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1 Introduction and preliminaries
The quantum calculus is often regarded as calculus without limits, we obtain q-analogues
of mathematical objects which can be recaptured by taking q → 1–. Historically the sub-
ject of quantum calculus can be traced back to Euler and Jacobi, but in recent decades
it has experienced a rapid development. This can be attributed to the fact that it serves
as a bridge between mathematics and physics. It is also pertinent to mention here that
quantum calculus is a subfield of time scale calculus. In quantum calculus, we are con-
cerned with a specific time scale, called the q-time scale. In the twentieth century Jack-
son [8] introduced the notion of q-definite integrals in quantum calculus. This motivated
many quantum calculus analysts, and consequently a number of articles have been writ-
ten in this area. It is worth to mention here for interested readers that it is possible that
sometimes more than one q-analogue exists. In [9] interested readers may find some ba-
sic and interesting details on some recent developments of basic theory of quantum cal-
culus. While studying quantum calculus, Tariboon et al. [23] introduced the notions of
q-derivatives and q-integrals on finite intervals and developed several new q-analogues
of classical inequalities. This particular article inspired many researchers working in the
field of inequalities, particulary inequalities involving convexity and its generalizations.
Resultantly, several new quantum analogues of classical results have been obtained. For
example, Noor et al. [21] obtained the quantum analogues of Hermite–Hadamard’s in-
equality using the class of preinvex functions. Sudsutad et al. [22] and Noor et al. [20]
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obtained new quantum analogues of trapezium like inequalities involving q-differentiable
convex functions. Noor et al. [19] obtained quantum analogues of Ostrowski’s inequality.
Zhang et al. [26] obtained a new generalized q-integral identity, and utilizing this as an
auxiliary result, they have obtained several new q-analogues of classical inequalities. Liu
and Zhuang [15] obtained certain new q-analogues of Hermite–Hadamard’s inequality us-
ing two times q-differentiable convex functions. Alp et al. [3] obtained some new refined
q-analogues of Hermite–Hadamard’s inequality. For more details, see [4, 10, 11, 13]

A recent development in the study of quantum calculus is the introduction of post quan-
tum calculus. In quantum calculus we deal with q-number with one base q; however, post
quantum calculus includes p and q-numbers with two independent variables p and q. This
was first considered by Chakarabarti and Jagannathan [7]. For some interesting applica-
tions, see [1, 2, 6, 12, 17, 18]. Motivated by the research work going on, Tunc and Gov [24]
introduced the concepts of (p, q)-derivatives and (p, q)-integrals on finite intervals.

Since the appearance of this article, a number of new post quantum analogues of classical
inequalities have been obtained. For example, Kunt et al. [14] obtained new post quantum
analogues of Hermite–Hadamard’s inequality. Luo et al. [16] obtained some new variants
of parameterized (p, q)-integral inequalities using a generalized integral identity involving
(p, q)-differentiable functions.

The main idea behind the study of this paper is to obtain a new general post quantum
integral inequality using twice (p, q)-differentiable functions. We then establish some new
estimates of post quantum bounds essentially using the class of preinvex functions. We
hope that the ideas and techniques of this paper will inspire interested readers working in
this field.

Before we move to our next section of the paper, let us recall the definitions of invex set
and preinvex function.

Definition 1.1 ([24]) Let K ⊆R be a nonempty set such that a ∈K, 0 < q < p ≤ 1, and let
f : K → R be a continuous function. Then the (p, q)-derivative aDp,qf (x) of f at x ∈ K is
defined by

aDp,qf (x) =
f (px + (1 – p)a) – f (qx + (1 – q)a)

(p – q)(x – a)
(x �= a).

Definition 1.2 ([24]) Let K ⊆R be a nonempty set such that a ∈K, 0 < q < p ≤ 1, and let
f : K →R be a continuous function. Then (p, q)-integral on K is defined by

∫ x

a
f (t) adp,qt = (p – q)(x – a)

∞∑
n=0

qn

pn+1 f
(

qn

pn+1 x +
(

1 –
qn

pn+1

)
a
)

for x ∈K.

