At present, we prove that

lim
l→∞

db(Jl, Jl+1, Jl+2) = 0.

Set dl = db(Jl, Jl+1, Jl+2). Suppose that dl0 = 0 for some l0. Then Jl0 = Jl0+1. If l0 = 2n, then
J2n = J2n+1 gives J2n+1 = J2n+2. Indeed, by contractive condition (2.3), we get

F
(
sdb(J2n+1, J2n+2, J2n+3)

)
= F

(
sdb

(
f (x2n), g(x2n+1), h(x2n+2)

))

≤ F
(
M(x2n, x2n+1, x2n+2)

)
– r

for all n ∈N∪ {0}, where

M(x2n, x2n+1, x2n+2) = max

{
db

(
S1(x2n), S2(x2n+1), S3(x2n+2)

)
,
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db
(
f (x2n), S2(x2n), S3(x2n)

)
,

db
(
g(x2n+1), S1(x2n+1), S3(x2n+1)

)
,

db
(
h(x2n+2), S1(x2n+2), S2(x2n+2)

)
,

1
3s

[
db

(
S1(x2n), g(x2n+1), h(x2n+2)

)

+ db
(
f (x2n), S2(x2n+1), h(x2n+2)

)

+ db
(
S3(x2n+2), g(x2n+1), f (x2n)

)]}

= max

{
db(J2n, J2n+1, J2n+2), db(J2n+1, J2n, J2n–1),

db(J2n+2, J2n+1, J2n), db(J2n+2, J2n+2, J2n+2),

1
3s

[
db(J2n, J2n+2, J2n+2) + db(J2n+1, J2n+1, J2n+2)

+ db(J2n+1, J2n+2, J2n+1)
]}

.

So

M(x2n, x2n+1, x2n+2) = max

{
db(J2n, J2n+1, J2n+1), db(J2n–1, J2n, J2n+1),

db(J2n, J2n+1, J2n+2),

1
3s

[
db(J2n, J2n+2, J2n+2) + db(J2n+1, J2n+1, J2n+2)

+ db(J2n+1, J2n+1, J2n+2)
]}

≤ max
{

db(J2n, J2n+1, J2n+2), db(J2n–1, J2n, J2n+1),

db(J2n, J2n+1, J2n+2), db(J2n, J2n+1, J2n+2)
}

= max
{

db(J2n, J2n+1, J2n+2), db(J2n–1, J2n, J2n+1)
}

.

Since db(J2n, J2n+1, J2n+2) = 0, therefore M(x2n, x2n+1, x2n+2) = db(J2n–1, J2n, J2n+1). Then

F
(
sdb(J2n+1, J2n+2, J2n+3)

)
= F

(
db(J2n–1, J2n, J2n+1)

)
– r.

By (F1), we have

sdb(J2n+1, J2n+2, J2n+3) ≤ db(J2n–1, J2n, J2n+1) – r.

Let l = 2n, then we have sdb(J2n, J2n+1, J2n+2) ≤ db(J2n–2, J2n–1, J2n) – r. Thus, for all n,

db(Jn, Jn+1, Jn+2) ≤ 1
s

db(Jn–1, Jn, Jn+1).

That is, a sequence {db(Jn, Jn+1, Jn+2)} is nonincreasing and db(Jn, Jn+1, Jn+2) → 0 as n →
∞. Hence liml→∞ db(Jl, Jl+1, Jl+2) = 0 holds true. Now, suppose that dl = db(Jl, Jl+1, Jl+2) > 0
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for each l ∈N. We claim that limn→∞ db(Jn, Jn+1, Jn+2) = –∞. Let l = 2n. As

αs
(
S1(x2n), S2(x2n+1), S3(x2n+2)

) ≥ s2,

db(f (x2n), g(x2n), h(x2n+1)) > 0, so (x2n–1, x2n, x2n+1) ∈ λf ,g,h,αs , by (2.3), we obtain

F
(
sdb(J2n, J2n+1, J2n+2)

) ≤ F
(
db(J2n–1, J2n, J2n+1)

)
– r (2.4)

for all n ∈N. Similarly, for � = 2n – 1,

F
(
sdb(J2n–1, J2n, J2n+1)

) ≤ F
(
db(J2n–2, J2n–1, J2n)

)
– r (2.5)

for all n ∈N. Hence, by (2.4) and (2.5), we have

F
(
sdb(Jn, Jn+1, Jn+2)

) ≤ F
(
db(Jn–1, Jn, Jn+1)

)
– r (2.6)

for all n ∈ N. Let an = db(Jn, Jn+1, Jn+2) for each n ∈ N. By (2.6) and property (F4), we have
r + F(snan) ≤ F(sn–1an–1) for all n ∈N. Continuing this process, we obtain

F
(
snan

) ≤ F(an) – nr (2.7)

for all n ∈ N. On taking limit n → ∞ in (2.7), we have limn→∞ F(snan) = –∞. By prop-
erty (F2), we get limn→∞ snan = 0 and (F2) implies that there exists k ∈ (0, 1) such that
limn→∞(snan)kF(snan) = 0. By (2.7), for all n ∈N, we obtain

(
snan

)kF
(
snan

)
–

(
snan

)kF(a0) ≤ –
(
snan

)knr ≤ 0. (2.8)

On taking limit n → ∞ in (2.8), we have limn→∞ n(snan)k = 0. This implies there exists
n1 ∈ N such that n(snan)k ≤ 1 for all n ≥ n1, or snan ≤ 1

n
1
k

for all n ≥ n1. To prove {Jn} is a

Cauchy sequence, by the triangular inequality, we have

db(xn, xm, xm) ≤ s
[
db(xn, xn+1, xn+2) + db(xm, xm, xm), db(xm, xm+2, xm)

]

= sdb(xn, xn+1, xn+2) + sdb(xn+2), xm, xm)

≤ sdb(xn, xn+1, xn+2) + s2[db(xn+2, xn+3, xn+4)

+ db(xm, xm, xm) + db(xm, xn+3, xn+1)
]

= sdb(xn, xn+1, xn+2) + s2db(xn+2, xn+3, xn+4) + s2db(xn+3, xm, xm)

≤ sdb(xn, xn+1, xn+2) + s2db(xn+2, xn+3, xn+4)

+ s3db(xn+3, xn+4, xn+5) + s3db(xn+4, xm, xm).

