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1 Introduction
Letting Ω be a bounded domain with a smooth boundary ∂Ω in the Euclidean space R

n,
we consider the Neumann problem of the Laplacian � as follows:

⎧
⎨

⎩

�u = μu, in Ω ,
∂u
∂ν

= 0, on ∂Ω ,
(1.1)

where ν is the outward unit normal to the boundary. It is well known that the free mem-
brane problem (1.1) has a discrete spectrum consisting of a sequence

0 = μ0 < μ1 ≤ μ2 ≤ · · · → +∞.

When Ω is a bounded domain in R
2, Szegö [6] proved the following classical isoperimetric

inequality:

μ1(Ω) ≤ μ1(BΩ ), (1.2)

where BΩ is the ball of same volume as Ω . Weinberger [11] generalized this result to n-
dimensions. Ashbaugh and Benguria [2] extended the Szegö–Weinberger inequality (1.2)
to the bounded domains in hyperbolic space and a hemisphere. On the other hand, Ash-
baugh and Benguria [1] conjectured that

n∑

i=1

1
μi(Ω)

≥ n
μ1(BΩ )

, with equality if and only if Ω is a ball, (1.3)
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where μi(Ω) is the ith Neumann eigenvalue on Ω , μ1(BΩ ) is the first nonzero Neumann
eigenvalue on BΩ . In [10], Wang and Xia proved an isoperimetric inequality for the sums
of the reciprocals of the first (n – 1) nonzero eigenvalues of the Neumann Laplacian on
bounded domains in R

n as follows:

n–1∑

i=1

1
μi(Ω)

≥ n – 1
μ1(BΩ )

, with equality if and only if Ω is a ball, (1.4)

which means the Ashbaugh–Benguria’s conjecture is true for the first (n – 1) nonzero
eigenvalues of the Neumann Laplacian on bounded domains in R

n. So (1.4) supports
the above conjectures of Ashbaugh and Benguria. On the other hand, Benguria, et al. [3]
proved a result which is similar to (1.4) for the first (n – 1) nontrivial Neumann eigenval-
ues on domains in a hemisphere of Sn. Moreover, some works on eigenvalues are related
to the spectra of matrix operators and can be seen in [7–9].

Let � and � be the Laplace–Beltrami operators on Ω and ∂Ω , respectively. Let ∇ and
∇ be the gradient operators on Ω and ∂Ω , respectively. Consider the following Neumann
eigenvalue problem of the bi-harmonic operator:

⎧
⎪⎪⎨

⎪⎪⎩

�2u – τ�u = Λu in Ω ,
∂2u
∂ν2 = 0, on ∂Ω ,

τ ∂u
∂ν

– div∂Ω (∇2u(ν)) – ∂�u
∂ν

= 0, on ∂Ω ,

(1.5)

where τ ≥ 0 and σ are two constants, div∂Ω denotes the tangential divergence operator
on ∂Ω , and ∇2u is the Hessian of u, ν is the outward unit normal to the boundary. In this
setting, problem (1.5) has a discrete spectrum, and all eigenvalues in the discrete spectrum
can be listed nondecreasingly as follows:

0 = Λ0 < Λ1 ≤ Λ2 ≤ · · · ↑ +∞.

By the Rayleigh–Ritz characterization, the (k + 1)th eigenvalue of (1.5) can be given as
follows (see, e.g., [5]):

Λk+1 = inf
u∈H2(Ω)

{

Q[u] =
∫

Ω
[|∇2u|2 + τ |∇u|2] dx

∫

Ω
u2 dx

∣
∣
∣

∫

Ω

uuj = 0, j = 1, . . . , k
}

. (1.6)

Letting BΩ be the ball of same volume as Ω , Chasman [5] proved the following isoperi-
metric inequality:

Λ1(Ω) ≤ Λ1(BΩ ), with equality if and only if Ω is a ball.

Chasman [5] also conjectured that

n∑

i=1

1
Λi(Ω)

≥ n
Λ1(BΩ )

, with equality if and only if Ω is a ball. (1.7)

In this paper, we prove an isoperimetric inequality for the sums of the reciprocals of the
first (n – 1) nonzero eigenvalues of the fourth Neumann Laplacian which supports the
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Chasman’s conjecture, actually, we get

n–1∑

i=1

1
Λi(Ω)

≥ n – 1
Λ1(BΩ )

, with equality if and only if Ω is a ball. (1.8)

In [4], Buoso et al. proved a quantitative isoperimetric inequality for the fundamental
tone of problem (1.5) as follows:

