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Abstract
In this paper, a primal–dual interior point QP-free algorithm for mathematical
programs with complementarity constraints is presented. Firstly, based on
Fischer–Burmeister function and smoothing techniques, the investigated problem is
approximated by a smooth nonlinear constrained optimization problem. Secondly,
combining with an effective penalty function technique and working set, a QP-free
algorithm is proposed to solve the smooth constrained optimization problem. At
each iteration, only two reduced linear equations with the same coefficient matrix are
solved to obtain the search direction. Under some mild conditions, the proposed
algorithm possesses global convergence. Finally, some numerical results are reported.
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1 Introduction
In this paper, we discuss the following mathematical programming problem with comple-
mentarity constraints (MPCC for short):

min f (x, y)

s.t. g(x, y) ≤ 0,

0 ≤ F(x, y) ⊥ y ≥ 0,

(1)

where f : Rn+m → R, g = (g1, . . . , gmg )T : Rn+m → R
mg , F = (F1, . . . , Fm)T : Rn+m → R

m are
continuously differentiable functions. “F(x, y) ⊥ y” means that the vectors F(x, y) and y are
perpendicular to each other.

MPCC (1) has a broad of applications in real world, such as engineering design, traffic
transportation, game theory and so on. A detailed overview of MPCC applications can be
found in [1] and the monographs [2–4].

Since MPCC (1) is a nonconvex optimization problem and the standard Mangasarian–
Fromovitz constraint qualification (MFCQ) is violated at any feasible point, the well-
developed algorithms for the standard nonlinear programs (for example, [5–18]) typically
have severe difficulties if they are directly used to solve the MPCC (1). Hence, MPCC-
tailed algorithms are desired.
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It is well known that the QP-free method is one of the efficient methods for nonlinear
programming (see [14, 15, 19–25] ). The nice properties of the QP-free method are as fol-
lows: (a) The search directions are determined only by solving systems of linear equations
rather than solving QP-subproblems. As a consequence, the computational cost is de-
creased greatly. (b) Compared with the SQP method, the size of the investigated problem
solved by QP-free method is larger. It is worth mentioning that the primal–dual interior
point QP-free algorithm in [21] has an improvement, that is, the strict restriction that the
Lagrangian Hessian estimate is uniformly positive is relaxed. It is noticed that the active
set identifying technique is incorporated into the QP-free algorithms in [22, 23]. Conse-
quently, the computational cost is further decreased and the numerical performance in
[22] is encouraging.

Although there are many OP-free algorithms for nonlinear programming, to the best of
our knowledge, there are few MPCC-tailed QP-free algorithms for the MPCC (1). Moti-
vated by the ideas of the algorithms in [21, 24–27] and combining with smoothing tech-
niques, we propose a primal–dual interior point QP-free algorithm for the MPCC (1). The
proposed algorithm possesses the following nice properties:

(a) The technique of active set is incorporated into the algorithm. As a consequence,
the size of SLEs becomes smaller and the computational cost is decreased.

(b) At each iteration, the search direction is obtained by solving two SLEs with the same
coefficient matrix, which further decreases the computational cost.

(c) The uniformly positive definiteness on the Lagrangian Hessian estimate Hk is
relaxed.

(d) The algorithm possesses global convergence without assuming that the stationary
points are isolated.

2 Preliminaries and reformulation
In this section, for completeness, we first restate some definitions and results about
the MPCC (1), then deduce an approximation problem of the MPCC (1) by Fischer–
Burmeister function and smoothing techniques.

Denoted by X0 the feasible set of the MPCC (1), and denoted by IC = {1, 2, . . . , m} and
Ig = {1, 2, . . . , mg} are the index sets of the complementarity constraints and the inequality
constraints, respectively.

Definition 1 ([2]) Given (x∗, y∗) ∈ X0, if

(
y∗

i , Fi
(
x∗, y∗)) �= (0, 0), ∀i ∈ IC , (2)

then we call that the lower-level strict complementarity (LLSC) is satisfied at (x∗, y∗).

Definition 2 ([2]) A point (x∗, y∗) ∈ X0 is said to be a KKT stationary point of the MPCC
(1) if there exists a KKT multiplier vector (λ∗,ω∗,μ∗) ∈R

m+m+mg such that

∇f
(
x∗, y∗) + ∇g

(
x∗, y∗)λ∗ – ∇F

(
x∗, y∗)ω∗ –

(
0n×m

Em

)

μ∗ = 0,

0 ≤ –g
(
x∗, y∗) ⊥ λ∗ ≥ 0; F

(
x∗, y∗) ≥ 0, y∗ ≥ 0, Fi

(
x∗, y∗)y∗

i = 0;

ω∗
i = 0, if Fi

(
x∗, y∗) > 0; μ∗

i = 0, if y∗
i > 0;
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ω∗
i ≥ 0, μ∗

i ≥ 0, if Fi
(
x∗, y∗) = y∗

i = 0,

where Em ∈ R
m×m is an mth-order identity matrix. The vector ((x∗, y∗),λ∗,ω∗,μ∗) is said

to be a KKT stationary pair of the MPCC (1).

Proposition 1 ([2]) Suppose that (x∗, y∗) ∈ X0 satisfies LLSC, then ((x∗, y∗),λ∗,ω∗,μ∗) is a
KKT stationary pair of the MPCC (1) if and only if there exists a vector ι∗ = (ι∗i , i ∈ IC) ∈R

m,
such that

⎛

⎜
⎝

∇xf (x∗, y∗)
∇yf (x∗, y∗)

0m×1

⎞

⎟
⎠ +

⎛

⎜
⎝

∇xg(x∗, y∗)
∇yg(x∗, y∗)

0m×l

⎞

⎟
⎠λ∗ –

⎛

⎜
⎝

∇xF(x∗, y∗)
∇yF(x∗, y∗)

–Em

⎞

⎟
⎠ω∗ –

⎛

⎜
⎝

0n×m

V ∗

Y ∗

⎞

⎟
⎠ ι∗ = 0,

0 ≤ –g
(
x∗, y∗) ⊥ λ∗ ≥ 0, 0 ≤ F

(
x∗, y∗) ⊥ y∗ ≥ 0,

ι∗i =

{
μ∗

i /Fi(x∗, y∗), if Fi(x∗, y∗) > 0,
ω∗

i /y∗
i , if y∗

i > 0,

where V ∗ = diag(Fi(x∗, y∗), i ∈ IC), Y ∗ = diag(y∗
i , i ∈ IC).

It is well known that the Fischer–Burmeister function is a complementarity function,
which is defined by

ψ(a, b) = a + b –
√

a2 + b2.

Obviously, ψ satisfies the following basic property:

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (3)

And ψ is continuous differentiable in {(a, b) ∈R
2|(a, b) �= (0, 0)}, namely

ψ ′
a(a, b) = 1 –

a√
a2 + b2

; ψ ′
b(a, b) = 1 –

b√
a2 + b2

, (a, b) �= (0, 0).

Let v = F(x, y), according to the property (3), the MPCC (1) is equivalently transformed
into the following nonsmooth nonlinear optimization problem:

min f (x, y)

s.t. v – F(x, y) = 0,

Ψ (y, v) = 0,

g(x, y) ≤ 0,

(4)

where Ψ (y, v) = (ψ(yi, vi), i ∈ IC).
Obviously, the function ψ is not differentiable at the point (0, 0). Borrowing ideas from

[28], we define the functions as follows:

ψε(yi, vi) =

{
ψ(yi, vi), i ∈ IC \ IC(y, v, ε),
2ε–yi

2ε
yi + 2ε–vi

2ε
vi – ε

2 , i ∈ IC(y, v, ε),
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ψε(yi, vi) =

{
0, i ∈ IC \ IC(y, v, ε),
(
√

y2
i +v2

i –ε)2

2ε
, i ∈ IC(y, v, ε),

where the index set IC(y, v, ε) = {i ∈ IC |
√

y2
i + v2

i < ε, ε > 0}. Moreover, define

Ψε(y, v) =
(
ψε(yi, vi), i ∈ IC

)
, Ψ ε(y, v) =

(
ψε(yi, vi), i ∈ IC

)
,

so we have

Ψ (y, v) = Ψε(y, v) + Ψ ε(y, v). (5)

For any ε > 0, the function ψε(yi, vi) is differentiable, and it follows that

ψ ′
ε,yi

(yi, vi) =
∂ψε(yi, vi)

∂yi
=

⎧
⎨

⎩

1 – yi√
y2

i +v2
i

, i ∈ IC \ IC(y, v, ε),

1 – yi
ε

, i ∈ IC(y, v, ε),

ψ ′
ε,vi

(yi, vi) =
∂ψε(yi, vi)

∂vi
=

⎧
⎨

⎩

1 – vi√
y2

i +v2
i

, i ∈ IC \ IC(y, v, ε),

1 – vi
ε

, i ∈ IC(y, v, ε).

