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Abstract
In this paper, we study a kind of generalized Riemann–Hilbert problems (R-HPs) with
several unknown functions in strip domains. We mainly discuss methods of solving
R-HPs with two unknown functions and obtain general solutions and conditions of
solvability on function spaces H∗. At the end of this paper, we consider in detail the
behavior of the solution at ∞ and in different domains. Thus the results in this paper
generalize and improve the theory of the classical Riemann–Hilbert problems.
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1 Introduction
It is well known that Riemann–Hilbert problems are a powerful mathematical tool widely
applied in physics, fracture mechanics, engineering mechanics, engineering and technol-
ogy, and many other fields [1–3]. Especially, the problem of finding solutions for some
kinds of singular integral equations is often transformed to solving Riemann–Hilbert
problems [4–15]. In [1, 2] the Riemann–Hilbert problems on an infinite straight line has
systematically been studied, and the Riemann–Hilbert problems with unknown function
on two parallel lines was further described. So far, the results of the boundary value prob-
lems for analytic functions have been mostly confined to the case of only one unknown
function.

Motivated by the above researches, the main purpose of this paper is extending the
theory to the R-HPs with n ≥ 2 unknown functions on n parallel straight lines, and we
mainly discuss the case n = 2. Using the classical boundary value theory and principle of
analytic continuation, we investigate the analytic solutions and the conditions of solvabil-
ity on function spaces H∗ (the notation H∗ can be found in Sect. 2). At nodal points the
asymptotic behavior of a solution of such a problem is discussed in detail. Our method of
solving problems is innovate, different from those in classical cases. Meanwhile, this paper
also improves some results of [2–4, 7].
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2 Definitions and lemmas
In this section, we introduce some definitions and lemmas.

Definition 2.1 Let F(x) be a continuous function in the real number field R. A function
F(x) belongs to Ĥ if the following two conditions are fulfilled:

(1) there exists B ∈ R
+ such that

∣
∣F(x1) – F(x2)

∣
∣ ≤ B

∣
∣x1

–1 – x2
–1∣∣ (2.1)

on the neighborhood N∞ of ∞, that is, there exists a sufficiently large M > 0 such that
(2.1) is satisfied for all x1, x2 ∈R\[–M, M].

(2) F ∈ H on [–M, M], where H is the class of Hölder continuous functions (for the
notation H , see [1]).

Definition 2.2 A function F belongs to H∗ if it satisfies:
(1) F ∈ Ĥ , (2) F ∈ L2(R) (see [1, 6] for the definition of L2(R)).
With respect to the function spaces H∗, one of its important properties is closedness

under pointwise multiplication.
If a function F satisfies the Hölder condition on a neighborhood N∞ of ∞, then we write

F ∈ H(N∞).

Definition 2.3 Let f (t) ∈ H∗. We define its Fourier transform F and the inverse Fourier
transform F

–1 as follows:

Ff (t) =
1√
2π

∫ +∞

–∞
f (t)eitx dt; F

–1F(x) =
1√
2π

∫ +∞

–∞
F(x)e–itx dx. (2.2)

Lemma 2.1 Let functions �1 and �2 be analytic in the upper half-plane C+ and the lower
half-plane C– except their poles z0 = ∞ and zk (k = 1, 2, . . . , n). Suppose that the boundary
values of �1 and �2 on Im z = 0 are equal. The main parts of the Laurent expansion of �1

and �2 at z0 = ∞ are

G0(z) = c0
1z + c0

2z2 + · · · + c0
mzm, (2.3)

where c0
m �= 0 and c0

k (1 ≤ k ≤ m) are constants. The main parts of the Laurent expansion
for �1 and �2 at every pole zk (k = 1, 2, . . . , n) are

Gk

(
1

z – zk

)

=
ck

1
z – zk

+
ck

2
(z – zk)2 + · · · +

ck
p

(z – zk)p , ∀k ∈ {1, 2, . . . , n}, (2.4)

where ck
l (1 ≤ l ≤ p) are constants, and ck

p �= 0, p ≥ 1. Then �1 and �2 can be represented
by the same function � in the complex plane C, namely,

�(z) = c0 + G0(z) +
n

∑

k=1

Gk

(
1

z – zk

)

, (2.5)

where c0 is a complex constant.
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Proof We can prove the lemma by using the generalized Liouville theorem [14, 16, 17] and
the principle of analytic continuation [1, 2, 7]. �

The following lemmas are obvious facts, and we omit their proofs.

Lemma 2.2 If there exists a sufficiently large positive number B such that F(z) ∈ H for
|z| < B and F(z) is analytic for |z| ≥ B, then F(z) ∈ Ĥ on the complex plane C.