Take m = n + p, (n, p ∈N), then we have

db(xn, xm, xm) ≤ sdb(xn, xn+1, xn+2) + s2db(xn+2, xn+3, xn+4)

+ s3db(xn+3, xn+4, xn+5) + · · · + sn–1db(xn+p–1, xn+p, xn+p)
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≤ s

snn
1
k

+
s2

sn+2(n + 2)
1
k

+
s3

sn+3(n + 3)
1
k

+ · · · +
sp–1

sn+P–1(n + p – 1)
1
k

=
s1–n

n
1
k

+
s–n

(n + 2)
1
k

+
s–n

(n + 3)
1
k

+ · · · +
s–n

(n + p – 1)
1
k

=
s1–n

n
1
k

+ s–n
p–1∑

i=2

1

(n + i)
1
k

.

Since
∑p–1

i=2
1

(n+i)
1
k

is convergent and s–n → 0 as n → ∞, thus we conclude that

lim
n,m→∞ db(xn, xm, xm) = 0.

This implies that {Jn} is a Cauchy sequence in the αs-complete tripled b-metric space X
and

αs(Jn, Jn+1, Jn+2) ≥ s2,

there exists v ∈ X such that

lim
n→∞ db(J2n+1, v, v) = lim

n→∞ db(fx2n, v, v) = lim
n→∞ db

(
S1(x2n+1), v, v

)
= 0.

Consequently, f (x2n) → v and S1(x2n+1) → v as n → ∞. So

lim
n→∞ db(J2n+1, v, v) = lim

n→∞ db(gx2n, v, v) = lim
n→∞ db

(
S2(x2n+1), v, v

)
= 0.

Thus g(x2n) → v and S2(x2n+1) → v as n → ∞. Again, we have

lim
n→∞ db(J2n, v, v) = lim

n→∞ db(hx2n, v, v) = lim
n→∞ db

(
S3(x2n+1), v, v

)
= 0.

Hence h(x2n) → v and S3(x2n+1) → v as n → ∞. Now, since (f , S1) is an αs-compatible
pair and

αs(J2n, J2n+1, J2n+2) ≥ s2.

Therefore, we have limn→∞ db(fS1(x2n), S1f (x2n), x2n) = 0 and (g, S2) is an αs-compatible
pair and

αs(J2n, J2n+1, J2n+2) ≥ s2.

We have limn→∞ db(gS2(x2n), S2g(x2n), x2n) = 0 and (h, S3) is an αs-compatible pair, we get

lim
n→∞ db

(
hS3(x2n), S3h(x2n), x2n

)
= 0.
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Since limn→∞ db(f (x2n), v, v) = 0, limn→∞ db(S1(x2n), v, v) = 0, and f , S1 is αs-continuous.
Thus limn→∞ db(S1f (x2n), S1v, S1v) = 0, limn→∞ db(fS1(x2n), fv, fv) = 0, and

lim
n→∞ db

(
g(x2n), v, v

)
= 0,

so g , S2 is αs-continuous, we have limn→∞ db(S2g(x2n), S2v, S2v) = 0 and

lim
n→∞ db

(
gS2(x2n), gv, gv

)
= 0.

Again in this way, limn→∞ db(S3h(x2n), S3v, S3v) = 0 and limn→∞ db(hS3g(x2n), hv, hv) = 0.
By the triangle inequality, we have

db
(
fv, S1v, S1(x2n)

) ≤ s
[
db

(
fv, fv, fS1(x2n)

)
+ db

(
S1v, S1f (x2n), S1v

)

+ db
(
S1x2n, fS1x2n, S1f (x2n)

)]
. (2.9)

Applying limit as n → ∞, we obtain db(fv, S1v, v) ≤ 0, which yields that fv = S1v = v. Thus
v is a coincidence and common fixed point of f , S1. Arguing in a similar manner, we can
prove that gv = S2v = v and hv = S1v = v. Thus fv = gv = hv = S1v = S2v = S3v = v and v is a
common fixed point of f , g , h, S1, S2, and S3. �

Remark 2.19 If we suppose that αs(v, w, w) ≥ s2 for each pair of common fixed points of
f , g , h, S1, S2, and S3, then v is unique. Indeed, if w is another fixed point of f , g , h, S1, S2,
and S3 and assuming on contrary db(fv, gw, hw) > 0, then from (2.3) we have

F
(
db(v, w, w)

)
= F

(
sdb

(
S1(v), S2(w), S3(w)

)) ≤ F
(
M(v, w, w)

)
– r, (2.10)

where

M(v, w, w) = max

{
db

(
S1(v), S2(w), S3(w)

)
, db

(
f (v), S2(v), S3(v)

)
,

db
(
g(w), S1(w), S3(w)

)
, db

(
h(w), S1(w), S2(w)

)
,

1
3s

[
db

(
S1(v), g(w), h(w)

)

+ db
(
f (v), S2(w), h(w)

)
+ db

(
S3(w), g(w), f (v)

)]}

= max

{
db(v, w, w), db(v, v, v), db(w, w, w), db(w, w, w),

1
3s

[
db(v, w, w), db(v, w, w) + db(w, w, v)

]}
.

Thus, by (2.10), we have F(sdb(v, w, w)) ≤ F(db(v, w, w)) – r < F(db(v, w, w)), which is a
contradiction. Hence v = w and v is a unique common fixed point of self-mappings f , g , h,
S1, S2, and S3.