Definition 1.3 ([5]) A nonempty set K ⊆R is said to be invex with respect to the bivariate
function ζ : R×R→R if

a + μζ (b, a) ∈K

for all a, b ∈K and μ ∈ [0, 1].
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Definition 1.4 ([25]) Let K ⊆ R be an invex set with respect to the bivariate function
ζ : R×R→R. Then the real-valued function f : K →R is said to be preinvex with respect
to ζ if

f
(
a + μζ (b, a)

) ≤ (1 – t)f (a) + tf (b)

for all a, b ∈K and t ∈ [0, 1].

2 Results and discussions
In this section, we derive our main results. First of all we derive our new post quantum
integral identity involving twice (p, q)-differentiable function.

Lemma 2.1 Let 0 < q < p ≤ 1, f : K → R be a twice (p, q)-differentiable function on K◦

(where K◦ is the interior of K), and aD2
p,qf be continuous and (p, q)-integrable on K. Then

qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) 0dp,qx

=
pq2ζ 2(b, a)

p + q

∫ 1

0
t(1 – qt)aD2

p,qf
(
a + tζ (b, a)

)
adp,qt.

Proof It suffices to prove that

aD2
p,qf

(
a + tζ (b, a)

)

= aDp,q
(

aDp,qf
(
a + tζ (b, a)

))

= aDp,qf (a + ptζ (b, a)) – aDp,qf (a + qtζ (b, a))
t(p – q)ζ (b, a)

=
1

t(p – q)ζ (b, a)

[
f (a + p2tζ (b, a)) – f (a + pqtζ (b, a))

tp(p – q)ζ (b, a)

–
f (a + pqtζ (b, a)) – f (a + q2tζ (b, a))

tq(p – q)ζ (b, a)

]

=
qf (a + p2tζ (b, a)) – (p + q)f (a + pqtζ (b, a)) + pf (a + q2tζ (b, a))

pqt2(p – q)2ζ 2(b, a)
.

Elaborated computation leads to

∫ 1

0
t(1 – qt)aD2

p,qf
(
a + tζ (b, a)

)
0dp,qt

=
∫ 1

0
t(1 – qt)

× qf (a + p2tζ (b, a)) – (p + q)f (a + pqtζ (b, a)) + pf (a + q2tζ (b, a))
t2pq(p – q)2ζ 2(b, a) 0dp,qt

=
1

pq(p – q)ζ 2(b, a)

[
q

∞∑
n=0

f
(

a + p2 qn

pn+1 ζ (b, a)
)

– (p + q)
∞∑

n=0

f
(

a + p
qn+1

pn+1 ζ (b, a)
)

+ p
∞∑

n=0

f
(

a +
qn+2

pn+1 ζ (b, a)
)]
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– q
{q(p – q)ζ (b, a)

∑∞
n=0

qn

pn+1 f (a + p2 qn

pn+1 ζ (b, a))

pq(p – q)2ζ 3(b, a)

–
(p + q)(p – q)ζ (b, a)

∑∞
n=0

qn+1

pn+1 f (a + p qn+1

pn+1 ζ (b, a))

pq2(p – q)2ζ 3(b, a)

+
p(p – q)ζ (b, a)

∑∞
n=0

qn+2

pn+1 f (a + qn+2

pn+1 ζ (b, a))

pq3(p – q)2ζ 3(b, a)

}

=
q[

∑∞
n=0 f (a + p2 qn

pn+1 ζ (b, a)) –
∑∞

n=0 f (a + p qn+1

pn+1 ζ (b, a))]

pq(p – q)ζ 2(b, a)

–
p[

∑∞
n=0 f (a + p qn+1

pn+1 ζ (b, a)) –
∑∞

n=0 f (a + qn+2

pn+1 ζ (b, a))]

pq(p – q)ζ 2(b, a)

– q
{q(p – q)ζ (b, a)

∑∞
n=0

qn

pn+1 f (a + p2 qn

pn+1 ζ (b, a))

pq(p – q)2ζ 3(b, a)

–
p(p + q)(p – q)ζ (b, a)

∑∞
n=0

qn+1

pn+2 f (a + p2 qn+1

pn+2 ζ (b, a))

pq2(p – q)2ζ 3(b, a)

