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Abstract
The aim of this paper is to study the unsigned degenerate r-Stirling numbers of the
first kind as degenerate versions of the r-Stirling numbers of the first kind and the
degenerate r-Stirling numbers of the second kind as those of the r-Stirling numbers
of the second kind. For the degenerate r-Stirling numbers of both kinds, we derive
recurrence relations, generating functions, explicit expressions, and some identities
involving them.
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1 Introduction
Let [n] = {1, 2, 3, . . . , n}. The unsigned Stirling number of the first kind

[n
k
]

is the number of
permutations of the set [n] with exactly k disjoint cycles, while the Stirling number of the
second kind

{n
k
}

counts the number of partitions of the set [n] into k nonempty disjoint
subsets. Let r be a positive integer. The unsigned r-Stirling number of the first kind

[n
k
]

r
is the number of permutations of the set [n] with exactly k disjoint cycles in such a way
that the numbers 1, 2, . . . , r are in distinct cycles, while the r-Stirling number of the second
kind

{n
k
}

r counts the number of partitions of the set [n] into k nonempty disjoint subsets
in such a way that the numbers 1, 2, . . . , r are in distinct subsets. We remark that Border
[1] studied the combinatorial and algebraic properties of the r-Stirling numbers.

Carlitz initiated a study of the degenerate Bernoulli and Euler polynomials and num-
bers. In recent years, some mathematicians have explored various degenerate versions
of many special polynomials and numbers by employing various tools like combinatorial
methods, generating functions, differential equations, umbral calculus techniques, p-adic
analysis, and probability theory. These degenerate versions include the degenerate Stir-
ling numbers of the first and second kinds, degenerate Bernoulli numbers of the second
kind, and degenerate Bell numbers and polynomials of which interesting arithmetical and
combinatorial results were obtained (see [7, 9–11, 13] and references therein). Especially,
it turns out that the degenerate Stirling numbers of the first and second kind (see (17),
(18)) appear very frequently when we study degenerate versions of some special numbers
and polynomials [7, 9, 13, 16].

The aim of this paper is to study the unsigned degenerate r-Stirling numbers of the first
kind

[n
k
]

r,λ as degenerate versions of the r-Stirling numbers of the first kind
[n

k
]

r and the
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degenerate r-Stirling numbers of the second kind
{n

k
}

r,λ as degenerate versions of the r-
Stirling numbers of the second kind

{n
k
}

r . They can be viewed also as natural extensions
of the degenerate Stirling numbers of the first kind

[n
k
]
λ

and the degenerate Stirling num-
bers of the second kind

{n
k
}

λ
which were introduced earlier [7–9, 12]. For the degenerate

r-Stirling numbers of both kinds, we derive recurrence relations, generating functions,
explicit expressions, and some identities involving them.

The outline of this paper is as follows. In Sect. 1, we recall the degenerate exponential
functions, the rising and falling λ-factorial sequences, recurrence relations and generat-
ing functions of r-Stirling numbers, Lah numbers, the degenerate Stirling numbers and
the degenerate logarithm functions. In Sect. 2, we introduce the unsigned degenerate r-
Stirling numbers of the first kind and the degenerate r-Stirling numbers of the second kind
and derive recurrence relations, generating functions, expressions of degenerate r-Stirling
numbers in terms of degenerate Stirling numbers, and a representation of the degenerate
r-Bell polynomials in terms of the degenerate r-Stirling numbers of the second kind.

For any 0 �= λ ∈R, the degenerate exponential functions are defined by

ex
λ(t) = (1 + λt)

x
λ =

∞∑

n=0

(x)n,λ
tn

n!
(see [7, 10, 11]), (1)

where the falling λ-factorial sequence is given by

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)

(n ≥ 1). (2)

When x = 1, we have

eλ(t) = e1
λ(t) =

∞∑

n=0

(1)n,λ
tn

n!
.