The following example elucidates Theorem 2.18.
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Example 2.20 Let X = R
+
0 and db : X × X × X →R

+
0 be defined by

db(x, y, z) = max
{|x – y|2, |x – z|2, |y – z|2}

for all x, y, z ∈ X. Define αs : X × X × X →R
+
0 by

αs(x, y, z) =

⎧
⎨

⎩
4 max{ex–y, ex–z, ey–z}, x ≥ y ≥ z,

4 max{ey–x, ez–x, ez–y}, x ≤ y ≤ z.

So (S, db, s) is an αs-complete tripled b-metric with s = 2. Define the mappings f , g , h, S1,
S2, and S3 : X → X for all x ∈ X by

f (x) = ln

(
1 +

x
5

)
,

g(x) = ln

(
1 +

x
6

)
,

h(x) = ln

(
1 +

x
7

)
,

S1(x) = e6x – 1, S2(x) = e7x – 1, and S3(x) = e8x – 1. Clearly, f , g , h, S1, S2, and S3 are αs-
continuous self-mappings complying with f (X) = g(X) = h(X) = S1(X) = S2(X) = S3(X). We
note that the pair (f , S1) is αs-compatible. Indeed, let {xn} be a sequence in X satisfying
αs(xn, xn+1, xn+2) ≥ s2 and

lim
n→∞ f (xn) = lim

n→∞ ln

(
1 +

xn

5

)
= lim

n→∞ S1(xn) = t

for some t ∈ X. Then limn→∞ |f (xn) – t|2 = limn→∞ |S1(xn) – t|2 = 0, equivalently

lim
n→∞

∣∣∣∣ln
(

1 +
xn

5

)
– t

∣∣∣∣

2

= lim
n→∞

∣∣e6xn – 1 – t
∣∣2 = 0

implies

lim
n→∞

∣∣xn –
(
5et – 5

)∣∣2 = lim
n→∞

∣∣∣∣xn –
ln(t + 1)

6

∣∣∣∣

2

= 0.

Uniqueness of limit gives that 5et – 5 = ln(t+1)
6 , thus t = 0 is only possible solution. Due to

alphas-continuity of f and S1, for t = 0 ∈ X, we have

lim
n→∞ db

(
fS1(xn), S1f (xn), f (xn)

)

= max
{

lim
n→∞

∣∣fS1(xn) – S1f (xn)
∣∣2,

lim
n→∞

∣∣S1f (xn) – f (xn)
∣∣2, lim

n→∞
∣∣fS1(xn) – f (xn)

∣∣2
}

= max
{∣∣f (t) – S1(t)

∣∣2,
∣∣S1(t) – t

∣∣2,
∣∣f (t) – t

∣∣2}

= 0.
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Similarly, the pair (g, S2) and (h, S3) is αs-compatible. To prove that (f , g, h) is a partially
weakly αs-admissible triple of mappings with respect to S! , let x ∈ X and y ∈ S–1

1 (g(f (x))),
that is, S1(y) = g(f (x)) and

e6y – 1 = g
(

ln

(
1 +

x
5

))
= ln

(
1 +

ln(1 + x
5 )

6

)
.

Thus y = 1
6 ln(1 + ln(1 + ln(1+ x

5 )
6 )). We have

f (x) = ln

(
1 +

x
5

)
≥ g(y) = ln

(
1 +

y
6

)
= ln

(
1 +

1
36

ln

(
1 + ln

(
1 +

ln(1 + x
5 )

6

)))
.

We have z ∈ S–1
1 (hg(f (x))), that is, S1(z) = hg(f (x)), S1(z) = h(S1(y)), ez – 1 = ln(1 + S1(y)

7 ),

e6z – 1 = ln

(
1 +

1
7

ln

(
1 +

ln(1 + x
5 )

6

))
,

and

z =
1
6

ln

(
1 + ln

(
1 +

1
7

ln

(
ln(1 + x

5 )
5

)))
.

We conclude that

g(y) = ln

(
1 +

y
6

)
= ln

(
1 +

1
42

ln

(
1 + ln

(
1 +

ln(1 + x
5 )

6

)))

≥ h(z) = ln

(
1 +

z
7

)

= ln

(
1 +

1
42

ln

(
1 + ln

(
1 +

1
7

ln

(
1 +

ln(1 + x
5 )

6

))))
.

Thus αs(f (x), g(y), h(z)) = 4 max{ex–y, ex–z, ey–z} ≥ s2. In this process, we can prove that
(g, f , h) is a partially weakly αs-admissible triple of mappings with respect to S2 and (h, g, f )
is a partially weakly αs-admissible triple of mappings with respect S1. Now, for each x, y, z ∈
X, consider

db
(
f (x), g(y), h(z)

)
= max

{∣∣f (x) – g(y)
∣∣2,

∣∣g(y) – h(z)
∣∣2,

∣∣f (x) – h(z)
∣∣2},

∣∣f (x) – g(y)
∣∣2 =

∣∣∣∣ln
(

1 +
x
5

)
– ln

(
1 +

y
6

)∣∣∣∣

2

≤
(

x
5

–
y
6

)2

=
1

900
(6x – 5y)2

≤ 1
900

(
e6x – e5y)2,
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∣∣g(y) – h(z)
∣∣2 =

∣∣∣∣ln
(

1 +
y
6

)
– ln

(
1 +

z
7

)∣∣∣∣

2

≤
(

y
6

–
z
7

)2

=
1

1764
(7y – 6z)2

≤ 1
1764

(
e7y – e6z)2,

and

∣∣f (x) – h(z)
∣∣2 =

∣∣∣∣ln
(

1 +
x
5

)
– ln

(
1 +

z
7

)∣∣∣∣

2

≤
(

x
5

–
z
7

)2

=
1

1225
(7x – 5z)2

≤ 1
1225

(
e7x – e5z)2.