+
p3(p – q)ζ (b, a)

∑∞
n=0

qn+2

pn+3 f (a + p2 qn+2

pn+3 ζ (b, a))

pq3(p – q)2ζ 3(b, a)

}

=
q[f (a + pζ (b, a)) – f (a)] – p[f (a + qζ (b, a)) – f (a)]

pq(p – q)ζ 2(b, a)

–
p + q

p3q2ζ 3(b, a)

∫ a+p2ζ (b,a)

a
f (x) 0dp,qt

–
q2 + pq – p2

pq2(p – q)ζ 2(b, a)
f
(
a + pζ (b, a)

)
+

f (a + qζ (b, a))
q(p – q)ζ 2(b, a)

=
f (a)

pqζ 2(b, a)
+

f (a + pζ (b, a))
q2ζ 2(b, a)

–
p + q

p3q2ζ 3(b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx.

Multiplying both sides of the above equality by pq2ζ2(b,a)
p+q , we get the required result. �

Theorem 2.2 Let 0 < q < p ≤ 1,K ⊆R be an invex set with respect to the bivariate function
ζ : R × R → R, and f : K → R be a twice (p, q)-differentiable function on K◦ such that

aD2
p,qf is continuous and (p, q)-integrable on K. Then the inequality

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)((p4 – p3 + p2q2)|aD2
p,qf (a)| + p3|aD2

p,qf (b)|)
(p + q)2(p2 + q2)(q2 + pq + p2)

holds for all a, b ∈K if |aD2
p,qf | is a preinvex function with respect to ζ .
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Proof It follows from Lemma 2.1 and the property of the modulus together with the prein-
vexity of |aD2

p,qf | that

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∣∣aD2
p,qf (a)

∣∣
∫ 1

0
t(1 – t)(1 – qt) 0dp,qt

+
∣∣aD2

p,qf (b)
∣∣ ∫ 1

0
t2(1 – qt) 0dp,qt

)

=
pq2ζ 2(b, a)((p4 – p3 + p2q2)|aD2

p,qf (a)| + p3|aD2
p,qf (b)|)

(p + q)2(p2 + q2)(q2 + pq + p2)
. �

Theorem 2.3 Let 0 < q < p ≤ 1, r > 1, K ⊆ R be an invex set with respect to the bivariate
function ζ : R×R →R, and f : K →R be a twice (p, q)-differentiable function on K◦ such
that aD2

p,qf is continuous and (p, q)-integrable on K. Then the inequality

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)2– 1

r

(
d1

∣∣aD2
p,qf (a)

∣∣r + d2
∣∣aD2

p,qf (b)
∣∣r) 1

r

is valid for all a, b ∈K if |aD2
p,qf |r is preinvex with respect to ζ , where

d1 = (p – q)
∞∑

n=0

(
q2n

p2n+2 –
q3n

p3n+3

)(
1 –

qn+1

pn+1

)r

and

d2 = (p – q)
∞∑

n=0

q3n

p3n+3

(
1 –

qn+1

pn+1

)r

.

Proof From Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , we get

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
t 0dp,qt

)1– 1
r
(∫ 1

0
t(1 – qt)r∣∣aD2

p,qf
(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(
1

p + q

)1– 1
r
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×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
t(1 – t)(1 – qt)r

0dp,qt +
∣∣aD2

p,qf (b)
∣∣r

∫ 1

0
t2(1 – qt)r

0dp,qt
) 1

r

=
pq2ζ 2(b, a)
(p + q)2– 1

r

(
d1

∣∣aD2
p,qf (a)

∣∣r + d2
∣∣aD2

p,qf (b)
∣∣r) 1

r . �

Theorem 2.4 Let 0 < q < p ≤ 1, r, s > 1 with 1/r + 1/s = 1, K ⊆ R be an invex set with re-
spect to the bivariate function ζ : R×R→R, and f : K →R be a twice (p, q)-differentiable
function on K◦ such that aD2

p,qf is continuous and (p, q)-integrable on K. Then the inequal-
ity

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

h
1
s

( (q2 + p2 + pq – p – q)|aD2
p,qf (a)|r + (p + q)|aD2

p,qf (b)|r
(p + q)(q2 + pq + p2)

) 1
r

takes place for all a, b ∈K if |aD2
p,qf |r is preinvex with respect to ζ , where

h = (p – q)
∞∑

n=0

q2n

p2n+2

(
1 –

qn

pn+1

)s

.