The rising λ-factorial sequence is defined by

〈x〉0,λ = 1, 〈x〉n,λ = x(x + λ) · · · (x + (n – 1)λ
)

(n ≥ 1). (3)

When λ = 1, we have

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1), (4)

〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n – 1) (n ≥ 1). (5)

Throughout this paper, we assume that r is any positive integer.
It is known that the r-Stirling numbers satisfy the following recurrence relations:

[
n
m

]

r
= (n – 1)

[
n – 1

m

]

r
+

[
n – 1
m – 1

]

r
(n > r), (6)

{
n
m

}

r
= m

{
n – 1

m

}

r
+

{
n – 1
m – 1

}

r
(n > r), (7)

[
n
m

]

r
= 0,

{
n
m

}

r
= 0, if n < r, (8)
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[
n
m

]

r
= δmr ,

{
n
m

}

r
= δmr , if n = r (see [1–5, 14]). (9)

The r-Stirling numbers of the first kind have the “horizontal” generating function:

n∑

k=r

[
n
k

]

r
zk = zr(z + r) · · · (z + n – 1) = zr〈z + r〉n–r , (10)

where n ≥ r (see [1–7, 9–11, 13, 15]).
Thus, by (10), we get

〈z + r〉n =
n∑

k=0

[
n + r
k + r

]

r
zk (n ≥ 0). (11)

The r-Stirling numbers of the second kind have the “vertical” generating function:

∞∑

n=m

{
n
m

}

r
zn =

zm

(1 – rz)(1 – (r + 1)z) · · · (1 – mz)
(m ≥ r), (12)

which is equivalent to

{
n + r
m + r

}

r
=

1
m!

m∑

k=0

(
m
k

)
(–1)m–k(r + k)n (n ≥ m ≥ 0), (13)

and is also equivalent to

∞∑

n=m

{
n + r
m + r

}

r

tn

n!
=

1
m!

(
et – 1

)mert . (14)

From (14), we note that

(z + r)n =
n∑

k=0

{
n + r
k + r

}
(z)k (n ≥ 0). (15)

As is well known, the Lah numbers are defined by

L(n, k) =
(

n – 1
k – 1

)
n!
k!

(n ≥ k ≥ 0). (16)

From (16), we note that

1
k!

(
t

1 – t

)k

=
∞∑

n=k

L(n, k)
tn

n!
(k ≥ 0) (see [2, 4, 5]).

Recently, the degenerate Stirling numbers of the first kind were defined by

(x)n =
n∑

k=0

S1,λ(n, k)(x)k,λ (n ≥ 0) (see [1–7, 9–11, 13, 15]), (17)
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and the degenerate Stirling numbers of the second kind were defined by

(x)n,λ =
n∑

k=0

{
n
k

}

λ

(x)k (n ≥ 0) (see [7, 9]). (18)

Note that

lim
λ→0

{
n
k

}

λ

=
{

n
k

}
(n ≥ k ≥ 0).

Let us define the degenerate “unsigned” Stirling numbers of the first kind by

[
n
k

]

λ

= (–1)n–kS1,λ(n, k) (n ≥ k ≥ 0). (19)

Then, replacing x by –x in (17), we get

〈x〉n =
n∑

k=0

[
n
k

]

λ

〈x〉k,λ (n ≥ 0). (20)

Note that

lim
λ→0

[
n
k

]

λ

=
[

n
k

]
.

Let logλ t be the compositional inverse of eλ(t), called the degenerate logarithm function.
Then we have

logλ(1 + t) =
∞∑

n=1

λn–1(1)n, 1
λ

tn

n!
=

1
λ

(
(1 + t)λ – 1

)
(see [7]).

Note that

eλ

(
logλ(1 + t)

)
= logλ

(
eλ(1 + t)

)
= 1 + t. (21)

2 Degenerate r-Stirling numbers
In view of (11) and (17), we define the unsigned degenerate r-Stirling numbers of the first
kind by

〈x + r〉n =
n∑

k=0

[
n + r
k + r

]

r,λ
〈x〉k,λ (n ≥ 0). (22)

Note from (11) and (22) that

lim
λ→0

[
n + r
k + r

]

r,λ
=

[
n + r
k + r

]

r
.
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By (22), we get

n+1∑

k=0

[
n + 1 + r

k + r

]

r,λ
〈x〉k,λ = 〈x + r〉n+1 (23)

= 〈x + r〉n(x + r + n)

=
n∑

k=0

[
n + r
k + r

]

r,λ
〈x〉k,λ(x + kλ + r + n – kλ)

=
n∑

k=0

[
n + r
k + r

]

r,λ
〈x〉k+1,λ +

n∑

k=0

(n + r – kλ)
[

n + r
k + r

]

r,λ
〈x〉k,λ

=
n+1∑

k=0

[
n + r

k – 1 + r

]

r,λ
〈x〉k,λ +

n∑

k=0

(n + r – kλ)
[

n + r
k + r

]

r,λ
〈x〉k,λ

=
n+1∑

k=0

([
n + r

k – 1 + r

]

r,λ
+ (n + r – kλ)

[
n + r
k + r

]

r,λ

)
〈x〉k,λ,

as

[
n + r
r – 1

]

r,λ
= 0 and

[
n + r

n + 1 + r

]

r,λ
= 0.