Thus

db
(
f (x), g(y), h(z)

) ≤ 1
900

max
{(

e6x – e5y)2,
(
e7y – e6z)2,

(
e7x – e5z)2}

=
1

900
db

(
S1(x), S2(y), S3(z)

)
.

Define the function F : R+ →R by F(x) = ln x for all x ∈R
+. Hence, for all x, y, z ∈ X such

that db(f (x), g(y), h(z)) > 0, r = ln(900), we obtain

r + F
(
db

(
f (x), g(y), h(z)

)) ≤ F
(
M(x, y, z)

)
.

Thus the contractive condition (2.3) is satisfied for all x, y, z ∈ X. Hence, all the hypothe-
ses of Theorem 2.18 are satisfied. Note that f , g , h, S1, S2, and S3 have a unique common
fixed point x = 0.

We have obtained some results from Theorem 2.18, which we express in order.

Corollary 2.21 Let X be a nonempty set and αs : X × X × X → R
+
0 be a function. Let

(X, db, s) be an αs-complete tripled metric space and f , g , h, S1, S2, and S3 be αs-continuous
self-mappings on (X, db, s) such that for all (x, y, z) ∈ λf ,g,h,αs the inequality

sdb
(
f (x), g(y), h(z)

) ≤ kM(x, y, z) (2.11)

holds. Assume that the pairs (f , S1), (g, S2), and (h, S3) are αs-compatible and the triples of
mappings (f , g, h), (g, f , h), and (h, g, f ) are triangular partially weakly αs-admissible with
respect to S1, S2, and S3, respectively. Then the pairs (f , S1), (g, S2), and (h, S3) have the
coincidence point v in X. Moreover, if αs(S1v, S2v, S3v) ≥ s2, then v is a common fixed point
of f , g , h, S1, S2, and S3.
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Proof For all (x, y, z) ∈ λf ,g,h,αs , we have sdb(f (x), g(y), h(z)) ≤ kM(x, y, z). It follows that r +
ln(db(f (x), g(y), h(z))) ≤ ln(M(x, y, z)), where r = ln( s

k ) > 0. Then the contraction condition
(2.11) reduces to (2.3) with F(x) = ln x, and the application of Theorem 2.18 ensures the
existence of a fixed point. �

If we set S = S1 = S2 = S3 in Theorem 2.18, we obtain the following corollaries.

Corollary 2.22 Let f , g, h, and S be self-mappings defined on an αs-complete tripled metric
space (X, db, s) such that f (X)∪g(X)∪h(X) ⊆ S(X) with αs-continuous. Suppose that, for all
x, y, z ∈ X with αs(Tx, Ty, Tz) ≥ s2, there exist F ∈Fs and r > 0 such that db(f (x), g(y), h(z)) >
0, then

r + F
(
sdb

(
f (x), g(y), h(z)

)) ≤ F
(
M(x, y, z)

)
,

where

M(x, y, z) = max

{
db

(
S(x), S(y), S(z)

)
, db

(
f (x), S(x), S(x)

)
,

db
(
g(y), S(y), S(y)

)
, db

(
h(z), S(z), S(z)

)
,

1
3s

[
db

(
S(x), g(y), h(z)

)
+ db

(
f (x), S(y), h(z)

)

+ db
(
S(z), g(y), f (x)

)]}
.

Assume that either the pair (f , S) is αs-compatible and f is αs-continuous or (g, S) is
αs-compatible and g is αs-continuous, or (h, S) is αs-compatible and h is αs-continuous.
Then the pairs (f , S), (g, S), and (h, S) have the coincidence point v in X provided that the
triple of mappings (f , g, h) is triangular weakly αs-admissible with respect to S. Moreover,
if αs(Sv, Sv, Sv) ≥ s2, then v is a common fixed point of f , g , h, and S.

If we set S1 = S2 = S3 and f = g = h in Theorem 2.18, we obtain the following corollary.

Corollary 2.23 Let f and S be αs-continuous self-mappings defined on an αs-complete
tripled metric space (X, db, s) such that f (X) ⊆ S(X). Suppose that, for all x, y, z ∈ X with
αs(Sx, Sy, Sz) ≥ s2, there exist F ∈Fs and r > 0 such that db(f (x), f (y), f (z)) > 0, then

r + F
(
sdb

(
f (x), f (y), f (z)

)) ≤ F
(
M(x, y, z)

)
,

where

M(x, y, z) = max

{
db

(
S(x), S(y), S(z)

)
, db

(
f (x), S(x), S(x)

)
,

db
(
f (y), S(y), S(y)

)
, db

(
f (z), S(z), S(z)

)
,

1
3s

[
db

(
S(x), f (y), f (z)

)
+ db

(
f (x), S(y), f (z)

)

+ db
(
S(z), f (y), f (x)

)]}
.
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Assume that the pair (f , S) is αs-compatible. Then the mappings f and S have the coinci-
dence fixed point in X provided that fg is a triangular weakly αs-admissible mapping with
respect to S. Moreover, if αs(Sv, Sv, Sv) ≥ s2, then f , S has a common point v.

Corollary 2.24 Let f , g, h, and S be self-mappings defined on an αs-regular and αs-
complete tripled metric space (X, db, s) such that f (X), g(X), h(X) ⊆ S(X), and S(X) is a
closed subset of X. Suppose that, for all x, y, z ∈ X with αs(Sx, Sy, Sz) ≥ s2, there exist F ∈Fs,
and r > 0 such that db(f (x), g(y), h(z)) > 0, then r + F(sdb(f (x), g(y), h(z))) ≤ F(M(x, y, z)),
where

M(x, y, z) = max

{
db

(
S(x), S(y), S(z)

)
, db

(
f (x), S(x), S(x)

)
,

db
(
g(y), S(y), S(y)

)
, db

(
h(z), S(z), S(z)

)
,

1
3s

[
db

(
S(x), g(y), h(z)

)
+ db

(
f (x), S(y), h(z)

)

+ db
(
S(z), g(y), f (x)

)]}
.