Proof Using Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , we have

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
t(1 – qt)s

0dp,qt
) 1

s
(∫ 1

0
t
∣∣aD2

p,qf
(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

×
(∫ 1

0
t(1 – qt)s

0dp,qt
) 1

s

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
t(1 – t) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
t2

0dp,qt
) 1

r

=
pq2ζ 2(b, a)

(p + q)
h

1
s

( (q2 + p2 + pq – p – q)|aD2
p,qf (a)|r + (p + q)|aD2

p,qf (b)|r
(p + q)(q2 + pq + p2)

) 1
r
. �

Theorem 2.5 Let 0 < q < p ≤ 1, r > 1, K ⊆ R be an invex set with respect to the bivariate
function ζ : R×R →R, and f : K →R be a twice (p, q)-differentiable function on K◦ such
that aD2

p,qf is continuous and (p, q)-integrable on K. Then one has

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

(
k1

∣∣aD2
p,qf (a)

∣∣r + k2
∣∣aD2

p,qf (b)
∣∣r) 1

r



Awan et al. Journal of Inequalities and Applications        (2020) 2020:229 Page 7 of 13

for all a, b ∈K if |aD2
p,qf |r is a preinvex function with respect to ζ , where

k1 = (p – q)
∞∑

n=0

(
qn

pn+1

)r+1(
1 –

qn

pn+1

)(
1 –

qn+1

pn+1

)r

and

k2 = (p – q)
∞∑

n=0

(
qn

pn+1

)r+3(
1 –

qn+1

pn+1

)r

.

Proof It follows from Lemma 2.1 and Hölder’s inequality together with the preinvexity of
|aD2

p,qf |r that

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
1 0dp,qt

)1– 1
r
(∫ 1

0
tr(1 – qt)r∣∣aD2

p,qf
(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
tr(1 – t)(1 – qt)r

0dp,qt +
∣∣aD2

p,qf (b)
∣∣r

×
∫ 1

0
tr+2(1 – qt)r

0dp,qt
) 1

r

=
pq2ζ 2(b, a)

(p + q)
(
k1

∣∣aD2
p,qf (a)

∣∣r + k2
∣∣aD2

p,qf (b)
∣∣r) 1

r . �

Theorem 2.6 Let 0 < q < p ≤ 1, r, s > 1 with 1/r + 1/s = 1, K ⊆ R be an invex set with re-
spect to the bivariate function ζ : R×R→R, and f : K →R be a twice (p, q)-differentiable
function on K◦ such that aD2

p,qf is continuous and (p, q)-integrable on K. Then the inequal-
ity

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

m
1
s

(q|aD2
p,qf (a)|r + |aD2

p,qf (b)|r
(1 + q)

) 1
r
,

holds for all a, b ∈K if |aD2
p,qf |r is preinvex with respect to ζ , where

m = (p – q)
∞∑

n=0

(
qn

pn+1

)s+1(
1 –

qn+1

pn+1

)s

.
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Proof Making use of Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , we

have

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
ts(1 – qt)s

0dp,qt
) 1

s
(∫ 1

0

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
ts(1 – qt)s

0dp,qt
) 1

s

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
(1 – t) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
t 0dp,qt

) 1
r

=
pq2ζ 2(b, a)

(p + q)
m

1
s

( (p + q – 1)|aD2
p,qf (a)|r + |aD2

p,qf (b)|r
(p + q)

) 1
r
. �

Theorem 2.7 Let 0 < q < p ≤ 1, r, s > 1 with 1/r +1/s = 1,K ⊆R be an invex set with respect
to the bivariate function ζ : R × R → R, and f : K → R be a twice (p, q)-differentiable
function on K◦ such that aD2

p,qf is continuous and (p, q)-integrable on K. Then

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

(
p – q

ps+1 – qs+1

) 1
s (

u1
∣∣aD2

p,qf (a)
∣∣r + u2

∣∣aD2
p,qf (b)

∣∣r) 1
r

for all a, b ∈K if |aD2
p,qf |r is a preinvex function with respect to ζ , where

u1 = (p – q)
∞∑

n=0

(
qn

pn+1 –
q2n

p2n+2

)(
1 –

qn+1

pn+1

)r

and

u2 = (p – q)
∞∑

n=0

q2n

p2n+2

(
1 –

qn+1

pn+1

)r

.