Lemma 2.3 (see [1, 2, 4]) Let f (t) ∈ {0} and F(x) = Ff (t). The Cauchy-type integral is de-
fined as

�(z) =
1

2π i

∫ +∞

–∞
F(τ )
τ – z

dτ , z ∈C
+ ∪C

–. (2.6)

Then for z ∈C
+, we have

�+(z) =
1

2π i

∫ +∞

–∞
F(τ )
τ – z

dτ =
1√
2π

∫ +∞

–∞
f (t)eitz dt, (2.7)

and for z ∈C
–, we have

�–(z) =
1

2π i

∫ +∞

–∞
F(τ )
τ – z

dτ = –
1√
2π

∫ +∞

–∞
f (t)eitz dt. (2.8)

It is easy to prove that �+(z) and �–(z) are analytical in z ∈C
+ and z ∈ C

–, respectively.

3 Problem presentation and solution
We now propose boundary value problems for analytic functions with n ≥ 2 unknown
functions on n parallel lines, and then we discuss the methods of solution of such prob-
lems.

Suppose that n lines γj (1 ≤ j ≤ n) are parallel to the X-axis and denote them by L =
�n

j=1γj, where γj(1 ≤ j ≤ n) take the direction from left to right as the positive direction and
can be expressed by ξj = x + iRj (Rn < · · · < R2 < R1), where x, Rj ∈ R. Our goal is to obtain
functions Fj(z)(1 ≤ j ≤ n) such that Fj(z) are analytic in Rj < Im z < Rj–1(2 ≤ j ≤ n) and
F1(z) is analytic in Im z > R1 and Im z < Rn, and the following boundary value conditions
are fulfilled:

F+
j (ξ ) – Aj(ξ )F–

j+1(ξ ) = Bj(ξ ), ξ ∈ γj, j = 1, 2, . . . , n, (3.1)

when j = n, denote F–
n+1(ξ ) as F–

1 (ξ ), where the given functions Aj(ξ ), Bj(ξ )(1 ≤ j ≤ n) be-
long to H∗ on γj. Obviously, R-HP (3.1) can also be written in the following form:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F+
1 (ξ ) – A1(ξ )F–

2 (ξ ) = B1(ξ ), ξ ∈ γ1,

F+
2 (ξ ) – A2(ξ )F–

3 (ξ ) = B2(ξ ), ξ ∈ γ2,

· · · · · · · · · · · ·
F+

n–1(ξ ) – An–1(ξ )F–
n (ξ ) = Bn–1(ξ ), ξ ∈ γn–1,

F+
n (ξ ) – An(ξ )F–

1 (ξ ) = Bn(ξ ), ξ ∈ γn.

(3.2)
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It follows from (3.1) that the orders of Fj(z)(1 ≤ j ≤ n) are equal to each other at ∞.
Thus, when the orders of Fj(z) are m at ∞, (3.1) can be denoted as Rm. In fact, the problem
R0 and problem R–1 are frequently discussed. On the problem R0, Fj(z) are supposed to
be finite and nonzero at ∞. On problem R–1, Fj(z) are assumed to be zero at ∞. When
Aj(ξ )(1 ≤ j ≤ n) are not zero on L, problem (3.1) is said to be of normal type; otherwise, it
is called of nonnormal type or of exception type.

Note that since the positive direction of γj(1 ≤ j ≤ n) is the direction from left to right,
when the observer moves from left to right on γj, the boundary values of left domain of
γj are positive, that is, the positive boundary values of Fj(z)(1 ≤ j ≤ n) are the boundary
values above γj, and the negative boundary values of Fj(z) are those below γj.

Without loss of generality, in this paper, we only discuss the case n = 2. As for R-HP
with n > 2 unknown functions on n parallel lines, there is no essential difference for the
methods of solution with the case n = 2.

When n = 2, R-HP (3.1) can be stated as follows.

Problem Assume that γ1 : ξ = x + iβ and γ2 : ξ = x + iα are two oriented lines, where α

and β are real numbers with α < β . Similarly to the above statement, we take the direction
of γ1 and γ2 from left to right as the positive direction. We want to obtain functions F1(z)
and F2(z) such that F1(z) is analytic in {Im z > β} ∪ {Im z < α}, and F2(z) is analytic in {z :
α < Im z < β} and satisfies the following boundary value conditions on γ1 and γ2:

⎧

⎨

⎩

F+
1 (ξ ) – A1(ξ )F–

2 (ξ ) = B1(ξ ), ξ ∈ γ1,

F+
2 (ξ ) – A2(ξ )F–

1 (ξ ) = B2(ξ ), ξ ∈ γ2.
(3.3)

In fact, (3.3) is the R-HP on two parallel straight lines Im z = β and Im z = α with z = ∞
as a pole, and it is a generalization of the classical R-HP.