Assume that the pairs (f , S), (g, S), and (h, S) are weakly compatible and the triple of
mappings (f , g, h) is triangular weakly αs-admissible with respect to S. Then the pairs (f , S),
(g, S), and (h, S) have the coincidence point v in X. Moreover, if αs(Sv, Sv, Sv) ≥ s2, then v is
a coincidence point of f , g , h, and S.

Corollary 2.25 Let f and S be self-mappings defined on an αs-regular and αs-complete
tripled metric space (X, db, s) such that f (X) ⊆ S(X), and S(X) is a closed subset of X. Sup-
pose that, for all x, y, z ∈ X with αs(Sx, Sy, Sz) ≥ s2, there exist F ∈ Fs and r > 0 such that
db(f (x), f (y), f (z)) > 0, then r + F(sdb(f (x), f (y), f (z))) ≤ F(M(x, y, z)), where

M(x, y, z) = max

{
db

(
S(x), S(y), S(z)

)
, db

(
f (x), S(x), S(x)

)
,

db
(
f (y), S(y), S(y)

)
, db

(
f (z), S(z), S(z)

)
,

1
3s

[
db

(
S(x), f (y), f (z)

)
+ db

(
f (x), S(y), f (z)

)

+ db
(
S(z), f (y), f (x)

)]}
.

Assume that the pair (f , S) is weakly compatible and f is a triangular weakly αs-
admissible mapping with respect to S. Then the pair (f , S) has the coincidence point v in
X.

Corollary 2.26 Let f , g , and h be self-mappings defined on a complete tripled metric space
(X, db, s). Suppose that, for all x, y, z ∈ X with αs(x, y, z) ≥ s2, there exist F ∈ Fs and r > 0
such that db(f (x), g(y), h(z)) > 0, then r + F(sdb(f (x), g(y), h(z))) ≤ F(M(x, y, z)), where

M(x, y, z) = max

{
db(x, y, z), db

(
f (x), x, x

)
,

db
(
g(y), y, y

)
, db

(
h(z), z, z

)
,
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1
3s

[
db

(
x, g(y), h(z)

)
+ db

(
f (x), y, h(z)

)

+ db
(
z, g(y), f (x)

)]}
.

Assume that the triple of mappings (f , g, h) is triangular weakly αs-admissible. Then f , g ,
and h have a common fixed point v in X provided that either f or g or h is αs-continuous,
or X is αs-regular.

Theorem 2.27 Let f , g , h, S1, S2, and S3 be αs-continuous self-mappings defined on an αs-
complete tripled b-metric space (X, db, s) such that f (X) ⊆ S1(X), g(X) ⊆ S2(X), and h(X) ⊆
S3(X). Suppose that, for all (x, y, z) ∈ λf ,g,h,αs , there exist F ∈Fs and r > 0 such that

r + F
(
sdb

(
f (x), g(y), h(z)

)) ≤ F
(
Mi(x, y, z)

)
(2.12)

holds for one of i = 1, 2, 3, 4, 5, where

M1(x, y, z) = a1db
(
S1(x), S2(y), S3(z)

)
+ a2db

(
f (x), S2(x), S3(x)

)

+ a3db
(
g(y), S1(y), S3(y)

)
+ a4db

(
h(z), S1(z), S2(z)

)

+ a5
[
db

(
S1(x), g(y), h(z)

)
+ db

(
f (x), S2(y), h(z)

)

+ db
(
S3(z), g(y), f (x)

)]

with ai ≥ 0, i = 1, 2, 3, 4, 5, such that a1 + a2 + a3 + 3a5 = s,

M2(x, y, z) = a1db
(
S1(x), S2(y), S3(z)

)
+ a2db

(
f (x), S2(x), S3(x)

)

+ a3db
(
g(y), S1(y), S3(y)

)
+ a4db

(
h(z), S1(z), S2(z)

)

with a1 + a2 + a3 = s,

M3(x, y, z) = k max
{

db
(
f (x), S2(x), S3(x)

)
, db

(
g(y), S1(y), S3(y)

)
,

db
(
h(z), S1(z), S2(z)

)}

with k ∈ [0, 1),

M4(x, y, z) = a1(x, y, z)db
(
S1(x), S2(y), S3(z)

)

+ a2(x, y, z)db
(
f (x), S2(x), S3(x)

)

+ a3(x, y, z)db
(
g(y), S1(y), S3(y)

)

+ a4db
(
h(z), S1(z), S2(z)

)

+ a5(x, y, z)
[
db

(
S1(x), g(y), h(z)

)

+ db
(
f (x), S2(y), h(z)

)

+ db
(
S3(z), g(y), f (x)

)]
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with ai(x, y, z), i = 1, 2, 3, 4, 5, are nonnegative functions such that

sup
x,y,z∈X

[
a1(x, y, z) + a2(x, y, z) + a3(x, y, z) + 3a5(x, y, z)

]
= s.

Suppose that the pairs (f , S1), (g, S2), and (h, S3) are αs-compatible and the triples of map-
pings (f , g, h), (g, f , h), and (h, g, f ) are triangular partially triple weakly αs-admissible with
respect to S1, S2, and S3, respectively. Then the pairs (f , S1), (g, S2), and (h, S3) have the coin-
cidence point v in X. Moreover, if αs(S1(v), S2(v), S3(v)) ≥ s2, then v is a common fixed point
of f , g , h, S1, S2, and S3.