Therefore, we obtain the following theorem.

Theorem 2.1 Let n, k be nonnegative integers. Then we have

[
n + 1 + r

k + r

]

r,λ
=

[
n + r

k – 1 + r

]

r,λ
+ (n + r – kλ)

[
n + r
k + r

]

r,λ
(n ≥ k).

In particular,

[
n
k

]

r,λ
=

[
n – 1
k – 1

]

r,λ
+

(
n – 1 – (k – r)λ

)[n – 1
k

]

r,λ
(n > r, n > k).

From (22), we note that

(
1

1 – t

)x( 1
1 – t

)r

=
∞∑

n=0

〈x + r〉n
tn

n!
(24)

=
∞∑

n=0

n∑

k=0

[
n + r
k + r

]

r,λ
〈x〉k,λ

tn

n!

=
∞∑

k=0

( ∞∑

n=k

[
n + r
k + r

]

r,λ

tn

n!

)

〈x〉k,λ.
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On the other hand, by (21), we get

(
1

1 – t

)x( 1
1 – t

)r

= e–x
λ

(
logλ(1 – t)

)
(

1
1 – t

)r

(25)

=
∞∑

k=0

1
k!

(
– logλ(1 – t)

)k
(

1
1 – t

)r

〈x〉k,λ.

Therefore, by (24) and (25), we obtain the following theorem.

Theorem 2.2 For any integer k ≥ 0, we have

1
k!

(
– logλ(1 – t)

)k
(

1
1 – t

)r

=
∞∑

n=k

[
n + r
k + r

]

r,λ

tn

n!
.

From (19) and (20), we have

1
k!

(
– logλ(1 – t)

)k =
∞∑

n=k

[
n
k

]

λ

tn

n!
. (26)

Thus, we get

1
k!

(
– logλ(1 – t)

)k
(

1
1 – t

)r

=

( ∞∑

m=k

[
m
k

]

λ

tm

m!

)( ∞∑

l=0

〈r〉l
tl

l!

)

(27)

=
∞∑

n=k

( n∑

m=k

(
n
m

)[
m
k

]

λ

〈r〉n–m

)
tn

n!
.

Therefore, by Theorem 2.2 and (27), we obtain the following theorem.

Theorem 2.3 For any nonnegative integers n, k, with n ≥ k, we have

[
n + r
k + r

]

r,λ
=

n∑

m=k

(
n
m

)[
m
k

]

λ

〈r〉n–m.

Now, we observe that

(
1

1 – t

)r

=
(

1 +
t

1 – t

)r

=
r∑

l=0

(
r
l

)(
t

1 – t

)l

=
r∑

l=0

(r)l
1
l!

(
t

1 – t

)l

(28)

=
r∑

l=0

(r)l

∞∑

j=l

L(j, l)
tj

j!
=

∞∑

j=0

(min{r,j}∑

l=0

L(j, l)(r)l

)
tj

j!
.
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By (28), we get

1
k!

(
– logλ(1 – t)

)k
(

1
1 – t

)r

(29)

=
∞∑

m=k

[
m
k

]

λ

tm

m!

∞∑

j=0

(min{r,j}∑

l=0

L(j, l)(r)l

)
tj

j!

=
∞∑

n=k

{ n–k∑

j=0

min{r,j}∑

l=0

L(j, l)(r)l

(
n
j

)[
n – j

k

]

λ

}
tn

n!
.

Therefore, by Theorem 2.2 and (29), we obtain the following theorem.

Theorem 2.4 For any nonnegative integers n, k, with n ≥ k, we have

[
n + r
k + r

]

r,λ
=

n–k∑

j=0

min{r,j}∑

l=0

L(j, l)(r)l

(
n
j

)[
n – j

k

]

λ

.

By (21), we get

(
1

1 – t

)r+k

= e–r–k
λ

(
logλ(1 – t)

)
(30)

=
∞∑

l=0

〈r + k〉l,λ

∞∑

n=l

[
n
l

]

λ

tn

n!

=
∞∑

n=0

( n∑

l=0

〈r + k〉l,λ

[
n
l

]

λ

)
tn

n!
.

It is not difficult to show that

(
1

1 – t

)r+k

=
∞∑

n=0

( n∑

l=0

[
n + r
l + r

]

r,λ
〈k〉l,λ

)
tn

n!
. (31)

Therefore, by (28), (30), and (31), we obtain the following theorem.