Λ1(Ω) ≤ (
1 – ηn,τ ,|Ω|A2(Ω)

)
Λ1(BΩ ), (1.9)

where ηn,τ ,|Ω| > 0, and A(Ω) is the so-called Fraenkel asymmetry of the domain Ω ∈ R
n,

which is defined by:

A(Ω) := inf
{ |Ω�BΩ |

|Ω|
}

,

where BΩ is the ball of same volume as Ω and Ω�BΩ is the symmetric difference of Ω

and BΩ . In what follows, we generalize (1.9) to the sum of the first (n – 1) eigenvalues, and
we get

1
n – 1

n–1∑

i=1

Λi(Ω) ≤ (
1 – ηn,τ ,|Ω|A2(Ω)

)
Λ1(BΩ ). (1.10)

2 Preliminaries
In this section, we recall some notations and results, more details can be seen in [4, 5].

Let j1, i1 be the ultraspherical and modified ultraspherical Bessel functions of the first
kind and order 1, respectively; j1, i1 can be expressed by the standard Bessel and modified
Bessel functions of the first kind Jν , Iν as follows:

j1(z) = z1–n/2Jn/2(z), i1(z) = z1–n/2In/2(z).

Let B be the unit ball in R
n centered at the origin and ωn be the Lebesgue measure |B| of

B, and let Λ1(B) be the first eigenvalue of problem (1.5) on unit ball B. For τ > 0, a, b are
positive constants satisfying the conditions a2b2 = λ1(B) and b2 – a2 = τ . Set

R(r) = j1(ar) + γ i1(br), γ =
–a2j′′1(ar)

b2i′′1(b)
> 0.

Then we define the function ρ : [0, +∞) → [0, +∞) as

ρ(r) =

⎧
⎨

⎩

R(r), r ∈ [0, 1),

R(1) + (r – 1)R′(1), r ∈ [1, +∞).

Let ui : Rn →R be defined by

ui(x) := ρ
(|x|) xi

|x| , for i = 1, . . . , n. (2.1)
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The functions ui|B are, in fact, the eigenfunctions associated with the eigenvalues λ1(B) of
problem (1.5) on unit ball B. We know that λ1(B) has multiplicity and ui satisfy

n∑

i=1

|ui|2 = ρ2(|x|), (2.2)

n∑

i=1

|∇ui|2 =
n – 1
|x|2 ρ

(|x|)2 +
(
ρ ′(|x|))2, (2.3)

n∑

i=1

∣
∣∇2ui

∣
∣2 =

(
ρ ′′(|x|))2 +

3(n – 1)
|x|4

[
ρ
(|x|) – |x|ρ ′(|x|)]2. (2.4)

Define N[ρ] =
∑n

i=1(|∇2ui|2 + τ |∇ui|2). Then ρ and N[ρ] satisfy the following properties
which given in [4, 5].

Lemma 2.1 Function ρ and N[ρ] satisfy the following properties:
(1) ρ ′′(r) < 0 for all r ≥ 0, therefore ρ ′ is nonincreasing.
(2) ρ(r) – rρ ′(r) ≥ 0, with equality holding only for r = 0.
(3) The function ρ2(r) is strictly increasing.
(4) The function ρ2(r)/r2 is decreasing.
(5) The function 3(ρ(r) – rρ ′(r))2/r4 + τρ2(r)/r2 is decreasing.
(6) N[ρ(r1)] > N[ρ(r2)] for any r1 ∈ [0, 1), r2 ∈ [1, +∞).
(7) For all r ≥ 0, we have

N
[
ρ(r)

]
=

(
ρ ′′(r)

)2 +
3(n – 1)(ρ(r) – rρ ′(r))2

r4 + τ (n – 1)
ρ2(r)

r2 + τ
(
ρ ′(r)

)2.

(8) For all r ≥ 1, N[ρ(r)] is decreasing.

We introduce the notation of a partially monotonic function. A function F is partially
monotonic on Ω if it satisfies

F(x) > F(y), for all x ∈ Ω and y /∈ Ω . (2.5)

It is seen that N[ρ(r)] is a partially monotonic function from Lemma 2.1.

Lemma 2.2 For any radial function F(r(x)) that satisfies the partially monotonicity con-
dition on BΩ ,

∫

Ω

F dx ≤
∫

BΩ

F dx (2.6)

with equality if and only if Ω = BΩ . For any strictly increasing radial function F(r(x)),

∫

Ω

F dx ≥
∫

BΩ

F dx (2.7)

with equality if and only if Ω = BΩ .
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Lemma 2.3 For all s > 0, we have

Λi(τ ,Ω) = s4Λi
(
s–2τ , sΩ

)
, i = 1, . . . , n, (2.8)

where sΩ = {x ∈R
n : x/s ∈ Ω} for s > 0.