Proof In line with the beginning part of Theorem 2.18, for all (x, y, z) ∈ λf ,g,h,αs for some
F ∈Fs and r > 0, from contractive condition (2.12) we get

F
(
sdb(J2n, J2n+1, J2n+2)

)
= F

(
sdb

(
f (x2n), g(x2n+1), h(x2n+2)

))

≤ F
(
M1(x2n, x2n+1, x2n+2)

)
– r (2.13)

for all n ∈N, where

M1(x2n, x2n+1, x2n+2) = a1db
(
S1(x2n), S2(x2n+1), S3(x2n+2)

)

+ a2db
(
f (x2n), S2(x2n), S3(x2n)

)

+ a3db
(
g(x2n+1), S1(x2n+1), S3(x2n+1)

)

+ a4db
(
h(x2n+2), S1(x2n+2), S2(x2n+2)

)

+ a5
[
db

(
S1(x2n), g(x2n+1), h(x2n+2)

)

+ db
(
f (x2n), S2(x2n+1), h(x2n+2)

)

+ db
(
S3(x2n+2), g(x2n+1), f (x2n)

)]

= a1db(J2n, J2n+1, J2n+1) + a2db(J2n+1, J2n, J2n–1)

+ a3db(J2n+2, J2n+1, J2n) + a4db(J2n+2, J2n+2, J2n+2)

+ a5
[
db(J2n, J2n+2, J2n+2) + db(J2n+1, J2n+1, J2n+2)

+ db(J2n+1, J2n+2, J2n+1)
]

≤ a1db(J2n, J2n+1, J2n+1) + a2db(J2n+1, J2n, J2n–1)

+ a3db(J2n+2, J2n+1, J2n)

+ a5
[
3db(J2n, J2n+1, J2n+2)

]

= (a1 + a3 + 3a5)db(J2n, J2n+1, J2n+2)

+ a2db(J2n+1, J2n, J2n–1).

Now from (2.13) we have

F
(
sdb(J2n, J2n+1, J2n+2)

)
= F

(
(a1 + a3 + 3a5)db(J2n, J2n+1, J2n+2)

+ a2db(J2n+1, J2n, J2n–1)
)

– r. (2.14)
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Since F is strictly increasing, (2.14) implies

sdb(J2n, J2n+1, J2n+2) ≤ (a1 + a3 + 3a5)db(J2n, J2n+1, J2n+2)

+ a2db(J2n+1, J2n, J2n–1).

So

(s – a1 – a3 – 3a5)db(J2n, J2n+1, J2n+2) ≤ a2db(J2n+1, J2n, J2n–1).

Hence

db(J2n, J2n+1, J2n+2) ≤ a2

s – a1 – a3 – 3a5
db(J2n–1, J2n, J2n+1).

Since a1 + a2 + a3 + 3a5 = s, therefore db(J2n, J2n+1, J2n+2) ≤ db(J2n–1, J2n, J2n+1). Thus from
(2.14) we obtain

F
(
sdb(J2n, J2n+1, J2n+2)

) ≤ F
(
db(J2n–1, J2n, J2n+1)

)
– r (2.15)

for all n ∈N. Similarly,

F
(
sdb(J2n–1, J2n, J2n+1)

) ≤ F
(
db(J2n–2, J2n–1, J2n)

)
– r (2.16)

for all n ∈N. Hence, from (2.15) and (2.16), we have

F
(
sdb(Jn, Jn+1, Jn+2)

)
= F

(
db(Jn–1, Jn, Jn+1)

)
– r. (2.17)

Inequality (2.17) leads to remark that {xn} is a Cauchy sequence, and the remaining part
of the proof can easily be followed from the finishing part of the proof of Theorem 2.18.
For M2(x, y, z), in line with the beginning part of the proof of Theorem 2.18, for all (x, y, z) ∈
λf ,g,h,αs , for some F ∈Fs, and r > 0, from contractive condition (2.11), we get

F
(
sdb(J2n, J2n+1, J2n+2)

)
= F

(
sdb

(
f (x2n), g(x2n+1), h(x2n+2)

))

≤ F
(
M2(x2n, x2n+1, x2n+2)

)
– r (2.18)

for all n ∈N∪ {0}, where

M2(x2n, x2n+1, x2n+2) = a1db(J2n, J2n+1, J2n+1) + a2db(J2n+1, J2n, J2n–1)

+ a3db(J2n+2, J2n+1, J2n)

+ a4db(J2n+2, J2n+2, J2n+2)

≤ a1db(J2n, J2n+1, J2n+2) + a2db(J2n+1, J2n, J2n–1)

+ a3db(J2n, J2n+1, J2n+2)

= (a1 + a3)db(J2n, J2n+1, J2n+2)

+ a2db(J2n+1, J2n, J2n–1).
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From (2.18), we have

F
(
sdb(J2n, J2n+1, J2n+2)

) ≤ F
(
(a1 + a3)db(J2n, J2n+1, J2n+2)

)

+ a2db(J2n+1, J2n, J2n–1) – r. (2.19)

Since F is strictly increasing, (2.19) implies

sdb(J2n, J2n+1, J2n+2) ≤ (a1 + a2)db(J2n, J2n+1, J2n+2)

+ a2db(J2n+1, J2n, J2n–1),

so (s – a1 – a3)db(J2n, J2n+1, J2n+2) ≤ a2db(J2n–1, J2n, J2n+1). Hence

db(J2n, J2n+1, J2n+2) ≤ a2

s – a1 – a3
db(J2n–1, J2n, J2n+1).

Thus, from (2.19), we obtain

F
(
sdb(J2n, J2n+1, J2n+2)

) ≤ F
(
db(J2n–1, J2n, J2n+1)

)
– r (2.20)

for all n ∈N. Similarly,

F
(
sdb(J2n–1, J2n, J2n+1)

) ≤ F
(
db(J2n–2, J2n–1, J2n)

)
– r (2.21)

for all n ∈N. Hence, from (2.20) and (2.21), we have

F
(
sdb(Jn, Jn+1, Jn+2)

) ≤ F
(
db(Jn–1, Jn, Jn+1)

)
– r. (2.22)

Inequality (2.22) leads to remark that {Jn} is a Cauchy sequence, and the remaining part
of the proof can easily be followed from the finishing part of the proof of Theorem 2.18.
For M3(x, y, z), in line with the beginning part of the proof of Theorem 2.18, for all (x, y, z) ∈
λf ,g,h,αs , for some F ∈Fs, and r > 0, from contractive condition (2.12), we get

F
(
sdb(J2n, J2n+1, J2n+2)

)
= F

(
sdb

(
f (x2n), g(x2n+1), h(x2n+2)

))

≤ F
(
M3(x2n, x2n+1, x2n+2)

)
– r (2.23)

for all n ∈N∪ {0}, where

M3(x2n, x2n+1, x2n+2) = k max
{

db(J2n–1, J2n, J2n+1), db(J2n+2, J2n+1, J2n), 0
}

= k max
{

db(J2n–1, J2n, J2n+1), db(J2n+2, J2n+1, J2n)
}

.