So the smooth problem

min f (x, y)

s.t. v – F(x, y) = 0,

Ψε(y, v) = 0,

g(x, y) ≤ 0

(6)

will be used as an approximation of the MPCC (1). Obviously, if IC(y∗, v∗, ε) = ∅, then the
problem (6) is equivalent with the problem (4). Under some mild conditions, IC(y∗, v∗, ε) =
∅ is guaranteed, where (x∗, y∗, v∗) is an accumulation point of the iterative sequence
{(xk , yk , vk)} (see the proof of Theorem 1 in the sequel).

Define a penalty function fr(x, y) for the problem (6) by

fr(x, y) = f (x, y) – r
∑

i∈IC

(
vi – Fi(x, y)

)
– r

∑

i∈IC
ψε(yi, vi),

where r > 0 is a penalty parameter. Similar to [29], we can convert the problem (6) to the
following smoothing optimization only with inequality constraints:

min fr(x, y)

s.t. vi – Fi(x, y) ≤ 0, i ∈ IC ,

ψε(yi, vi) ≤ 0, i ∈ IC ,

gi(x, y) ≤ 0, i ∈ Ig .

(7)
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For simplicity, we use the following notations throughout this paper:

z = (x, y, v), u = (x, y), w = (y, v),

dz = (dx, dy, dv), du = (dx, dy), dw = (dy, dv),

zk =
(
xk , yk , vk), uk =

(
xk , yk), wk =

(
yk , vk),

dzk =
(
dxk , dyk , dvk), duk =

(
dxk , dyk), dwk =

(
dyk , dvk),

eI = (1, 1, . . . , 1)T ∈R
2m+mg , eIC = (1, 1, . . . , 1)T ∈R

m,

X :=
{

z ∈R
n+2m | vi – Fi(x, y) = 0, i ∈ IC ;ψε(yi, vi) = 0, i ∈ IC ; gi(x, y) ≤ 0, i ∈ Ig},

X̃ :=
{

z ∈R
n+2m | vi – Fi(x, y) ≤ 0, i ∈ IC ;ψε(yi, vi) ≤ 0, i ∈ IC ; gi(x, y) ≤ 0, i ∈ Ig},

X̃0 :=
{

z ∈R
n+2m | vi – Fi(x, y) < 0, i ∈ IC ;ψε(yi, vi) < 0, i ∈ IC ; gi(x, y) < 0, i ∈ Ig},

ϕ(x, y) = max
{

0; gi(x, y), i ∈ Ig}, I(x, y) =
{

i ∈ Ig | gi(x, y) = ϕ(x, y)
}

,

IF
0 (z) =

{
i ∈ IC | vi – Fi(x, y) = 0

}
, IΨε

0 (z) =
{

i ∈ IC | ψε(yi, vi) = 0
}

,

Ig
0(z) =

{
i ∈ Ig | gi(x, y) = 0

}
.

The following proposition shows the equivalence between the problem (6) and the prob-
lem (7).

Proposition 2 If (z,λr) is a KKT pair of the problem (7), and v – F(x, y) = 0, Ψε(y, v) = 0,
then (z,λ) with multiplier λ = λr – rẽ is a KKT pair of the problem (6), where λr :=
(λr

F ,IC ,λr
Ψε ,IC ,λr

g,Ig ), λ := (λF ,IC ,λΨε ,IC ,λg,Ig ), ẽ = (1, . . . , 1mth, 1, . . . , 1(2m)th, 0, . . . , 0(2m+mg )th)T.

Proof Since (z,λr) is a KKT pair of the problem (7), the vector pair (z,λr) satisfies the
following relations:

∇zfr(x, y) + ∇z
(
v – F(x, y)

)
λr

F ,IC + ∇zΨε(y, v)λr
Ψε ,IC + ∇zg(x, y)λr

g,Ig = 0,

λr
F ,i ≥ 0, vi – Fi(x, y) ≤ 0, λr

F ,i
(
vi – Fi(x, y)

)
= 0, i ∈ IC ,

λr
Ψε ,i ≥ 0,ψε(yi, vi) ≤ 0, λr

Ψε ,iψε(yi, vi) = 0, i ∈ IC ,

λr
g,i ≥ 0, gi(x, y) ≤ 0, λr

g,igi(x, y) = 0, i ∈ Ig .

Note that

∇zfr(x, y) = ∇zf (x, y) – r
∑

i∈IC
∇z

(
vi – Fi(x, y)

)
– r

∑

i∈IC
∇zψε(yi, vi),

we get

∇zf (x, y) + ∇z
(
v – F(x, y)

)(
λr

F ,IC – reIC
)

+ ∇zΨε(y, v)
(
λr

Ψε ,IC – reIC
)

+ ∇zg(x, y)λr
g,Ig = 0.

Let λF ,IC = λr
F ,IC – reIC , λΨε ,IC = λr

Ψε ,IC – reIC , λg,Ig = λr
g,Ig , we obtain

∇zf (x, y) + ∇z
(
v – F(x, y)

)
λF ,IC + ∇zΨε(y, v)λΨε ,IC + ∇zg(x, y)λg,Ig = 0.
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In view of v – F(x, y) = 0, Ψε(y, v) = 0, g(x, y) ≤ 0, and

λg,i ≥ 0, λg,igi(x, y) = 0, i ∈ Ig .

Let λ := (λF ,IC ,λΨε ,IC ,λg,Ig ) = λr – rẽ, so (z,λ) is a KKT pair of the problem (6). �

3 Description of the algorithm
For the sake of theoretical analysis, we make a basic assumption throughout this paper.

Assumption 1
(1) For any (x, y) ∈ R

n+m, the matrix ∇yF(x, y) is a P0 matrix, i.e., all the principal minors
of ∇yF(x, y) are nonnegative.

(2) For any (x, y) ∈R
n+m, the submatrix (∇yF(x, y))J∗J∗ of the matrix ∇yF(x, y) is

nonsingular, where the index set J∗ = {i ∈ IC | ψ ′
ε,yi

(yi, vi) = 0}.

In order to construct the coefficient matrix of linear equations conveniently, denote

ΩJ := ΩJ (z, ε) =

⎛

⎜
⎝

v – F(x, y)
Ψε(y, v)
gJ (x, y)

⎞

⎟
⎠ ,

and denote by AJ the gradient matrix of ΩJ , that is,

AJ := AJ (z, ε) =

⎛

⎜
⎝

–∇xF(x, y)
–∇yF(x, y)

Em

0
∇yΨε(y, v)
∇vΨε(y, v)

∇xgJ (x, y)
∇ygJ (x, y)

0

⎞

⎟
⎠ ,

where J ⊆ Ig , the diagonal matrix

∇yΨε(y, v) = diag
(
ψ ′

ε,yi
(yi, vi), i ∈ IC)

, ∇vΨε(y, v) = diag
(
ψ ′

ε,vi
(yi, vi), i ∈ IC)

.

Define the matrix

U := U(z, ε) =

(
–∇yF(x, y)

Em

∇yΨε(y, v)
∇vΨε(y, v)

)

. (8)

Similar to the proof in [30, 31], we can prove that the following proposition is true.

Proposition 3
(1) Suppose that the matrix U is nonsingular. Then the matrix AI(x,y) is full of column

rank, if and only if the matrix

∇xgI(x,y)(x, y) – ∇xF(x, y)
(
U–1)

m∇ygI(x,y)(x, y)

is full of column rank, where (U–1)m is the mth-order principal submatrix of U–1,
which consists of the first m rows and m columns of U–1.

(2) Suppose that Assumption 1 holds, then the matrix U is nonsingular.
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Assumption 2 For any z ∈R
n+2m, the matrix

∇xgI(x,y)(x, y) – ∇xF(x, y)
(
U–1)

m∇ygI(x,y)(x, y)

is full of column rank.