Here F+
1 (ξ ) is the boundary value of the analytic function F1(z), which is analytic in {z :

Im z > β}, and belongs to H∗ on γ1; F–
1 (ξ ) is the boundary value of the analytic function

F1(z), which is analytic in {z : Im z < α}, and belongs to H∗ on γ2; F±
2 (ξ ) are the boundary

values of the analytic function F2(z), which is analytic in {z : α < Im z < β}, and belong
to H∗ on γ1,γ2, respectively. Since Aj(ξ ), Bj(ξ ) (j = 1, 2) belong to H∗ on γj. Thus, for the
functions appearing in (3.3), their one-sided limits exist as x → ∞ on γ1,γ2, and we have

lim
x→+∞ A1(iβ + x) = lim

x→–∞ A1(iβ + x), lim
x→+∞ A2(iα + x) = lim

x→–∞ A2(iα + x). (3.4)

Similarly to Bj(ξ ) (j = 1, 2), we also have

B1(iβ + ∞) = B1(iβ – ∞), B2(iα + ∞) = B2(iα – ∞). (3.5)

In this paper, we only solve problem (3.3) in problem R0. For problem Rm, similar argu-
ments can be done. Since F1(z) ∈ H∗ on γj (j = 1, 2), the limz→∞ F1(z) exists, that is, both
F+

1 (∞) and F–
1 (∞) exist. Therefore, on γ1 and γ2, we have

lim
x→+∞ F+

1 (iβ + x) = lim
x→–∞ F+

1 (iβ + x), lim
x→+∞ F–

1 (iα + x) = lim
x→–∞ F–

1 (iα + x). (3.6)
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Similarly, the limz→∞ F2(z) exists, and so do F+
2 (∞) and F–

2 (∞). Then on γ1 and γ2, we also
have

F–
2 (iβ + ∞) = F–

2 (iβ – ∞), F+
2 (iα + ∞) = F+

2 (iα – ∞). (3.7)

Hence, F1(∞) and F2(∞) are finite and nonzero. Here we only consider the case of normal
type, that is, Aj(ξ ), A–1

j (ξ ) (j = 1, 2) have no zero point on γj. For the case of nonnormal type,
similar discussions also work (see [13–15]). To solve R-HP (3.3), we define κj as follows:

κj = Indγj Aj(ξ ) =
1

2π

[

arg Aj(ξ )
]

γj
, j = 1, 2,

and

κ = κ1 + κ2. (3.8)

Then we call κ as the index of R-HP (3.3). Set

λ(1)
∞ = μ(1)

∞ + iv(1)
∞ =

1
2π i

ln
A1(+∞ + iβ)
A1(–∞ + iβ)

,

λ(2)
∞ = μ(2)

∞ + iv(2)
∞ =

1
2π i

ln
A2(+∞ + iα)
A2(–∞ + iα)

,

γ∞ = λ(1)
∞ + λ(2)

∞ , μ∞ = μ(1)
∞ + μ(2)

∞ .

(3.9)

Since z = ∞ is a branch point of ln Aj(ξ ) (j = 1, 2), on the neighborhood N(∞) of ∞,
ln A1(ξ ) and ln A2(ξ ) are taken to be continuous branches, respectively, such that 0 ≤ μ∞ <
1. Without loss of generality, we take three points z0, z1, z2 such that α < Im z0 < β , Im z1 >
β , Im z2 < α, and we define the functions Y1(z) and Y2(z) as follows:

Y1(z) =

⎧

⎨

⎩

e1(z)

(z–z0)κ1 , Im z > β ,
e1(z)

(z–z1)κ1 , Im z < β ,
(3.10)

and

Y2(z) =

⎧

⎨

⎩

e2(z)

(z–z2)κ2 , Im z > α,
e2(z)

(z–z0)κ2 , Im z < α,
(3.11)

where

1(z) =
z – z0

2π i

∫ +∞+iβ

–∞+iβ

ln E1(t)
(t – z)(t – z0)

dt,

2(z) =
z – z0

2π i

∫ +∞+iα

–∞+iα

ln E2(t)
(t – z)(t – z0)

dt,

Ej(t) =
(

t – z0

t – zj

)κj

Aj(t), j = 1, 2, Im z �= α,β ,

(3.12)



Li Journal of Inequalities and Applications        (2020) 2020:234 Page 6 of 14

in which we have taken the analytic branches of ln Ej(t) (j = 1, 2), provided that we have
chosen

ln
t – z0

t – zj

∣
∣
∣
∣
t=∞

= 0, ∀j = 1, 2.