Proof From Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , we have

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
ts

0dp,qt
) 1

s
(∫ 1

0
(1 – qt)r∣∣aD2

p,qf
(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(
p – q

ps+1 – qs+1

) 1
s
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×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
(1 – t)(1 – qt)r

0dp,qt +
∣∣aD2

p,qf (b)
∣∣r

∫ 1

0
t(1 – qt)r

0dp,qt
) 1

r

=
pq2ζ 2(b, a)

(p + q)

(
p – q

ps+1 – qs+1

) 1
s (

u1
∣∣aD2

p,qf (a)
∣∣r + u2

∣∣aD2
p,qf (b)

∣∣r) 1
r . �

Theorem 2.8 Let 0 < q < p ≤ 1, r, s > 1 with 1/r + 1/s = 1, K ⊆ R be an invex set with re-
spect to the bivariate function ζ : R×R→R, and f : K →R be a twice (p, q)-differentiable
function on K◦ such that aD2

p,qf is continuous and (p, q)-integrable on K. Then the inequal-
ity

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

w
1
s

((
p – q

pr+1 – qr+1 –
p – q

pr+2 – qr+2

)∣∣aD2
p,qf (a)

∣∣r

+
p – q

pr+2 – qr+2

∣∣aD2
p,qf (b)

∣∣r
) 1

r

holds for all a, b ∈K if |aD2
p,qf |r is a preinvex function with respect to ζ , where

w = (p – q)
∞∑

n=0

qn

pn+1

(
1 –

qn+1

pn+1

)s

.

Proof According to Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , one

has

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
(1 – qt)s

0dp,qt
) 1

s
(∫ 1

0
tr∣∣aD2

p,qf
(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
(1 – qt)s

0dp,qt
) 1

s

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
tr(1 – t) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
tr+1

0dp,qt
) 1

r

=
pq2ζ 2(b, a)

(p + q)
w

1
s

((
p – q

pr+1 – qr+1 –
p – q

pr+2 – qr+2

)∣∣aD2
p,qf (a)

∣∣r

+
p – q

pr+2 – qr+2

∣∣aD2
p,qf (b)

∣∣r
) 1

r
. �

Theorem 2.9 Let 0 < q < p ≤ 1, r > 1, K ⊆ R be an invex set with respect to the bivariate
function ζ : R×R →R, and f : K →R be a twice (p, q)-differentiable function on K◦ such
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that aD2
p,qf is continuous and (p, q)-integrable on K. Then

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ p2– 1
r q2ζ 2(b, a)

(p + q)2– 1
r

(
p2

q2 + pq + p2

)1– 1
r

×
( (p4 – p3 + p2q2)|aD2

p,qf (a)|r + p3|aD2
p,qf (b)|r

(p + q)(p2 + q2)(q2 + pq + p2)

) 1
r

for all a, b ∈K if |aD2
p,qf |r is preinvex with respect to ζ .

Proof Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r lead to

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
t(1 – qt) 0dp,qt

)1– 1
r

×
(∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
t(1 – qt) 0dp,qt

)1– 1
r

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
t(1 – t)(1 – qt) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
t2(1 – qt) 0dp,qt

) 1
r

=
p2– 1

r q2ζ 2(b, a)
(p + q)2– 1

r

(
p2

q2 + pq + p2

)1– 1
r

×
( (p4 – p3 + p2q2)|aD2

p,qf (a)|r + p3|aD2
p,qf (b)|r

(p + q)(p2 + q2)(q2 + pq + p2)