Remark 1 According to Proposition 3, if Assumption 1 is true, then Assumption 2 is equiv-
alent to the LICQ of the problem (7).

Based on Proposition 2, we know that if one can construct an efficient algorithm for the
problem (7) and adjust penalty parameter r to force the iterate to asymptotically satisfy
v – F(x, y) = 0, Ψε(y, v) = 0, then the solution to the problem (6) can be yielded.

Define the following optimal identification function:

ρ(z,λ) =
∥∥Φ(z,λ)

∥∥ϑ , (9)

where

Φ(z,λ) =

⎛

⎜⎜⎜
⎝

∇zL(z,λ)
v – F(x, y)
Ψε(y, v)

min{–g(x, y),λg,Ig }

⎞

⎟⎟⎟
⎠

,

and λ = (λF ,IC ,λΨε ,IC ,λg,Ig ), the parameter ϑ ∈ (0, 1), ‖ · ‖ is the Euclidean norm, and we
have the Lagrangian function

L(z,λ) = f (x, y) +
∑

i∈IC
λF ,i

(
vi – Fi(x, y)

)
+

∑

i∈IC
λΨε ,iψε(yi, vi) +

∑

i∈Ig

λg,igi(x, y).

Obviously, ρ is nonnegative and continuous. It follows from [32] that ρ(z∗,λ∗) = 0 if and
only if (z∗,λ∗) is a KKT pair of the problem (6).

For the current iterate zk ∈ X̃0, we define the corresponding multiplier vector λk =
(λk

F ,IC ,λk
Ψε ,IC ,λk

g,Ig ) in (9) by

λ0 = s0, λk = λ̂k–1 – rk–1ẽ, k ≥ 1, (10)

where s0 > 0, and (̂λk–1, rk–1) is computed in the previous (k – 1)th iteration, we construct
the working set Ik as follows:

Ik =
{

i ∈ Ig | gi
(
xk , yk) + ρ

(
zk ,λk) ≥ 0

}
. (11)

When (zk ,λk) is sufficiently close to a KKT pair (z∗,λ∗) of the problem (6), and the
second-order sufficient conditions and the MFCQ hold at (z∗,λ∗), the set Ik equals the
precise identification set Ig

0(z∗). Therefore, only inequality constraints associated with the
working set Ik need to be considered.
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For the current iterate zk ∈ R
n+2m, the first SLE in our algorithm is constructed as fol-

lows:

SLE1: MIk

(
dz
λIk

)

=

(
–∇zfrk (xk , yk)

0

)

, (12)

where the coefficient matrix MIk is defined by

MIk := MIk

(
zk , SIk

)
=

(
Hk

SIk (AIk )T
AIk

GIk

)

(13)

with

GIk = diag
(
vk – F

(
xk , yk),Ψε

(
yk , vk), gIk

(
xk , yk)),

the matrix Hk ∈ R
n+2m is an approximation of the Lagrangian Hessian, the matrix SIk :=

diag(sk
Ik

), where the vector sk
Ik

:= (sk
F ,IC , sk

Ψε ,IC , sk
g,Ik

) ∈ R
2m+|Ik | is an approximation of λk

Ik
:=

(λk
F ,IC ,λk

Ψε ,IC ,λk
g,Ik

).
It is not difficult to prove that the following result is true.

Lemma 1 Suppose that Assumptions 1–2 hold, and the symmetric matrix Hk satisfies the
following relation:

Hk �
∑

i∈IC

sk
F ,i

vk
i – Fi(xk , yk)

∇z
(
vk

i – Fi
(
xk , yk))∇z

(
vk

i – Fi
(
xk , yk))T

+
∑

i∈IC

sk
Ψε ,i

ψε(yk
i , vk

i )
∇zψε

(
yk

i , vk
i
)∇zψε

(
yk

i , vk
i
)T

+
∑

i∈Ik

sk
g,i

gi(xk , yk)
∇zgi

(
xk , yk)∇zgi

(
xk , yk)T, (14)

then the coefficient matrix MIk defined by (13) is invertible, where the matrix order A � B
means that A – B is positive definite.

We now describe our algorithm as follows.

Algorithm A Step 0. (Initialization)
Choose an initial point z0 ∈ X̃0; α ∈ (0, 1

2 ); ϑ ,β , θ ∈ (0, 1); r0, ε0, C,ν,γ1,γ2,γ3,γ4 > 0;
τ > 1; q > 2; termination accuracy ε > 0; the vector s0 := (s0

F ,IC , s0
Ψε ,IC , s0

g,Ig ) ∈ R
2m+mg with

s0
i ∈ [smin, smax], where smax > smin > 0. Set k := 0.
Step 1. (Compute the working set)
Yield λk by (10), then compute ρ(zk ,λk) by (9). If ρ(zk ,λk) ≤ ε, and IC(yk , vk , εk) = ∅, then

zk is a KKT point of the MPCC (1), stop; otherwise, compute the working set Ik by (11).
Step 2. (Yield a matrix Hk)
Generate a symmetric matrix Hk such that it is an approximation of the Lagrangian

Hessian of the problem (7) and satisfies the condition (14).
Step 3. (Generate a search direction)
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(1) Solve the first SLE1 (12). Let its solution be (d̂zk , λ̂k
Ik

), with
λ̂k

Ik
:= (̂λk

F ,IC , λ̂k
Ψε ,IC , λ̂k

g,Ik
) ∈R

2m+|Ik |. Set λ̂k := (̂λk
F ,IC , λ̂k

Ψε ,IC , λ̂k
g,Ig ), where

λ̂k
g,Ig := (̂λk

g,Ik
, 0Ig\Ik ).

(2) If the following conditions hold:
(i) ‖d̂zk‖ ≤ γ1,

(ii) λ̂k ≥ –γ2eI ,
(iii) λ̂k

F ,IC ≯ γ3eIC ,
(iv) λ̂k

Ψε ,IC ≯ γ4eIC ,
(v) IC(yk , vk , εk) �= ∅, then update the parameter rk by rk+1 = τ rk , set zk+1 = zk ,

sk+1 = sk , Hk+1 = Hk , Ik+1 = Ik , εk+1 = 1
2εk , and go back to Step 3(1); otherwise, set

rk+1 = rk , go to Step 3(3).
(3) Find φk

F ,IC = (φk
F ,i) ∈R

m, Dk
Ψε ,IC = (Dk

Ψε ,i) ∈ R
m, Qk

g,Ik
= (Qk

g,i) ∈R
|Ik |, respectively, as

follows:

φk
F ,i := φi

(
zk , λ̂k

F ,i
)

= min
{

0, –
(
max

{
–̂λk

F ,i, 0
})ν – C

(
vk

i – Fi
(
xk , yk))}, i ∈ IC , (15)

Dk
Ψε ,i := Di

(
zk , λ̂k

Ψε ,i
)

= min
{

0, –
(
max

{
–̂λk

Ψε ,i, 0
})ν – Cψε

(
yk

i , vk
i
)}

, i ∈ IC , (16)

Qk
g,i := Qi

(
zk , λ̂k

g,i
)

= min
{

0, –
(
max

{
–̂λk

g,i, 0
})ν – Cgi

(
xk , yk)}, i ∈ Ik . (17)

Denote � k = (φk
F ,IC , Dk

Ψε ,IC , Qk
g,Ik

), then compute

ζ k = ∇zfrk

(
xk , yk)T d̂zk –

∑

i∈IC

λ̂k
F ,i

sk
F ,i

φk
F ,i –

∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

Dk
Ψε ,i –

∑

i∈Ik

λ̂k
g,i

sk
g,i

Qk
g,i, (18)

bk =
(∥∥d̂zk∥∥q +

∥∥� k∥∥)
(∑

i∈IC
λ̂k

F ,i +
∑

i∈IC
λ̂k

Ψε i +
∑

i∈Ik

λ̂k
g,i

)

+
∑

i∈IC

λ̂k
F ,i

sk
F ,i

φk
F ,i +

∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

Dk
Ψε ,i +

∑

i∈Ik

λ̂k
g,i

sk
g,i

Qk
g,i, (19)

�k =

{
1, if bk ≤ 0,
min{ (1–θ )|ζ k |

bk
, 1}, if bk > 0.