Note that the integrands appeared in (3.12) belong to H∗ on γ1, γ2, respectively, and there-
fore their integrals exist. Due to (3.10) and (3.11), we know that Y +

1 (z) and Y –
1 (z) are an-

alytic in Im z > β and Im z < β , respectively; Y +
2 (z) and Y –

2 (z) are analytic in Im z > α and
Im z < α, respectively. Therefore, Y1(z) and Y2(z) are sectionally holomorphic functions,
and

Yj(z) = O
(|z|–κj

)

(z → ∞), j = 1, 2.

It is easy to see that Y1(z), Y2(z) are the canonical functions, and one has

Y +
j (t) = Aj(t)Y –

j (t), ∀j ∈ {1, 2}. (3.13)

Denote

Y (z) = Y1(z)Y2(z),

it is not difficult to verify that Y (z) satisfies the definition of a canonical function (see [1–
3]), thus we call Y (z) as the canonical function of (3.3). Since Aj(ξ ) (j = 1, 2) belong to H∗,
similar to the discussion in [4], one must have, near z = ∞,

Y (ξ ) =
Y0(ξ )
ξγ∞ , Y0(ξ ) ∈ H(N∞).

Substituting (3.13) into (3.3), we obtain
⎧

⎨

⎩

[Y +
1 (ξ )]–1F+

1 (ξ ) – [Y –
1 (ξ )]–1F–

2 (ξ ) = B1(ξ )[Y +
1 (ξ )]–1, ξ ∈ γ1;

[Y +
2 (ξ )]–1F+

2 (ξ ) – [Y –
2 (ξ )]–1F–

1 (ξ ) = B2(ξ )[Y +
2 (ξ )]–1, ξ ∈ γ2.

(3.14)

The first equality in (3.14) is multiplied by [Y +
2 (ξ )]–1, and the second one is multiplied

by [Y –
1 (ξ )]–1, so we get

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[Y +
1 (ξ )Y +

2 (ξ )]–1F+
1 (ξ ) – [Y –

1 (ξ )Y +
2 (ξ )]–1F–

2 (ξ ) = B1(ξ )[Y +
1 (ξ )Y +

2 (ξ )]–1,

ξ ∈ γ1;

[Y –
1 (ξ )Y +

2 (ξ )]–1F+
2 (ξ ) – [Y –

1 (ξ )Y –
2 (ξ )]–1F–

1 (ξ ) = B2(ξ )[Y –
1 (ξ )Y +

2 (ξ )]–1,

ξ ∈ γ2.

(3.15)

Note that in (3.15), we cannot apply the Sokhotski–Plemelj formula [8, 16, 17] directly. In
general, when κ = κ1 +κ2 > 0, B1(ξ )[Y +

1 (ξ )Y +
2 (ξ )]–1 /∈ H∗, and so does B2(ξ )[Y –

1 (ξ )Y +
2 (ξ )]–1.

In order to unify, no matter how κ is chosen, let

X1(z) =

⎧

⎨

⎩

e1(z), Im z > β ,

e1(z)( z–z1
z–z0

)–κ1 , Im z < β ,
(3.16)
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and

X2(z) =

⎧

⎨

⎩

e2(z)( z–z2
z–z0

)–κ2 , Im z > α,

e2(z), Im z < α.
(3.17)

The first and second equalities in (3.15) are multiplied by (ξ – z0)–κ , respectively, and
thus (3.15) can be transformed to

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[X+
1 (ξ )X+

2 (ξ )]–1F+
1 (ξ ) – [X–

1 (ξ )X+
2 (ξ )]–1F–

2 (ξ ) = B1(ξ )[X+
1 (ξ )X+

2 (ξ )]–1,

ξ ∈ γ1,

[X–
1 (ξ )X+

2 (ξ )]–1F+
2 (ξ ) – [X–

1 (ξ )X–
2 (ξ )]–1F–

1 (ξ ) = B2(ξ )[X–
1 (ξ )X+

2 (ξ )]–1,

ξ ∈ γ2.