If

max
{

db(J2n–1, J2n, J2n+1), db(J2n+2, J2n+1, J2n)
}

= db(J2n+2, J2n+1, J2n),

then from (2.23) we have F(sdb(J2n, J2n+1, J2n+2)) ≤ F(kdb(J2n, J2n+1, J2n+2)) – r. Since F is
strictly increasing, we have sdb(J2n, J2n+1, J2n+2) < kdb(J2n, J2n+1, J2n+2). It is a contradiction.
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Thus we have

F
(
sdb(J2n, J2n+1, J2n+2)

) ≤ F
(
kdb(J2n–1, J2n, J2n+1)

)
– r,

and sdb(J2n, J2n+1, J2n+2) ≤ kdb(J2n–1, J2n, J2n+1). So

db(J2n, J2n+1, J2n+2) ≤ k
s

db(J2n–1, J2n, J2n+1).

The emaining part of the proof can easily be followed from the proof of Theorem 2.18.
Similar arguments hold from M4(x, y, z). �

Theorem 2.28 Let f , g , h, S1, S2, and S3 be self-mappings defined on a complete tripled
b-metric space (X, db, s) such that f (X) ⊆ S1(X), g(X) ⊆ S2(X), and h(X) ⊆ S3(X). If there
exist F ∈Fs and r > 0 such that db(f (x), g(y), h(z)) > 0, then

r + F(sdb
(
f (x), g(y), h(z)

) ≤ F
(
M(x, y, z)

)

for all x, y, z ∈ X. Then f , g , h, S1, S2, and S3 have a unique common fixed point in X provided
that S1, S2, and S3 are continuous and pairs (f , S1), (g, S2), and (h, S3) are compatible.

Proof The arguments follow the same lines as in the proof of Theorem 2.18. �

3 Application to a system of integral equations
Let X = C([0, 1],R) be the space of all continuous real-valued functions defined on [0, 1].
Let db : X × X × X →R

+
0 be defined

db(u, v, w) = max
{

sup
t∈[0,1]

∣∣u(t) – v(t)
∣∣2, sup

t∈[0,1]

∣∣u(t) – w(t)
∣∣2, sup

t∈[0,1]

∣∣v(t) – w(t)
∣∣2

}

for all u, v, w ∈ C([0, 1],R), and define αs : X × X × X → R
+
0 by αs(u, v, w) = s2 for all

u, v, w ∈ X. Obviously, (X, db, s) is an αs-complete tripled b-metric space. We will apply
Theorem 2.18 to show the existence of a common solution of the system of Volterra-type
integral equations given by

u(t) = p(t) +
∫ t

0
K

(
t, r, S1

(
u(t)

))
dr,

v(t) = p(t) +
∫ t

0
J
(
t, r, S2

(
v(t)

))
dr,

w(t) = p(t) +
∫ t

0
I
(
t, r, S3

(
w(t)

))
dr

(3.1)

for all t ∈ [0, 1], where p : [0, 1] → R is a continuous function and K , J , I : [0, 1] × [0, 1] ×
X → R are lower semi-continuous operators. Now, we prove the following theorem to
ensure the existence of solution for the system of integral equations.
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Theorem 3.1 Let X = C([0, 1],R) and define the mappings f , g, h : X → X by

f
(
u(t)

)
= p(t) +

∫ t

0
K

(
t, r, S1

(
u(t)

))
dr,

g
(
v(t)

)
= p(t) +

∫ t

0
J
(
t, r, S2

(
v(t)

))
dr,

h
(
w(t)

)
= p(t) +

∫ t

0
I
(
t, r, S3

(
w(t)

))
dr

for all t ∈ [0, 1]. Assume that the following conditions are satisfied.
• There exists a continuous function φi : X →R

+
0 , i = 1, 2, 3, such that

∣∣K(t, r, S1) – J(t, r, S2)
∣∣ ≤ φ1(r)

∣∣S1
(
u(t)

)
– S2

(
v(t)

)∣∣,
∣∣K(t, r, S1) – I(t, r, S3)

∣∣ ≤ φ2(r)
∣∣S1

(
u(t)

)
– S3

(
w(t)

)∣∣,
∣∣J(t, r, S2) – I(t, r, S3)

∣∣ ≤ φ3(r)
∣∣S2

(
v(t)

)
– S3

(
w(t)

)∣∣

for each t, r ∈ [0, 1] and S1, S2, and S3 ∈ X ;
• There exists τ > 0 such that

∫ t

0
φ1(r)dr,

∫ t

0
φ2(r)dr,

∫ t

0
φ3(r)dr ≤

√
e–τ

s
.

Then the system of integral Eqs. (3.1) has a solution.