(20)

(4) Solve the second SLE as follows:

SLE2: MIk

(
dz
λIk

)

=

(
–∇zfrk (xk , yk)

ηk
Ik

)

, (21)

where the perturbation vector ηk
Ik

= (ηk
F ,IC ,ηk

Ψε ,IC ,ηk
g,Ik

) is determined by the
following convex combination:

ηk
Ik

= (1 – �k)� k + �k
(
–
∥∥d̂zk∥∥ –

∥∥� k∥∥)
sk

Ik
(22)

with sk
Ik

:= (sk
F ,IC , sk

Ψε ,IC , sk
g,Ik

) ∈R
2m+|Ik |.

Let its solution be (dzk ,λk
Ik

) with λk
Ik

:= (λk
F ,IC ,λk

Ψε ,IC ,λk
g,Ik

) ∈R
2m+|Ik |. Set

λk := (λk
F ,IC ,λk

Ψε ,IC ,λk
g,Ig ) with λk

g,Ig = (λk
g,Ik

, 0Ig\Ik ).
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Step 4. (Perform line search) Compute the step size tk , which is the first number t of the
sequence {1,β ,β2, . . .} satisfying

frk

(
zk + t dzk) ≤ frk

(
zk) + αt∇zfrk

(
xk , yk)T dzk , (23)

(
vk

i + t dvk) – Fi
(
uk + t duk) < 0, ∀i ∈ IC , (24)

ψε

(
wk

i + t dwk) < 0, ∀i ∈ IC , (25)

gi
(
uk + t duk) < 0, ∀i ∈ Ig . (26)

Step 5. (Update) Let zk+1 = zk + tk dzk , and compute

sk+1
i = min

{
max

{∥∥dzk∥∥2 + smin,λk
i
}

, smax
}

,

ξk+1 = min
{√(

yk+1
i

)2 +
(
vk+1

i
)2, i ∈ IC

}
,

εk+1 =

{
εk , if εk ≤ ξk+1,
1
2εk , otherwise.

(27)

Step 6. Let k := k + 1, and go back to Step 1.

Remark 2 The correction technique of penalty parameter rk in Step 3(2) is from [33], when
the conditions (i)–(ii) in Step 3(2) are satisfied, the current iteration point zk is close to a
KKT point of the problem (7). However, the conditions (iii)–(iv) in Step 3(2) indicate that
zk is far away from the feasible area of the problem (6), and the penalty parameter needs
to be increased.

For convenience, denote

Λk = Hk –
∑

i∈IC

sk
F ,i

vk
i – Fi(xk , yk)

∇z
(
vk

i – Fi
(
xk , yk))∇z

(
vk

i – Fi
(
xk , yk))T

–
∑

i∈IC

sk
Ψε ,i

ψε(yk
i , vk

i )
∇zψε

(
yk

i , vk
i
)∇zψε

(
yk

i , vk
i
)T

–
∑

i∈Ik

sk
g,i

gi(xk , yk)
∇zgi

(
xk , yk)∇zgi

(
xk , yk)T.

Lemma 2 For the directions d̂zk and dzk found in Step 3(1)(4), the following conclusions
hold:

∇zfrk

(
xk , yk)T d̂zk = –

(
d̂zk)T

Λk d̂zk ≤ 0, ∀k ≥ 0, (28)

∇zfrk

(
xk , yk)T dzk ≤ θζ k ≤ 0, ∀k ≥ 0. (29)

Furthermore, when iteration goes into Step 3(3)(4), we have d̂zk �= 0 and ζ k < 0, so dzk is a
feasible descent direction of the problem (7) at zk , hence, Algorithm A is well defined.
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Proof It follows from the SLE1 (12) that

Hk d̂zk + AIk λ̂
k
Ik

= –∇zfrk

(
xk , yk), (30)

SIk (AIk )T d̂zk + GIk λ̂Ik = 0. (31)

By (30)–(31), we have

∇zfrk

(
xk , yk) =

∑

i∈IC

sk
F ,i

vk
i – Fi(xk , yk)

∇z
(
vk

i – Fi
(
xk , yk))∇z

(
vk

i – Fi
(
xk , yk))T d̂zk

+
∑

i∈IC

sk
Ψε ,i

ψε(yk
i , vk

i )
∇zψε

(
yk

i , vk
i
)∇zψε

(
yk

i , vk
i
)T d̂zk

+
∑

i∈Ik

sk
g,i

gi(xk , yk)
∇zgi

(
xk , yk)∇zgi

(
xk , yk)T d̂zk – Hk d̂zk ,

which indicates ∇zfrk (xk , yk)T d̂zk = –(d̂zk)TΛk d̂zk ≤ 0.
By (15)–(18), we obtain

φF ,îλ
k
F ,i ≥ 0, i ∈ IC ; DΨε ,îλ

k
Ψε ,i ≥ 0, i ∈ IC ; Qg,îλ

k
g,i ≥ 0, i ∈ Ik . (32)

It follows from (18) and (32) that

ζk ≤ ∇zfrk

(
xk , yk)T d̂zk ≤ 0. (33)

Taking into account SLE1 (12) and SLE2 (21), we have

Hk d̂zk + AIk λ̂
k
Ik

= –∇zfrk

(
xk , yk), (34)

SIk (AIk )T d̂zk + GIk λ̂
k
Ik

= 0, (35)

Hk dzk + AIk λ
k
Ik

= –∇zfrk

(
xk , yk), (36)

SIk (AIk )T dzk + GIk λ
k
Ik

= ηk
Ik

. (37)

It follows from (34) and (36) as well as the symmetry of the matrix Hk that

∇zfrk

(
xk , yk)T dzk – ∇zfrk

(
xk , yk)T d̂zk

=
(
d̂zk)TAIk λ

k
Ik

–
(
dzk)TAIk λ̂

k
Ik

=
(
λk

Ik

)T(AIk )T d̂zk –
(
λ̂k

Ik

)T(AIk )T dzk .

From (35) and (37), we have

(
λk

Ik

)T(AIk )T d̂zk –
(
λ̂k

Ik

)T(AIk )T dzk

= –
∑

i∈IC

λ̂k
F ,iη

k
F ,i

sk
F ,i

–
∑

i∈IC

λ̂k
Ψε ,iη

k
Ψε ,i

sk
Ψε ,i

–
∑

i∈Ik

λ̂k
g,iη

k
g,i

sk
g,i

.
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By (18) and (19), one gets

∇zfrk

(
xk , yk)T dzk

= ∇zfrk

(
xk , yk)T d̂zk –

∑

i∈IC

λ̂k
F ,iη

k
F ,i

sk
F ,i

–
∑

i∈IC

λ̂k
Ψε ,iη

k
Ψε ,i

sk
Ψε ,i

–
∑

i∈Ik

λ̂k
g,iη

k
g,i

sk
g,i

= ∇zfrk

(
xk , yk)T d̂zk –

∑

i∈IC

λ̂k
F ,i

sk
F ,i

[
(1 – �k)φk

F ,i + �k
(
–
∥∥d̂zk∥∥q –

∥∥� k∥∥)
sk

F ,i
]

–
∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

[
(1 – �k)Dk

Ψε ,i + �k
(
–
∥∥d̂zk∥∥q –

∥∥� k∥∥)
sk
Ψε ,i

]

–
∑

i∈Ik

λ̂k
g,i

sk
g,i

[
(1 – �k)Qk

g,i + �k
(
–
∥∥d̂zk∥∥q –

∥∥� k∥∥)
sk

g,i
]

=
(

∇zfrk

(
xk , yk)T d̂zk –

∑

i∈IC

λ̂k
F ,i

sk
F ,i

φk
F ,i –

∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

Dk
Ψε ,i –

∑

i∈Ik

λ̂k
g,i

sk
g,i

Qk
g,i

)

+ �k

[∑

i∈IC

λ̂k
F ,i

sk
F ,i

φk
F ,i +

∑

i∈IC
λ̂k

F ,i
(∥∥ d̂zk∥∥q +

∥∥� k∥∥)
]

+ �k

[∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

Dk
Ψε ,i +

∑

i∈IC
λ̂k

Ψε ,i
(∥∥d̂zk∥∥q +

∥∥� k∥∥)
]

+ �k

[∑

i∈Ik

λ̂k
g,i

sk
g,i

Qk
g,i +

∑

i∈Ik

λ̂k
g,i

(∥∥ d̂zk∥∥q +
∥∥� k∥∥)

]
(38)

= ζ k + �kbk .