(3.18)

Since X1(z), X2(z) are bounded and nonzero on γ1,γ2, respectively, and B1(t) ∈ H∗, by
(3.16) and (3.17) we get B1(t)

X+
1 (t)X+

2 (t) ∈ H∗. Therefore we can define the sectionally analytic
function

ψ1(z) =
1

2π i

∫ +∞+iβ

–∞+iβ

B1(t)[X+
1 (t)X+

2 (t)]–1 dt
t – z

, Im z �= β . (3.19)

According to Privalov’s theorem (see [1]), we easily see that ψ1(z) is analytic in Im z > β

and Im z < β . Applying the Sokhotski–Plemelj formula to ψ1(z) in (3.19), we have

ψ+
1 (ξ ) – ψ–

1 (ξ ) = B1(ξ )
[

X+
1 (ξ )X+

2 (ξ )
]–1, ξ ∈ γ1. (3.20)

Thus the first equality in (3.18) can be reduced to

[

X+
1 (ξ )X+

2 (ξ )
]–1F+

1 (ξ ) –
[

X–
1 (ξ )X+

2 (ξ )
]–1F–

2 (ξ ) = ψ+
1 (ξ ) – ψ–

1 (ξ ), ξ ∈ γ1. (3.21)

Similarly, we also define the function

ψ2(z) =
1

2π i

∫ +∞+iα

–∞+iα

B2(t)[X–
1 (t)X+

2 (t)]–1 dt
t – z

, Im z �= α. (3.22)

We again apply the Sokhotski–Plemelj formula to ψ2(z) in (3.22), and thus the second
equality in (3.18) can also be reduced to

[

X–
1 (ξ )X+

2 (ξ )
]–1F+

2 (ξ ) –
[

X–
1 (ξ )X–

2 (ξ )
]–1F–

1 (ξ ) = ψ+
2 (ξ ) – ψ–

2 (ξ ), ξ ∈ γ2. (3.23)

Combining (3.21) and (3.23), we obtain

⎧

⎨

⎩

[X+
1 (ξ )X+

2 (ξ )]–1F+
1 (ξ ) – ψ+

1 (ξ ) = [X–
1 (ξ )X+

2 (ξ )]–1F–
2 (ξ ) – ψ–

1 (ξ ), ξ ∈ γ1,

[X–
1 (ξ )X+

2 (ξ )]–1F+
2 (ξ ) – ψ+

2 (ξ ) = [X–
1 (ξ )X–

2 (ξ )]–1F–
1 (ξ ) – ψ–

2 (ξ ), ξ ∈ γ2.
(3.24)



Li Journal of Inequalities and Applications        (2020) 2020:234 Page 8 of 14

Thus we need only to discuss problem (3.24) instead of (3.3). Adding –ψ+
2 (ξ ) in the first

equality of (3.24) and subtracting ψ–
1 (ξ ) in the second one, we get

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[X+
1 (ξ )X+

2 (ξ )]–1F+
1 (ξ ) – ψ+

1 (ξ ) – ψ+
2 (ξ )

= [X–
1 (ξ )X+

2 (ξ )]–1F–
2 (ξ ) – ψ–

1 (ξ ) – ψ+
2 (ξ ), ξ ∈ γ1,

[X–
1 (ξ )X+

2 (ξ )]–1F+
2 (ξ ) – ψ+

2 (ξ ) – ψ–
1 (ξ )

= [X–
1 (ξ )X–

2 (ξ )]–1F–
1 (ξ ) – ψ–

2 (ξ ) – ψ–
1 (ξ ), ξ ∈ γ2.

(3.25)

We denote the left side of the first equality in (3.25) by �+
1 (z), whereas the right side is

denoted by �–
1 (z), that is,

�+
1 (z) =

[

X+
1 (z)X+

2 (z)
]–1F+

1 (z) – ψ+
1 (z) – ψ+

2 (z),

�–
1 (z) =

[

X–
1 (z)X+

2 (z)
]–1F–

2 (z) – ψ–
1 (z) – ψ+

2 (z).
(3.26)

We define the following function �1(z):

�1(z) = �+
1 (z) when Im z > β ; �1(z) = �–

1 (z) when Im z < β . (3.27)

By the boundary value conditions (3.25) we know that �+
1 (z) = �–

1 (z) on Im z = β .
We first give explicit solutions of �+

1 (z) and �–
1 (z) in Im z > β and Im z < β , respectively.