Theorem 2.5 For any nonnegative integers n, k, we have

min{r+k,n}∑

l=0

(r + k)lL(n, l) =
n∑

l=0

〈r + k〉l,λ

[
n
l

]

λ

=
n∑

l=0

[
n + r
l + r

]

r,λ
〈k〉l,λ.

As an inversion formula of (22), we consider the degenerate r-Stirling numbers of second
kind given by

(x + r)n,λ =
n∑

k=0

{
n + r
k + r

}

r,λ
(x)k , (32)

where n ≥ 0 and r ∈N.
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Note from (15) and (32) that

lim
λ→0

{
n + r
k + r

}

r,λ
=

{
n + r
k + r

}
.

From (32), we have

(x + r)n+1,λ = (x + r)n,λ(x + r – nλ) (33)

=
n∑

k=0

{
n + r
k + r

}

r,λ
(x)k(x – k + k + r – nλ)

=
n∑

k=0

{
n + r
k + r

}

r,λ
(x)k+1 +

n∑

k=0

{
n + r
k + r

}

r,λ
(k + r – nλ)(x)k

=
n+1∑

k=0

{
n + r

k – 1 + r

}

r,λ
(x)k +

n∑

k=0

{
n + r
k + r

}

r,λ
(k + r – nλ)(x)k

=
n+1∑

k=0

({
n + r

k – 1 + r

}

r,λ
+ (k + r – nλ)

{
n + r
k + r

}

r,λ

)
(x)k ,

since
{

n + r
r – 1

}

r,λ
= 0 and

{
n + r

n + 1 + r

}

r,λ
= 0.

Therefore, by (32) and (33), we obtain the following theorem.

Theorem 2.6 For any nonnegative integers n, k, with n ≥ k, we have
{

n + 1 + r
k + r

}

r,λ
=

{
n + r

k – 1 + r

}

r,λ
+ (k + r – nλ)

{
n + r
k + r

}

r,λ
.

In particular,
{

n
k

}

r,λ
=

{
n – 1
k – 1

}

r,λ
+

(
k – (n – 1 – r)λ

){n – 1
k

}

r,λ
,

where n > r.

By (32), we get

ex+r
λ (t) =

∞∑

n=0

(x + r)n,λ
tn

n!
=

∞∑

n=0

( n∑

k=0

{
n + r
k + r

}

r,λ
(x)k

)
tn

n!
(34)

=
∞∑

k=0

( ∞∑

n=k

{
n + r
k + r

}

r,λ

tn

n!

)

(x)k .

On the other hand,

ex+r
λ (t) =

(
eλ(t) – 1 + 1

)xer
λ(t) =

∞∑

k=0

(
1
k!

(
eλ(t) – 1

)ker
λ(t)

)
(x)k . (35)

Therefore, by (34) and (35), we obtain the following theorem.
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Theorem 2.7 For any nonnegative integer k, we have

1
k!

(
eλ(t) – 1

)ker
λ(t) =

∞∑

n=k

{
n + r
k + r

}

r,λ

tn

n!
.

Now, we observe that

1
k!

(
eλ(t) – 1

)ker
λ(t) =

1
k!

k∑

j=0

(
k
j

)
(–1)k–jej+r

λ (t)

=
1
k!

k∑

j=0

(
k
j

)
(–1)k–j

∞∑

n=0

(j + r)n,λ
tn

n!
(36)

=
∞∑

n=0

{
1
k!

k∑

j=0

(
k
j

)
(–1)k–j(j + r)n,λ

}
tn

n!
.

Therefore, by Theorem 2.7 and (36), we obtain the following theorem.

Theorem 2.8 For any nonnegative integers n, k, we have

1
k!

k∑

j=0

(
k
j

)
(–1)k–j(j + r)n,λ =

⎧
⎨

⎩

{n+r
k+r

}
r,λ, if n ≥ k,

0, otherwise.

In particular,

1
(k – r)!

k–r∑

j=0

(
k – r

j

)
(–1)k–r–j(j + r)n–r,λ =

{
n
k

}

r,λ
(n ≥ k ≥ r).

The double generating function is given by

eλ

(
t
(
eλ(x) – 1

))
er
λ(x) =

∞∑

m=0

tm(1)m,λ
1

m!
(
eλ(x) – 1

)mer
λ(x)

=
∞∑

m=0

tm(1)m,λ

∞∑

k=m

{
k + r
m + r

}

r,λ

xk

k!
(37)

=
∞∑

k=0

( k∑

m=0

tm(1)m,λ

{
k + r
m + r

}

r,λ

)
xk

k!
.