In view of (20), if bk ≤ 0, then �kbk = bk ≤ 0. Furthermore, we have ζ k + �kbk ≤ ζ k ≤
θζ k . If bk > 0, then we have ζ k + �kbk = ζ k + min{(1 – θ )|ζ k|, bk} ≤ ζ k + (θ – 1)ζ k = θζ k . In
conclusion, we obtain ζ k + �kbk ≤ θζ k . From (33) and (38), it follows that

∇zfrk

(
xk , yk)T dzk = ζ k + �kbk ≤ θζ k ≤ 0,

which indicates that the inequality (29) is true.
If d̂zk = 0, taking into account SLE1 (12), from vk – F(xk , yk) < 0, Ψε(yk , vk) < 0, g(xk , yk) <

0, we have λ̂k
Ik

= 0, so the iterate k does not go into Step 3(3)(4). Thus, d̂zk �= 0 when the
iterative process goes into Step 3(3)(4).

By ∇zfrk (xk , yk)T dzk ≤ 0, we know that dzk is a feasible descent direction of the problem
(7) at point zk . Together with vk – F(xk , yk) < 0, Ψε(yk , vk) < 0, g(xk , yk) < 0 and ζ k < 0, Step 4
in Algorithm A can be finished by finite calculations, hence Algorithm A is well defined. �

4 Global convergence
In this paper, we assume that Algorithm A generates an infinite iteration sequence {zk}.
For the sake of convenience, let z∗ be an accumulation point of the iteration sequence {zk}.
First, we show that the penalty parameter rk can be augmented only in a finite number of
steps. Then we prove that z∗ is a KKT point of the problem (7). Finally, we show that z∗
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is a KKT point of the MPCC (1). More precisely, we show that Algorithm A is globally
convergent. For this purpose, the following assumptions are necessary.

Assumption 3 Suppose that the sequences {Hk} and {zk} are all bounded, each accumu-
lation point of {zk} satisfies LLSC (2). Assume that there exists a positive constant σ such
that

dTΛkd ≥ σ‖d‖2, ∀k,∀d ∈R
n+2m. (39)

Assumption 4 For any z ∈ X̃, if z /∈ X, then no scalars λF ,i ≥ 0, i ∈ IF
0 (z); λΨε ,i ≥ 0, i ∈ IΨε

0 (z)
and λg,i ≥ 0, i ∈ Ig

0(z), exist such that

∑

i∈IC
∇z

(
vi – Fi(x, y)

)
+

∑

i∈IC
∇zψε(yi, vi)

=
∑

i∈IF
0 (z)

λF ,i∇z
(
vi – Fi(x, y)

)
+

∑

i∈IΨε
0 (z)

λΨε ,i∇zψε(yi, vi) +
∑

i∈Ig
0 (z)

λg,i∇zgi(x, y).

Lemma 3 Suppose that Assumptions 1–4 hold, then the penalty parameter rk can be aug-
mented only in a finite number of steps.

Proof By contradiction, suppose that rk is increased infinitely many times, i.e., there exists
an infinite index set K such that rk+1 > rk for any k ∈ K . The increase of rk must satisfy the
following conditions for any k ∈ K :

(i)
∥∥ d̂zk∥∥ ≤ γ1; (ii) λ̂k ≥ –γ2eI ; (iii) λ̂k

F ,IC ≯ γ3eIC ;

(iv) λ̂k
Ψε ,IC ≯ γ4eIC ; (v) IC(

yk , vk , εk
) �= ∅.

Denote

Ak
Ig =

⎛

⎜
⎝

–∇xF(xk , yk)
–∇yF(xk , yk)

Em

0
∇yΨε(yk , vk)
∇vΨε(yk , vk)

∇xg(xk , yk)
∇yg(xk , yk)

0

⎞

⎟
⎠ ,

Gk
Ig = diag

(
vk – F

(
xk , yk),Ψε

(
yk , vk), g

(
xk , yk)),

and Sk
Ig = diag(sk

Ig ), where sk
Ig = (sk

F ,IC , sk
Ψε ,IC , sk

g,Ig ). According to the SLE

(
Hk

Sk
Ig (Ak

Ig )T
Ak

Ig

Gk
Ig

)(
d̂zk

λ̂k

)

=

(
–∇zfrk (xk , yk)

0

)

,

we have

Hk d̂zk + Ak
Ig λ̂

k + ∇zfrk

(
xk , yk) = 0, (40)

Sk
Ig
(
Ak

Ig
)T d̂zk + Gk

Ig λ̂
k = 0. (41)
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Since {rk} tends to infinity, and λk = λ̂k–1 –rk–1ẽ, k ≥ 1, such that {‖̂λk‖∞} tends to infinity
as well, we have

βk = max
{∥∥̂λk

F ,IC
∥
∥∞,

∥
∥̂λk

Ψε ,IC
∥
∥∞,

∥
∥̂λk

g,Ig
∥
∥∞, 1

} K−→ ∞.

Define

λ̄k
F ,IC = β–1

k λ̂k
F ,IC , λ̄k

Ψε ,IC = β–1
k λ̂k

Ψε ,IC , λ̄k
g,Ig = β–1

k λ̂k
g,Ig , (42)

for k (∈ K ) large enough, it follows that

max
{∥∥λ̄k

F ,IC
∥
∥∞,

∥
∥λ̄k

Ψε ,IC
∥
∥∞,

∥
∥λ̄k

g,Ig
∥
∥∞

}
= 1.

Since the sequence {zk}k∈K is bounded by Assumption 3, there exists an infinite index set
K ′ ⊆ K , z∗ ∈R

n+2m, and (λ̄∗
F ,IC , λ̄∗

Ψε ,IC , λ̄∗
g,Ig ) �= 0, for all k ∈ K ′, such that

lim
k→∞

zk = z∗, lim
k→∞

λ̄k
F ,IC = λ̄∗

F ,IC , lim
k→∞

λ̄k
Ψε ,IC = λ̄∗

Ψε ,IC , lim
k→∞

λ̄k
g,Ig = λ̄∗

g,Ig .

In view of the boundedness of {zk} and the continuity of the functions, it follows that

{∇z
(
vk – F

(
xk , yk))},

{∇zΨε

(
yk , vk)},

{∇zg
(
xk , yk)},

are bounded. Further, {Sk
Ig } are bounded by construction. Multiplying both sides of (41)

by β–1
k , we have

β–1
k Sk

Ig
(
Ak

Ig
)T d̂zk + β–1

k Gk
Ig λ̂

k = 0.

Letting k
K ′

−→ ∞, the condition (i) shows that β–1
k Gk

Ig λ̂
k K ′
−→ 0, implying that β–1

k λ̂k
F ,i

K ′
−→ 0

for i ∈ IC \ IF
0 (z∗). Similarly, β–1

k λ̂k
Ψε ,i

K ′
−→ 0 for i ∈ IC \ IΨε

0 (z∗).

From (10) and (42), we know that { rk
βk

} converges to a ≥ 0 as k
K ′

−→ ∞, with

λ̄∗
F ,i = a, ∀i ∈ IC \ IF

0
(
z∗); λ̄∗

Ψε ,i = a, ∀i ∈ IC \ IΨε
0

(
z∗). (43)

Then it follows from the condition (ii) and (42) that

λ̄∗
F ,i ≤ a, ∀i ∈ IF

0
(
z∗); λ̄∗

Ψε ,i ≤ a, ∀i ∈ IΨε
0

(
z∗); λ̄∗

g,i ≤ 0, ∀i ∈ Ig
0
(
z∗). (44)

And from (41), we obtain

sk
g,i∇zgi

(
xk , yk)T d̂zk + gi

(
xk , yk)λ̂k

g,i = 0, i ∈ Ig ,

furthermore, multiplying both sides of this equation by β–1
k , together with the condition

(i) and taking the limit as k
K ′

−→ ∞, we obtain

gi
(
x∗, y∗)λ̂∗

g,i = 0, i ∈ Ig ,

so λ̂∗
g,i = 0 for all i ∈ Ig \ Ig

0(z∗).
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In view of the condition (i) and the continuity of the functions, multiplying (40) by β–1
k

and taking the limit as k K ′→ ∞, we get β–1
k Ak

Ig λ̂
k K ′
−→ 0, i.e.,

∑

i∈IC
λ̄∗

F ,i∇z
(
v∗

i – Fi
(
x∗, y∗)) +

∑

i∈IC
λ̄∗

Ψε i∇zψε

(
y∗

i , v∗
i
)