In Im z > β , since [X+
1 (z)]–1 and [X+

2 (z)]–1 are analytic, [X+
1 (z)X+

2 (z)]–1 is also analytic. Since
ψ+

j (z) (j = 1, 2) are analytic, it follows that �+
1 (z) is analytic, so the limz→∞ �+

1 (z) exists. For
convenience, we assume that

�+
1 (z) = D1(z),

and thus

[

X+
1 (z)X+

2 (z)
]–1F+

1 (z) – ψ+
1 (z) – ψ+

2 (z) = D1(z), Im z > β , (3.28)

where D1(z) is analytic in Im z > β , and the limz→∞ D1(z) exists.
In Im z < β , when κ ≥ 0, [X–(z)]–1 and [X–

1 (z)X+
2 (z)]–1 have a pole z0 of order κ ; when

κ < 0, [X–
1 (z)X+

2 (z)]–1 has no singularity, but X–
1 (z)X+

2 (z) has a pole z0 of order |κ|. Hence,
using Lemmas 2.1 and 2.2, the generalized Liouville theorem, and the principle of analytic
continuation, it follows that

�–
1 (z) =

qk(z)
(z – z0)κ

, (3.29)

where we have set

qκ (z) = c0 + c1z + c2z2 + · · · + cκzκ

with arbitrary constants cj (0 ≤ j ≤ κ). When κ > –1, qκ (z) is a polynomial of degree no
more than κ ; when κ ≤ –1, qκ (z) ≡ 0. Due to (3.26), (3.28), and (3.29), we have

[

X+
1 (z)X+

2 (z)
]–1F+

1 (z) – ψ+
1 (z) – ψ+

2 (z) = �1(z), Im z > β ,
[

X–
1 (z)X+

2 (z)
]–1F–

2 (z) – ψ–
1 (z) – ψ+

2 (z) = �1(z), Im z < β ,
(3.30)
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that is,

F+
1 (z) = X+

1 (z)X+
2 (z)

[

ψ+
1 (z) + ψ+

2 (z) + �1(z)
]

, Im z > β ,

F–
2 (z) = X–

1 (z)X+
2 (z)

[

ψ–
1 (z) + ψ+

2 (z) + �1(z)
]

, Im z < β ,
(3.31)

where

�1(z) =

⎧

⎨

⎩

D1(z), Im z > β ,
qk (z)

(z–z0)κ , Im z < β .

Similarly, the left side of the second equality in (3.25) is denoted by �+
2 (z), whereas the

right side is denoted by �–
2 (z), namely,

�+
2 (z) =

[

X–
1 (z)X+

2 (z)
]–1F+

2 (z) – ψ+
2 (z) – ψ–

1 (z);

�–
2 (z) =

[

X–
1 (z)X–

2 (z)
]–1F–

1 (z) – ψ–
2 (z) – ψ–

1 (z).
(3.32)

We also have

�2(z) =

⎧

⎨

⎩

�+
2 (z), Im z > α,

�–
2 (z), Im z < α.

(3.33)

In Im z < α, since [X–
j (z)]–1 and ψ–

j (z) (j = 1, 2) are analytic, �–
2 (z) is also analytic. Sim-

ilarly to the above discussion, we may denote �–
2 (z) = D2(z), where D2(z) is analytic in

Im z < α, and the limz→∞ D2(z) exists.
In Im z > α, note that when κ ≥ 0, [X–

1 (z)X+
2 (z)]–1 has a pole z = z0 of order κ ; when κ < 0,

[X–
1 (z)X+

2 (z)]–1 has no singularity, but X–
1 (z)X+

2 (z) has a pole z = z0 of order |κ|. Therefore
we also obtain

�+
2 (z) =

qk(z)
(z – z0)κ

, (3.34)

where qk(z) is as before. From the previous discussions we know that

F–
1 (z) = X–

1 (z)X–
2 (z)

[

ψ–
1 (z) + ψ–

2 (z) + �2(z)
]

, Im z < α,

F+
2 (z) = X–

1 (z)X+
2 (z)

[

ψ–
1 (z) + ψ+

2 (z) + �2(z)
]

, Im z > α,
(3.35)

where

�2(z) =

⎧

⎨

⎩

D2(z), Im z < α,
qk (z)

(z–z0)κ , Im z > α.

Combining (3.31) and (3.35), R-HP (3.3) has the general solutions given by the formulas

F+
1 (z) = X+

1 (z)X+
2 (z)

[

ψ+
1 (z) + ψ+

2 (z) + �(z)
]

, Im z > β ,

F–
1 (z) = X–

1 (z)X–
2 (z)

[

ψ–
1 (z) + ψ–

2 (z) + �(z)
]

, Im z < α,

F2(z) = X–
1 (z)X+

2 (z)
[

ψ–
1 (z) + ψ+

2 (z) + �(z)
]

, α < Im z < β ,

(3.36)
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in which we have put

�(z) =

⎧

⎪⎪⎨

⎪⎪⎩

D1(z), Im z > β ,

D2(z), Im z < α,
qk (z)

(z–z0)κ , α < Im z < β ,

(3.37)

where qk(z) is a polynomial of degree no more than κ as before, and D1(z) and D2(z) are
analytic in Im z > β and Im z < α, respectively.