Proof By assumptions (i) and (ii), we have

db
(
f
(
u(t)

)
, g

(
v(t)

)
, h

(
w(t)

))
= max

{
sup

t∈[0,1]

∣∣f
(
u(t)

)
– g

(
v(t)

)∣∣2,

sup
t∈[0,1]

∣∣g
(
v(t)

)
– h

(
w(t)

)∣∣2,

sup
t∈[0,1]

∣∣f
(
u(t)

)
– h

(
w(t)

)∣∣2
}

,

where

sup
t∈[0,1]

∣∣f
(
u(t)

)
– g

(
v(t)

)∣∣2 =
(

sup
t∈[0,1]

∫ t

0

∣∣K
(
t, r, S1

(
u(t)

))
– J

(
t, r, S2

(
v(t)

))∣∣dr
)2

≤
(

sup
t∈[0,1]

∫ t

0
φ1(r)

∣∣S1
(
u(t)

)
– S2

(
v(t)

)∣∣dr
)2

≤
(√

sup
t∈[0,1]

∣∣S1
(
u(t)

)
– S2

(
v(t)

)∣∣2
∫ t

0
φ1(r)dr

)2

= sup
t∈[0,1]

∣
∣S1

(
u(t)

)
– S2

(
v(t)

)∣∣2
(∫ t

0
φ1(r)dr

)2

,

sup
t∈[0,1]

∣∣g
(
v(t)

)
– h

(
w(t)

)∣∣2 ≤ sup
t∈[0,1]

∣∣S2
(
v(t)

)
– S3

(
w(t)

)∣∣2
(∫ t

0
φ2(r)dr

)2

,
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sup
t∈[0,1]

∣∣f
(
u(t)

)
– h

(
w(t)

)∣∣2 ≤ sup
t∈[0,1]

∣∣S1
(
u(t)

)
– S3

(
w(t)

)∣∣2
(∫ t

0
φ3(r)dr

)2

.

Consequently, we have

db
(
f
(
u(t)

)
, g

(
v(t)

)
, h

(
w(t)

))
=

e–τ

s
max

{
sup

t∈[0,1]

∣∣S1
(
u(t)

)
– S2

(
v(t)

)∣∣2,

sup
t∈[0,1]

∣∣S2
(
v(t)

)
– S3

(
w(t)

)∣∣2, sup
t∈[0,1]

∣∣S1
(
u(t)

)
– S3

(
w(t)

)∣∣2
}

=
e–τ

s
db

(
S1

(
u(t)

)
, S2

(
v(t)

)
, S3

(
w(t)

))

≤ e–τ

s
M

(
u(t), v(t), Sw(t)

)
.

Thus, we obtain

sdb
(
f
(
u(t)

)
, g

(
v(t)

)
, h

(
w(t)

)) ≤ e–τ M
(
u(t), v(t), w(t)

)
,

which implies that

τ + ln
(
sdb

(
f
(
u(t)

)
, g

(
v(t)

)
, h

(
w(t)

))) ≤ ln
(
M

(
u(t), v(t), w(t)

))
.

For F(r) = ln r, all the hypotheses of Theorem 2.28 are satisfied. Hence the system of
integral equations has a unique common solution. �
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26. Minak, G., Helvaci, A., Altun, I.: Ćirić type generalized f -contractions on complete metric spaces and fixed point
results. Filomat 28(6), 1143–1151 (2014) http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/99

27. Nazam, M., Muhammad, A., Postolache, M.: Coincidence and common fixed point theorems for four mappings
satisfying (ααs , f )-contraction. Nonlinear Anal., Model. Control 23(4), 664–690 (2018).
https://doi.org/10.15388/NA.2018.5.3

28. Aghajani, A., Abbas, M., Roshan, J.: Common fixed point of generalized weak contractive mappings in partially
ordered b-metric spaces. Math. Slovaca 64(4), 941–960 (2014). https://doi.org/10.2478/s12175-014-0250-6

29. Amini-Harandi, A.: Fixed point theory for quasi-contraction mappings in b-metric spaces. Appl. Math. Lett. 15(2),
351–358 (2014) http://www.math.ubbcluj.ro/nodeacj/sfptcj.html

30. Cosentino, M., Jleli, M., Samet, B., Vetro, C.: Solvability of integrodifferential problem via fixed point theory in b-metric
spaces. Fixed Point Theory Appl. 2015, 70 (2015). https://doi.org/10.1186/s13663-015-0317-2

31. Farajzadeh, A., Kaewcharoen, A., Lohawech, P.: On fixed point theorems for (ξ ,α,η)-expansive mappings in complete
metric spaces. Int. J. Pure Appl. Math. 102(1), 129–146 (2015). https://doi.org/10.12732/ijpam.v102i1.13

32. Farajzadeh, A., Noytaptim, C., Kaewcharoen, A.: Some fixed point theorems for generalized α-η-ψ -Geraghty
contractive type mappings in partial b-metric spaces. J. Inform. Math. Sci. 3(10), 455–478 (2018).
https://doi.org/10.26713/jims.v10i3.583

http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/1993
https://doi.org/10.15388/NA.2017.1.2
https://doi.org/10.15388/NA.2016.2.4
https://doi.org/10.15672/HJMS.20164512482
http://gujs.gazi.edu.tr/article/view/5000186644
https://doi.org/10.4995/agt.2017.6776
https://doi.org/10.1186/1687-1812-2014-210
https://doi.org/10.1186/1687-1812-2013-277
https://doi.org/10.15388/NA.2017.5.6
https://doi.org/10.1007/978-981-10-3722-17
https://doi.org/10.15388/NA.2016.4.7
https://doi.org/10.1016/j.na.2011.10.014
https://doi.org/10.1186/1687-1812-2013-151
https://doi.org/10.1186/1029-242X-2014-136
https://doi.org/10.1155/2014/280817
https://doi.org/10.15388/NA.2016.3.5
https://doi.org/10.2298/fil1404715c
http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/99
https://doi.org/10.15388/NA.2018.5.3
https://doi.org/10.2478/s12175-014-0250-6
http://www.math.ubbcluj.ro/nodeacj/sfptcj.html
https://doi.org/10.1186/s13663-015-0317-2
https://doi.org/10.12732/ijpam.v102i1.13
https://doi.org/10.26713/jims.v10i3.583

	Extraction new results of common ﬁxed point theorems for (T, alphas, F)-contraction of six mappings in a tripled b-metric space with an application of integral equations
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Application to a system of integral equations
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