+
∑

i∈Ig
0 (z∗)

λ̄∗
g,i∇zgi

(
x∗, y∗) = 0. (45)

Since λ̄∗
F ,IC , λ̄∗

Ψε ,IC , and λ̄∗
g,Ig are not zero, combining with (45) and Assumption 2, it follows

that

IF
0
(
z∗) �= {1, . . . , m}, IΨε

0
(
z∗) �= {1, . . . , m},

i.e., z∗ /∈ X and a > 0.
Based on (43), dividing both sides of (45) by a, we obtain

∑

i∈IC\IF
0 (z∗)

∇z
(
v∗

i – Fi
(
x∗, y∗)) +

∑

i∈IC\IΨε
0 (z∗)

∇zψε

(
y∗

i , v∗
i
)

= –
∑

i∈IF
0 (z∗)

λ̄∗
F ,i

a
∇z

(
v∗

i – Fi
(
x∗, y∗)) –

∑

i∈IΨε
0 (z∗)

λ̄∗
Ψε ,i

a
∇zψε

(
y∗

i , v∗
i
)

–
∑

i∈Ig
0 (z∗)

λ̄∗
g,i

a
∇zgi

(
x∗, y∗). (46)

Adding both sides of the above equality to

∑

i∈IF
0 (z∗)

∇z
(
v∗

i – Fi
(
x∗, y∗)) +

∑

i∈IΨε
0 (z∗)

∇zψε

(
y∗

i , v∗
i
)
,

we obtain

∑

i∈IC
∇z

(
v∗

i – Fi
(
x∗, y∗)) +

∑

i∈IC
∇zψε

(
y∗

i , v∗
i
)

=
∑

i∈IF
0 (z∗)

λF ,i∇z
(
v∗

i – Fi
(
x∗, y∗)) +

∑

i∈IΨε
0 (z∗)

λΨε ,i∇zψε

(
y∗

i , v∗
i
)

+
∑

i∈Ig
0 (z∗)

λg,i∇zgi
(
x∗, y∗),

where λF ,i = 1 – λ̄∗
F ,i
a , i ∈ IF

0 (z∗); λΨε ,i = 1 –
λ̄∗
Ψε ,i
a , i ∈ IΨε

0 (z∗); λg,i = –
λ̄∗

g,i
a , i ∈ Ig

0(z∗). In view of
(44) and z∗ /∈ X. This contradicts Assumption 4, so the penalty parameter rk is updated at
most a finite number of times. �

Lemma 4 Suppose that Assumptions 1–4 hold, then there exists an integer k0, such that
εk ≡ εk0 for k ≥ k0.
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Proof By Step 3(2) and Step 5 of Algorithm A, the sequence {εk} is monotonically decreas-
ing and bounded from below, so the sequence {εk} is convergent. Let

K1 = {k ∈ K | εk > ξk+1},
K2 =

{
k ∈ K | d̂zk = 0, λ̂k

g,Ik
≥ 0, IC

(
yk , vk , εk

) �= ∅}
,

where K = {0, 1, 2, . . .}. Now we turn to prove that K1 and K2 are finite sets.
By contradiction, if K1 is infinite set, then limk→∞ εk = 0. There exist i ∈ IC and K1 ⊆ K1,

such that

ξk+1 =
√(

yk+1
i

)2 +
(
vk+1

i
)2 < εk , k ∈ K1 ⊆ K1. (47)

Together with the boundedness of {zk+1}K1 , we suppose that zk+1 K1−→ z∗. From (47), we
have (y∗

i )2 + (v∗
i )2 = 0, which contradicts Assumption 3. So K1 is a finite set. Similarly, we

show that K2 is finite. Based on the finiteness of K1 and K2, from the update rule (27) of εk

and Step 3(2), we can conclude that Lemma 4 holds. �

Based on Lemmas 3–4, in the following analysis, we suppose, without loss of generality,
that rk ≡ r̂, εk ≡ ε.

Lemma 5 Suppose that Assumptions 1–4 hold. Then
(1) The coefficient matrix sequence {MIk } is unified invertible, and there exists a positive

constant L such that ‖(MIk )–1‖ ≤ L, ∀k ≥ 0.
(2) The sequences {(d̂zk , λ̂k)} and {(dzk ,λk)} are bounded.

Proof (1) By contradiction, suppose that there exists an infinite subset K such that

‖(MIk )–1‖ K−→ ∞. Since {zk} and {Hk} are bounded, and the finite choice of Ik , without
loss of generality, for all k ∈ K , let

Ik ≡ I ′, zk K−→ z∗, Hk
K−→ H∗, sk K−→ s∗ ≥ smineI > 0.

Denote

A∗
I′ =

⎛

⎜
⎝

–∇xF(x∗, y∗)
–∇yF(x∗, y∗)

Em

0n×m

∇yΨε(y∗, v∗)
∇vΨε(y∗, v∗)

∇xgI′ (x∗, y∗)
∇ygI′ (x∗, y∗)

0m×mg

⎞

⎟
⎠ ,

G∗
I′ = diag

(
v∗ – F

(
x∗, y∗),Ψε

(
y∗, v∗), gI′

(
x∗, y∗)),

then

MIk

K−→ M∗
I′ =

(
H∗

S∗
I′ (A

∗
I′ )

T
A∗

I′
G∗

I′

)

, (48)

where the matrix S∗
I′ = diag(s∗

I′ ) with s∗
I′ = (s∗

F ,IC , s∗
Ψε ,IC , s∗

g,I′ ).
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Under the Assumptions, it can be shown easily that M∗
I′ is nonsingular. So we obtain

∥
∥(MIk )–1∥∥ K−→ ∥

∥(
M∗

I′
)–1∥∥ < ∞,

which contradicts ‖(MIk )–1‖ K−→ ∞.
(2) In view of SLE1 (12), and Lemma 3 as well as rk ≡ r̂, we see that {(d̂zk , λ̂k)} is bounded.

By (15)–(22) and the boundedness of {(d̂zk , λ̂k)} as well as the boundedness of {sk}, we
know that {ηk

Ik
} is bounded. Hence, the boundedness of {(dzk ,λk)} follows by SLE2 (21). �

Lemma 6 Suppose that Assumptions 1–4 hold, z∗ is an accumulation point of the infinite
sequence {zk} generated by Algorithm A, and {zk}K converges to z∗. If {ζ k}K → 0, then z∗ is
a KKT point of the problem (7), and both {̂λk}K and {λk}K converge to the unique multiplier
vector λ∗ corresponding to z∗.

Proof Let (̂λ∗;λ∗) be any accumulation point of {(̂λk ;λk)}K . First, we verify that (z∗, λ̂∗) is a
KKT pair of the problem (7). Taking into account Assumption 3, Lemma 5, and the finite
choice of Ik , there exists an infinite index K ′ ⊆ K such that

Ik ≡ I ′,
(
λ̂k ;λk) K ′→ (

λ̂∗;λ∗), Hk
K ′→ H∗,

d̂zk K ′→ d̂z∗, sk K ′→ s∗ ≥ smineI .
(49)

It follows from (33), (28), Assumption 3 and {ζ k}K → 0 that d̂z∗ = 0. Further, taking the
limit in SLE1 (12) for k ∈ K ′, one obtains

∇zf̂r
(
x∗, y∗) + A∗

I′ λ̂
∗
I′ = 0, G∗

I′ λ̂
∗
I′ = 0. (50)

Next we will prove λ̂∗
I′ = (̂λ∗

F ,IC , λ̂∗
Ψε ,IC , λ̂∗

g,I′ ) ≥ 0, and λ̂∗ = (̂λ∗
I′ , 0Ig\I′ ) ≥ 0. From λ̂∗

F ,i(v∗
i –

Fi(x∗, y∗)) = 0, for i ∈ IC \ IF
0 (z∗), we have λ̂∗

F ,IC\IF
0 (z∗)

= 0. Similarly,

λ̂∗
Ψε ,IC\IΨε

0 (z∗)
= 0, λ̂∗

g,I′ \Ig
0 (z∗) = 0.