Now we can formulate the main results with respect to the solutions of R-HP (3.3).

Theorem 3.1 R-HP (3.3) with two unknown functions F1(z) and F2(z) on two parallel lines
has solutions in {z : α < Im z < β} and {Im z > β} ∪ {Im z < α}, respectively. Its general solu-
tions can be expressed by (3.36), where Xj(z) (j = 1, 2) are defined by (3.16) and (3.17), and
ψ1(z), ψ2(z) are given by (3.19) and (3.22), respectively. When κ > –1, qκ (z) is a polynomial
of degree no more than κ ; when κ ≤ –1, qκ (z) = 0. In conclusion, the degree of freedom of
the solution is equal to κ + 1.

If F1(∞) = F2(∞) = 0, then (3.3) gives a solution in problem R–1. In this case, we have
the following conclusion.

Theorem 3.2 Under the conditions F1(∞) = F2(∞) = 0, R-HP (3.3) has a solution if and
only if B1(∞) = B2(∞) = 0. In such a case, a solution of (3.3) is similar to (3.36), and the only
difference lies in that qκ (z) should be substituted by qκ–1(z) in (3.36). However, the degree
of freedom of the solution for (3.3) is equal to κ .

At the end of this section, we give an important example in practical application. In
problem (3.3), we suppose that

A1(z) = A2(z) = 1, B1(z) =
1

2 + z2 , B2(z) =
1

1 + z2 ,

γ1 : z = 0, γ2 : z = x + i, –∞ < x < +∞.
(3.38)

Then (3.3) can be transformed to the following form:

⎧

⎨

⎩

F+
1 (z) – F–

2 (z) = 1
2+z2 , z ∈ γ1,

F+
2 (z) – F–

1 (z) = 1
1+z2 , z ∈ γ2.

(3.39)

Without loss of generality, we assume that z0 = 1
2 i, z1 = 3

2 i, z2 = – 1
2 i. Then we have κ1 =

κ2 = 0 and κ = 0. Therefore we get

j(t) = 0, Xj(z) = 1, j = 1, 2. (3.40)
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Similarly to the discussion in [1–3], from (3.19), (3.22), and Lemma 2.3 we have

when Im z > 1,

ψ+
1 (z) =

1
2π i

∫ +∞+i

–∞+i

dt
(2 + t2)(t – z)

=
1√
2π

∫ +∞+i

–∞+i

e–iτz

2 + τ 2 dτ =
i

2
√

2(z +
√

2i)
,

when Im z < 1,

ψ–
1 (z) =

1
2π i

∫ +∞+i

–∞+i

dt
(2 + t2)(t – z)

=
1√
2π

∫ +∞+i

–∞+i

e–iτz

2 + τ 2 dτ =
i

2
√

2(z –
√

2i)
,

when Im z > 0,

ψ+
2 (z) =

1
2π i

∫ +∞

–∞
dt

(1 + t2)(t – z)
=

1√
2π

∫ +∞

–∞
e–iτz

1 + τ 2 dτ =
i

2(z + i)
,

when Im z < 0,

ψ–
2 (z) =

1
2π i

∫ +∞

–∞
dt

(1 + t2)(t – z)
=

1√
2π

∫ +∞

–∞
e–iτz

1 + τ 2 dτ =
i

2(z – i)
.

(3.41)

Then we obtain the following solutions of problem (3.39):

F+
1 (z) =

i
2
√

2(z +
√

2i)
+

i
2(z + i)

+ D(z), Im z > 1,

F–
1 (z) =

i
2
√

2(z –
√

2i)
+

i
2(z – i)

+ D(z), Im z < 0,

F2(z) =
i

2
√

2(z –
√

2i)
+

i
2(z + i)

+ D(z), 0 < Im z < 1,

(3.42)

where D(z) is an analytic function in the whole complex plane C. We can easily verify that
(3.42) are solutions of problem (3.39).

4 The conditions of solvability of R-HP (3.3)
Now we are concerned about solution (3.36) and the conditions of solvability of R-HP
(3.3).