Let us define the degenerate r-Bell polynomials as follows:

eλ

(
t
(
eλ(x) – 1

))
er
λ(x) =

∞∑

n=0

Bel(r)
n,λ(t)

xn

n!
. (38)

From (37) and (38), we have

Bel(r)
n,λ(t) =

n∑

m=0

tm(1)m,λ

{
n + r
m + r

}

r,λ
(n ≥ 0).
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Theorem 2.9 For any nonnegative integer n, we have

Bel(r)
n,λ(t) =

n∑

m=0

{
n + r
m + r

}

r,λ
(1)m,λtm.

By Theorem 2.7, we get

1
k!

(
eλ(t) – 1

)ker
λ(t) =

1
k!

(
eλ(t) – 1

)k(eλ(t) – 1 + 1
)r (39)

=
r∑

j=0

(
r
j

)
1
k!

(
eλ(t) – 1

)k+j

=
r∑

j=0

(r)j

(
k + j

k

) ∞∑

n=j+k

{
n

j + k

}

λ

tn

n!

=
∞∑

n=k

{
min{r,n–k}∑

j=0

(r)j

(
k + j

k

){
n

j + k

}

λ

}
tn

n!
.

From (39), we have

{
n + r
k + r

}

r,λ
=

min{r,n–k}∑

j=0

(r)j

(
k + j

k

){
n

j + k

}

λ

. (40)

Therefore, by (40), we obtain the following theorem.

Theorem 2.10 For any nonnegative integers n, k, with n ≥ k, we have

{
n + r
k + r

}

r,λ
=

min{r,n–k}∑

j=0

(r)j

(
k + j

k

){
n

j + k

}

λ

.

Now, we observe that

1
k!

(
– logλ(1 – t)

)k
(

1
1 – t

)r

=
1
k!

(
– logλ(1 – t)

)ke–r
λ

(
logλ(1 – t)

)
(41)

=
1
k!

(
– logλ(1 – t)

)k
∞∑

l=0

〈r〉l,λ
1
l!
(
– logλ(1 – t)

)l

=
∞∑

l=0

(k + l)!
k!l!

〈r〉l,λ
1

(k + l)!
(
– logλ(1 – t)

)k+l

=
∞∑

l=0

(
k + l

l

)
〈r〉l,λ

∞∑

n=k+l

[
n

k + l

]

λ

tn

n!

=
∞∑

n=k

( n–k∑

l=0

(
k + l

l

)
〈r〉l,λ

[
n

k + l

]

λ

)
tn

n!
.
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By Theorem 2.2 and (41), we get

[
n + r
k + r

]

r,λ
=

n–k∑

l=0

(
k + l

l

)[
n

k + l

]

λ

〈r〉l,λ, (42)

where n, k are nonnegative integers, with n ≥ k.
Therefore, by (42), we obtain the following theorem.

Theorem 2.11 For any nonnegative integers n, k, with n ≥ k, we have

[
n + r
k + r

]

r,λ
=

n–k∑

l=0

(
k + l

l

)[
n

k + l

]

λ

〈r〉l,λ.

3 Conclusion
In this paper, we studied the unsigned degenerate r-Stirling numbers of the first kind

[n
k
]

r,λ
as degenerate versions of the r-Stirling numbers of the first kind

[n
k
]

r and the degenerate r-
Stirling numbers of the second kind

{n
k
}

r,λ as degenerate versions of the r-Stirling numbers
of the second kind

{n
k
}

r . They can be viewed also as natural extensions of the degenerate
Stirling numbers of the first kind

[n
k
]
λ

and the degenerate Stirling numbers of the second
kind

{n
k
}

λ
, which were introduced earlier. For the degenerate r-Stirling numbers of both

kinds, we derived recurrence relations, generating functions, expressions of degenerate
r-Stirling numbers in terms of degenerate Stirling numbers, and a representation of the
degenerate r-Bell polynomials in terms of the degenerate r-Stirling numbers of the second
kind.

As it turns out, the degenerate Stirling numbers appear very frequently when we study
degenerate versions of many special numbers and polynomials [7, 9, 13]. It would be very
interesting to discover many appearances of the degenerate r-Stirling numbers in such
studies. It is one of our future projects to continue to explore degenerate versions of some
special numbers and polynomials and their applications not only in mathematics but also
in other disciplines like statistics, physics, engineering, and social sciences.
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