By (18) and (ζ k , d̂zk)
K ′

−→ (0, 0), one obtains

∑

i∈IC

λ̂k
F ,i

sk
F ,i

φk
F ,i +

∑

i∈IC

λ̂k
Ψε ,i

sk
Ψε ,i

Dk
Ψε ,i +

∑

i∈I′

λ̂k
g,i

sk
g,i

Qk
g,i

K ′
−→ 0.

Furthermore, by (32), we have λ̂k
F ,iφ

k
F ,i

sk
F ,i

≥ 0 for every i ∈ IC . Combining with (49), we have

λ̂k
F ,iφ

k
F ,i

K ′
−→ 0, i ∈ IC . So, in view of (15), one has

λ̂∗
F ,i min

{
0, –

(
max

{
–̂λ∗

F ,i, 0
})ν – C

(
v∗

i – Fi
(
x∗, y∗))} = 0, i ∈ IC ,

which implies that λ̂∗
F ,i ≥ 0 for i ∈ IC ∩ IF

0 (z∗). Similarly, one obtains

λ̂∗
Ψε ,i ≥ 0 for i ∈ IC ∩ IΨε

0
(
z∗); λ̂∗

g,i ≥ 0 for i ∈ I ′ ∩ Ig
0
(
z∗).

So we can claim that λ̂∗
I′ ≥ 0. Obviously, λ̂∗ = (̂λ∗

I′ , 0Ig\I′ ) ≥ 0 is immediate.
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Therefore, in view of z∗ ∈ X̃ and (50), we see that (z∗, λ̂∗) is a KKT pair of the problem
(7). Moreover, the above analysis indicates that the sequence {̂λk}K possesses a unique
accumulation point λ̂∗, so limk∈K λ̂k = λ̂∗.

Last, noticing that (d̂zk , λ̂k)
K ′

−→ (0, λ̂∗) ≥ 0, (15)–(17) and (22), we have

φk
F ,IC

K ′
−→ 0, Dk

Ψε ,IC
K ′

−→ 0, Qk
g,I′

K ′
−→ 0, ηk

I′ =
(
ηk

F ,IC ,ηk
Ψε ,IC ,ηk

g,I′
) K ′
−→ 0.

Denote

MIk

(
dzk

λk
I′

)

=

(
–∇zf̂r(xk , yk)

ηk
I′

)

, (51)

so it follows from the above SLE and SLE1 (12) that

MIk

(
dzk – d̂zk

λk
I′ – λ̂k

I′

)

=

(
0
ηk

I′

)
K ′

−→
(

0
0

)

, (52)

which together with Lemma 5(1) gives

λ∗ = lim
k∈K ′ λ

k = lim
k∈K ′ λ̂

k = λ̂∗. �

Based on the lemmas above, we now present the global convergence of Algorithm A.

Theorem 1 Suppose that Assumptions 1–4 hold. z∗ is an accumulation point of {zk} gen-
erated by Algorithm A, then z∗ is a KKT point of the MPCC (1).

Proof A. We first show that z∗ is a KKT point of the problem (6) (called Conclusion A).
Let K ′ be an infinite index set such that

Ik ≡ I ′,
(
λ̂k ;λk) K ′

−→ (
λ̂∗;λ∗), Hk

K ′
−→ H∗,

d̂zk K ′
−→ d̂z∗, sk K ′

−→ s∗ ≥ smineI .

Denote

A∗
I′ =

⎛

⎜
⎝

–∇xF(x∗, y∗)
–∇yF(x∗, y∗)

Em

0
∇yΨε(y∗, v∗)
∇vΨε(y∗, v∗)

∇xgI′ (x∗, y∗)
∇ygI′ (x∗, y∗)

0

⎞

⎟
⎠ ,

G∗
I′ = diag

(
v∗ – F

(
x∗, y∗),Ψε

(
y∗, v∗), gI′

(
x∗, y∗)),

M∗
I′ =

(
H∗

S∗
I′ (A

∗
I′ )

T
A∗

I′
G∗

I′

)

,

where the matrix S∗
I′ = diag(s∗

I′ ) with s∗
I′ = (s∗

F ,IC , s∗
Ψε ,IC , s∗

g,I′ ).
By contradiction, suppose that z∗ is not a KKT point of the problem (6). From Lemma 5,

without loss of generality, suppose that λk = λ̂k–1 – r̂ẽ
K ′

−→ λ̂′. Therefore, it follows that
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(z∗, λ̂′) is not a KKT pair of the problem (6), which implies ρ(z∗, λ̂′) > 0 and Ig
0(z∗) ⊆ Ik ,

k ∈ K ′ large enough. The following two cases are discussed.
Case I. z∗ is a KKT point of the problem (7). Then there exists a multiplier λ̂′′ =

(̂λ′′
I∗ , 0Ig\I′ ) ≥ 0, such that the KKT condition of the problem (7) is satisfied at (z∗, λ̂′′

I∗ ). For
k ∈ K ′ large enough, we have Ig

0(z∗) ⊆ Ik ≡ I ′. It is easy to see that (0, λ̂′′
I∗ ) is a solution to

the following SLE:

M∗
I′

(
dz
λIk

)

= –

(
∇zf̂r(x∗, y∗)

0

)

. (53)

Passing to the limit in SLE1 (12), we know that (d̂z∗, λ̂∗
I∗ ) is the solution to (53) above.

Let λ̂∗ = (̂λ∗
I∗ , 0Ig\I′ ). In view of Lemma 5 (1), taking into account the nonsingularity of the

matrix M∗
I′ , we see that the solution of (53) is unique. Hence, we obtain d̂z∗ = 0, λ̂∗

I∗ =
λ̂′′

I∗ ≥ 0, which implies λ̂∗ = λ̂′′ ≥ 0. The conditions (i) and (ii) in Step 3 (2) are satisfied for
k ∈ K ′ large enough. Moreover, in view of rk ≡ r̂ < ∞ for k large enough, Step 3 (2) implies
λ̂k

F ,IC > γ3eIC , λ̂k
Ψε ,IC > γ4eIC for k ∈ K ′ large enough, which further implies that

λ̂∗
F ,IC ≥ γ3eIC > 0, λ̂∗

Ψε ,IC ≥ γ4eIC > 0.

Since the pair (z∗, λ̂′′) satisfies the complementary slackness, one gets

λ̂
′′
F ,i

(
v∗

i – Fi
(
x∗, y∗)) = λ̂∗

F ,i
(
v∗

i – Fi
(
x∗, y∗)) = 0, i ∈ IC ,

λ̂
′′
Ψε ,iψε

(
y∗

i , v∗
i
)

= λ̂∗
Ψε ,iψε

(
y∗

i , v∗
i
)

= 0, i ∈ IC .

So v∗ – F(x∗, y∗) = 0, Ψε(y∗, v∗) = 0, which together with Proposition 2 shows that z∗ is a
KKT point of the problem (6), which contradicts the assumption that z∗ is not a KKT point
of the problem (6).

Case II. z∗ is not a KKT point of the problem (7). It follows from Lemma 6 and ζ k ≤ 0
that ζ k K ′→ ζ̄ < 0. By (18), (28) and Assumption 3, we have

lim
k∈K ′

(∥∥d̂zk∥∥q +
∥∥� k∥∥)

> 0,

so there exist a subset K ′′ ⊆ K ′ and a positive constant c̄ such that

ζ k ≤ ζ̄

2
< 0;

(∥∥d̂zk∥∥q +
∥
∥� k∥∥) ≥ c̄ > 0, k ∈ K

′′ .

In the following we first show that there exists a positive constant t̄, such that tk ≥ t̄ for
all k ∈ K ′′.

(i) By (24)–(26), we have

v∗
i – Fi

(
x∗, y∗) < 0, i /∈ IF

0
(
z∗); ψε

(
y∗

i , v∗
i
)

< 0, i /∈ IΨε
0

(
z∗);

gi
(
x∗, y∗) < 0, i /∈ Ig

0
(
z∗).
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Based on the boundedness of {dzk}K ′′ and the continuity of functions, for all k ∈ K ′′ large
enough and t > 0 sufficiently small, one gets

(
vk

i + t dvk) – Fi
(
uk + t duk) < 0, ψε

(
wk

i + t dwk) < 0, gi
(
uk + t duk) < 0.