(1) It follows from the discussion in Sect. 3 that when κ < 0, z0 is a |κ|th-order pole of
X–

1 (z)X+
2 (z). To guarantee that (3.3) is solvable, the following –κ conditions are required:

∫ +∞+iβ

–∞+iβ

B1(t)(t – z)j dt
X+

1 (t)X+
2 (t)

= –
∫ +∞+iα

–∞+iα

B2(t)(t – z)j dt
X–

1 (t)X+
2 (t)

, j ∈ {–1, –2, . . . ,κ}. (4.1)

(2) The cases of the solutions in α < Im z < β . For z ∈ {z : α < Im z < β}, if A1(z) and
A–1

2 (z) have no zero points, then F1(z) and F2(z) can be obtained by (3.36). Otherwise, if
ϑ1,ϑ2, . . . ,ϑn are common zero points of A1(z) and A–1

2 (z) of orders s1, s2, . . . , sn, respec-
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tively, then we must have

F (j)
2 (z)|z=ϑk = 0, 1 ≤ k ≤ n, 1 ≤ j ≤ sk . (4.2)

Therefore we obtain:
(a) when κ ≥ 0, the following equations with the unknown elements c0, c1, . . . , ck have

solutions:

[
qk(z)

(z – z0)κ

](j)

z=ϑk

=
j!

2π i

∫ +∞+iα

–∞+iα

B2(ξ )[X–
1 (ξ )X+

2 (ξ )]–1 dξ

(ξ – ϑk)j+1(ξ – z0)

–
j!

2π i

∫ +∞+iβ

–∞+iβ

B1(ξ )[X+
1 (ξ )X+

2 (ξ )]–1 dξ

(ξ – ϑk)j+1(ξ – z0)
; (4.3)

(b) when κ < 0, the following equalities must be satisfied:

∫ +∞+iα

–∞+iα

B2(ξ )[X–
1 (ξ )X+

2 (ξ )]–1 dξ

(ξ – ϑk)j+1(ξ – z0)
=

∫ +∞+iβ

–∞+iβ

B1(ξ )[X+
1 (ξ )X+

2 (ξ )]–1 dξ

(ξ – ϑk)j+1(ξ – z0)
, (4.4)

where j = 0, 1, 2, . . . , sk , k = 1, 2, . . . , n, and c0, c1, . . . , ck are the coefficients of qk(z).
(3) The behavior of solution at z = ∞. If z = ∞ is an ordinary node, then 0 < μ∞ < 1. It

follows from ψ1(∞) = ψ2(∞) = 0 that near z = ∞,

ψj(ξ ) = ψ∗
j (ξ )ξ–μ∗

j , 0 < μ∗
j < μ(j)

∞, ψ∗
j (ξ ) ∈ H , j = 1, 2. (4.5)

In (3.36), since F2(ξ ) is bounded, F2(∞) is taken as a finite value. Note that 0 < μ∞ < 1.
If μ∞ > 1

2 , then we easily see that

X–
1 (ξ )X+

2 (ξ )qκ (ξ )(ξ – z0)–κ = O
(|ξ |–μ∞)

(ξ → ∞) (4.6)

and

X–
1 (ξ )X+

2 (ξ )
(

ψ1(ξ ) – ψ2(ξ )
)

= O
(|ξ |–μ∞+ε

)

(ξ → ∞), (4.7)

where ε is a sufficiently small positive number such that μ∞ – ε > 1
2 .

If μ∞ ≤ 1
2 , when κ ≥ 0, the coefficient ek of κth-power item in qk(z) should be taken as

ek =
1

2π i

∫ +∞+iβ

–∞+iβ

B1(ξ ) dξ

X+
1 (ξ )X+

2 (ξ )(ξ – z0)
+

1
2π i

∫ +∞+iα

–∞+iα

B2(ξ ) dξ

X–
1 (ξ )X+

2 (ξ )(ξ – z0)
; (4.8)

when κ < 0, (4.1) is required to fulfill.
If z = ∞ is a special node, that is, μ∞ = 0, then we can transform it into the case μ∞ ≤ 1

2
as an ordinary node, and similar arguments can be done (see [16–19]).

5 Conclusions
In this paper, we propose one kind of R-HP with several unknown functions in strip do-
mains. By using the methods of the classical boundary value problems for analytic func-
tions, we obtain the exact solution, defined by integrals, of problem (3.3) and the con-
ditions of solvability on function spaces H∗. Our method is different from those of the
classical R-HP and is novel and effective.
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R-HP (3.1) has important applications in practical problems, such as elastic mechanics,
heat conduction, and electrostatics. Many problems, such as piezoelectric material, volt-
age magnetic materials, and functional gradient materials, can often attribute the problem
to find the solutions of (3.1). Therefore the solving method of (3.1) has important meaning
not only in applications, but also in the theory of resolving the equation itself. This paper
mainly deals with the solvability and explicit solutions of the R-HP with two unknown
functions. Indeed, it is possible to solving the problem mentioned above in Clifford anal-
ysis, which is similar to that in [20–27]. We omit further discussion.
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