) 1
r
. �

Theorem 2.10 Let 0 < q < p ≤ 1, r > 1, K ⊆R be an invex set with respect to the bivariate
function ζ : R×R →R, and f : K →R be a twice (p, q)-differentiable function on K◦ such
that aD2

p,qf is continuous and (p, q)-integrable on K. Then one has

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ p2– 1
r q2ζ 2(b, a)

(p + q)2– 1
r

([
p – q

pr+1 – qr+1 –
(p – q)(1 + q)

pr+2 – qr+2 +
q(p – q)

pr+3 – qr+3

]∣∣aD2
p,qf (a)

∣∣r

+
[

p – q
pr+2 – qr+2 –

q(p – q)
pr+3 – qr+3

]∣∣aD2
p,qf (b)

∣∣r
) 1

r

for all a, b ∈K if |aD2
p,qf |r is a preinvex function with respect to ζ .
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Proof Making use of Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r , we

have

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
(1 – qt) 0dp,qt

)1– 1
r
(∫ 1

0
tr(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
(1 – qt) 0dp,qt

)1– 1
r

×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
tr(1 – t)(1 – qt) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
tr+1(1 – qt) 0dp,qt

) 1
r

=
p2– 1

r q2ζ 2(b, a)
(p + q)2– 1

r

([
p – q

pr+1 – qr+1 –
(p – q)(1 + q)

pr+2 – qr+2 +
q(p – q)

pr+3 – qr+3

]∣∣aD2
p,qf (a)

∣∣r

+
[

p – q
pr+2 – qr+2 –

q(p – q)
pr+3 – qr+3

]∣∣aD2
p,qf (b)

∣∣r
) 1

r
. �

Theorem 2.11 Let 0 < q < p ≤ 1, r, s > 1 with 1/r + 1/s = 1, K ⊆ R be an invex set with re-
spect to the bivariate function ζ : R×R→R, and f : K →R be a twice (p, q)-differentiable
function on K◦ such that aD2

p,qf is continuous and (p, q)-integrable on K. Then the inequal-
ity

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
(p + q)

λ
1
s

( (p3 – p2 + pq2 + p2q)|aD2
p,qf (a)|r + p2|aD2

p,qf (b)|r
(p + q)(q2 + pq + p2)

) 1
r

holds for all a, b ∈K if |aD2
p,qf |r is preinvex function with respect to ζ , where

λ =
p – q

ps+1 – qs+1 –
q(p – q)

ps+2 – qs+2 .

Proof It follows from Lemma 2.1, Hölder’s inequality, and the preinvexity of |aD2
p,qf |r that

∣∣∣∣qf (a) + pf (a + pζ (b, a))
p + q

–
1

p2ζ (b, a)

∫ a+p2ζ (b,a)

a
f (x) adp,qx

∣∣∣∣

≤ pq2ζ 2(b, a)
p + q

∫ 1

0
t(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣ 0dp,qt

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
ts(1 – qt) 0dp,qt

) 1
s
(∫ 1

0
(1 – qt)

∣∣aD2
p,qf

(
a + tζ (b, a)

)∣∣r
0dp,qt

) 1
r

≤ pq2ζ 2(b, a)
p + q

(∫ 1

0
ts(1 – qt) 0dp,qt

) 1
s
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×
(∣∣aD2

p,qf (a)
∣∣r

∫ 1

0
(1 – t)(1 – qt) 0dp,qt +

∣∣aD2
p,qf (b)

∣∣r
∫ 1

0
t(1 – qt) 0dp,qt

) 1
r

=
pq2ζ 2(b, a)

(p + q)
λ

1
s

( (p3 – p2 + pq2 + p2q)|aD2
p,qf (a)|r + p2|aD2

p,qf (b)|r
(p + q)(q2 + pq + p2)

) 1
r
. �

3 Conclusion
We have derived a new generalized post quantum integral identity using twice (p, q)-
differentiable functions. Utilizing this new identity as an auxiliary result, we have obtained
several new post quantum estimates of upper bounds using the class of preinvex functions.
We would like to mention here that if ζ (b, a) = b – a, then all the main results of this paper
reduce to the results for classical convex functions, and it is pertinent to mention here that
these results are also new in the literature. We hope that the ideas and techniques of this
paper will inspire interested readers working in this field.
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