In view of i ∈ IF
0 (z∗), we have v∗

i – Fi(u∗) = 0. Similarly, ψε(w∗
i ) = 0 for i ∈ IΨε

0 (z∗), and
gi(u∗) = 0 for i ∈ Ig

0(z∗). From (22) and SLE2 (21), we have

SIk (AIk )T dzk + GIk λ
k
Ik

= ηk
Ik

,

that is,

∇z
(
vk

i – Fi
(
uk))T dzk =

ηk
F ,i – λk

F ,i(vk
i – Fi(uk))

sk
F ,i

, i ∈ IC ,

∇zψε

(
wk

i
)T dzk =

ηk
Ψε ,i – λk

Ψε ,iψε(wk
i )

sk
Ψε ,i

, i ∈ IC ,

∇zgi
(
uk)T dzk =

ηk
g,i – λk

g,ig(wk
i )

sk
g,i

, i ∈ Ik .

By Taylor’s expansion and ‖d̂zk‖ ≥ 0, for t > 0 sufficient small, we get

(
vk

i + t dvk) – Fi
(
uk + t duk)

=
(
vk

i – Fi
(
uk)) + t∇z

(
vk

i – Fi
(
uk))T dzk + o(t)

=
(
vk

i – Fi
(
uk)) + t

ηk
F ,i – λk

F ,i(vk
i – Fi(uk))

sk
F ,i

+ o(t)

=
(

1 – t
λk

F ,i

sk
F ,i

)
(
vk

i – Fi
(
uk)) + t

1 – �k

sk
F ,i

φk
F ,i – t�k

(∥∥d̂zk∥∥q +
∥∥� k∥∥)

≤ –t�k
(∥∥d̂zk∥∥q +

∥∥� k∥∥)
+ o(t). (54)

Furthermore, we consider ζ k ≤ ζ̄

2 < 0, by (19), (20), and the boundedness of bk by
Lemma 5, we see that there exists a constant ā > 0 such that �k ≥ ā > 0, k ∈ K ′′. For k ∈ K ′′

large enough and t > 0 small enough, we have

(
vk

i + t dvk) – Fi
(
uk + t duk) ≤ –āc̄t + o(t) < 0, i ∈ IF

0
(
z∗).

Similarly, for k ∈ K ′′ large enough and t > 0 small enough, we have

ψε

(
wk

i + t dwk) ≤ –āc̄t + o(t) < 0, i ∈ IΨε
0

(
z∗),

g
(
uk

i + t duk) ≤ –āc̄t + o(t) < 0, i ∈ Ig
0
(
z∗).
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(ii) Consider the inequality (23). By (29) and Taylor expansion, for k ∈ K ′′ large enough
and t > 0 small enough, it follows that

f̂r
(
zk + t dzk) – f̂r

(
zk) – αt∇zf̂r

(
xk , yk)T dzk

= (1 – α)t∇zf̂r
(
xk , yk)T dzk + o(t)

≤ (1 – α)tθζ k + o(t) ≤ (1 – α)tθ
ζ̄

2
+ o(t) ≤ 0.

By summarizing the above discussion, we can conclude that the inequalities (23)–(26)
hold for k ∈ K ′′ large enough and t > 0 small enough, that is, t̄ = inf{tk : k ∈ K ′′} > 0.

In what follows, based on tk ≥ t̄ > 0 (k ∈ K ′′) we will deduce a contradiction. In
view of the monotone decreasing property of {f̂r(zk)} and limk∈K ′′ f̂r(zk) = f̂r(z∗), we have
limk→∞ f̂r(zk) = f̂r(z∗). Moreover, from (23) and (29), for k ∈ K ′′ large enough, we have

f̂r
(
zk+1) – f̂r

(
zk) ≤ αtk∇zf̂r

(
xk , yk)T dzk ≤ αtkθζ k ≤ αt̄θ

ζ̄

2
.

Taking the limit k K ′′→ ∞ in the inequality above, we obtain a contradiction.
From the above analysis, we can conclude that z∗ is a KKT point of the problem (6).
B. We now show that IC(y∗, v∗, ε) = ∅ (called Conclusion B).
From Lemma 4 and the updating rule of εk in Step 5, we see that

√(
y∗

i
)2 +

(
v∗

i
)2 ≥ ε, ∀i ∈ IC ,

which implies that IC(y∗, v∗, ε) = ∅.
Based on Conclusions A and B, and combining with Proposition 1, we can conclude that

z∗ is a KKT point of the MPCC (1). �

5 Numerical experiments
In this section, a preliminary implementation of Algorithm A is given on a Intel(R)
Core(TM) i5-7200U CPU (@ 2.50 GHz, 2.71 GHz) and RAM (4 GB). A Matlab code (Ver-
sion R2014a) is written corresponding to this implementation.

In our tests, referring to [21], we initialize H0 = En, and for k = 1, 2, . . . , the approximate
Hessian matrix Hk is determined by the following equation:

Hk := ∇2
zzLrk

(
zk , sk) + hkEn+2m,

where En+2m is an (n + 2m)th-order identity matrix, hk is chosen as follows:

hk :=

⎧
⎪⎨

⎪⎩

0, if λmin > smax;
–λmin + smin, if |λmin| ≤ smax;
2|λmin|, otherwise,
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Table 1 The computational results

Problem dim fopt Algorithm A filtermpec snopt loqo knitro
f ∗ itr itr itr itr itr

bard3m 6 –12.6787 –12.6787 38 4 10 23 66
flp2 4 0 6.2848e–11 9 – – – –
gauvin 3 20 20.0000 34 7 10 20 29
kth2 2 0 –5.2411e–06 12 2 4 11 7
kth3 2 0.5 0.5000 5 4 6 10 22
scholtes2 3 15 14.4898 15 2 3 11 16
scholtes3 2 0.5 0.5000 6 4 0 29 10
scholtes5 3 1.0 1.0000 8 1 3 10 8

where smin > 0 and smax > 0 are sufficiently small and sufficiently large, respectively, λmin is
the smallest eigenvalue of the following matrix:

Bk = ∇2
zzLrk

(
zk , sk) –

∑

i∈IC

sk
F ,i

vi – Fi(xk , yk)
∇z

(
vi – Fi

(
xk , yk))∇z

(
vi – Fi

(
xk , yk))T

–
∑

i∈IC

sk
�ε ,i

ψε(yk
i , vk

i )
∇z

(
ψε

(
yk

i , vk
i
))∇z

(
ψε

(
yk

i , vk
i
))T

–
∑

i∈Ig

sk
g,i

gi(xk , yk)
∇zgi

(
xk , yk)∇zgi

(
xk , yk)T.

In the numerical experiments, the parameters are chosen as follows:

α = 0.49, ε = 10–5, β = 0.5, θ = 0.99, q = 3, τ = 2,

r = 1, C = 100, ϑ = 0.5, ν = 1, γ1 = γ2 = γ3 = γ4 = 1,

smax = 1020, smin = 10–5.

Algorithm A stops if one of the following termination criteria is satisfied:
(1) ρ(zk ,λk) ≤ 10–5 and IC(yk , vk , εk) = ∅.
(2) ‖d̂zk‖ ≤ 10–5, max{–̂λk

g,i, i ∈ Ig} < 10–5 and IC(yk , vk , εk) = ∅.
The following test problems are selected from [34]. Algorithm A can find their solutions

within a small number of iterations. We compared Algorithm A with four algorithms, i.e.,
filtermpec, snopt, loqo, and knitro given in [35]. The computational results are given in
Table 1. The meaning of some notations in Table 1 are as follows:

Problem: The problem in [34].
dim: the dimensions of the variables (x, y);
itr: the number of iterations;
fopt: the optimal value given in [34];
f ∗: the optimal value obtained by Algorithm A.

6 Conclusions
In this paper, based on Fischer–Burmeister function and working set techniques, a
primal–dual interior point QP-free algorithm for mathematical programs with comple-
mentarity constraints is presented. At each iteration, only two reduced linear equations
with the same coefficient matrix are solved to yield the search direction. The use of the
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working set decreases the computational cost. Moreover, the uniformly positive definite-
ness on the Lagrangian Hessian estimate Hk is relaxed. Under some mild conditions, the
proposed algorithm is globally convergent. The preliminary numerical results show that
the proposed algorithm is effective.
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