Proof For any u ∈ H2(Ω) with

u 
= 0 and
∫

Ω

u dx =
∫

Ω

uu1 dx = · · · =
∫

Ω

uui–1 dx = 0, i = 1, . . . , n,

let ũ(x) = u(x/s), then ũ is a valid trial function on sΩ and so

Qs–2τ ,sΩ [ũ] =
∫

sΩ (|∇2ũ|2 + s–2τ |∇ũ|2) dx
∫

sΩ u2 dx

=
∫

sΩ (|s–2(∇2u)(x/s)|2 + s–2τ |s–1(∇u)(x/s)|2) dx
∫

sΩ u(x/s)2 dx

=
s–4+n ∫

Ω
(|(∇2u)|2 + τ |(∇u)|2) dy

sn
∫

Ω
u2 dy

(substituting y = x/s)

= s–4Qτ ,Ω [u]. (2.9)

The lemma follows from (1.6). �

3 Proofs of the main results
In this section, we give the proofs of the main results of this paper.

Theorem 3.1 Let Ω be a bounded domain in an n-dimensional Euclidean space R
n and

let BΩ be the ball of same volume as Ω , then the first (n – 1) eigenvalues of (1.5) in Ω satisfy

n–1∑

i=1

1
Λi(Ω)

≥ n – 1
Λ1(BΩ )

, (3.1)

with equality if and only if Ω is a ball.

Proof Assume that the volume of Ω is equal to that of the unit ball B. Letting ϕi = ρ(r)xi
r ,

we know that
∫

Ω

ϕi(r) dx = 0, for i = 1, . . . , n,

which means ϕi is perpendicular to u0 = 1/
√|Ω|, which is the first eigenfunction of (1.5).

Letting {uj}∞j=0 be an orthonormal set of eigenfunctions of (1.5) on Ω , next we will show
that there exists new coordinate functions {x′

i}n
i=1 such that

∫

Ω

ρ(r)x′
i

r
uj dx = 0, (3.2)

for j = 1, . . . , i – 1 and i = 2, . . . , n. To see this, we define an n × n matrix A = (aij), where
aji =

∫

Ω
ϕiuj dx =

∫

Ω

ρ(r)
r xiuj dx, for i, j = 1, 2, . . . , n. Using the orthogonalization of Gram
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and Schmidt (QR-factorization theorem), we know that there exist an upper-triangular
matrix T = (Tji) and an orthogonal matrix B = (bji) such that T = UQ, i.e.,

Tij =
n∑

k=1

bikakj =
∫

Ω

n∑

k=1

ρ(r)
r

bikxkuj dx = 0, 1 ≤ j < i ≤ n.

Letting x′
i =

∑n
k=1 bikxk , i = 1, . . . , n, we get (3.2). Since B = (bji) is an orthogonal matrix,

{x′
i}n

i=1 is also a set of coordinate functions. Therefore, denoting x′
i, i = 1 . . . , n still by xi,

i = 1 . . . , n, and ϕi = ρ(r)
r xi, we have

ϕi 
= 0 and
∫

Ω

ϕi dx =
∫

Ω

ϕiu1 dx = · · · =
∫

Ω

ϕiui–1 dx = 0, i = 1, . . . , n.

It follows from the Rayleigh–Ritz inequality that

Λi(Ω)
∫

Ω

ϕ2
i dx ≤

∫

Ω

(∣
∣∇2ϕi

∣
∣2 + τ |∇ϕi|2

)
dx, i = 1, . . . , n, (3.3)

which implies that

∫

Ω

ϕ2
i dx ≤ 1

Λi(Ω)

∫

Ω

(∣
∣∇2ϕi

∣
∣2 + τ |∇ϕi|2

)
dx, i = 1, . . . , n. (3.4)

Summing over i from 1 to n, we have

n∑

i=1

∫

Ω

ϕ2
i dx ≤

n∑

i=1

1
Λi(Ω)

∫

Ω

(∣
∣∇2ϕi

∣
∣2 + τ |∇ϕi|2

)
dx. (3.5)

Since
∑n

i=1 |∇2ϕi|2 = (ρ ′′)2 + 3(n–1)
r4 (ρ – rρ ′)2, for any point p ∈ Ω , by a transformation of

coordinates if necessary, we have |∇2ϕi|2 ≤ (ρ′′)2

n–1 + 3
r4 (ρ – rρ ′)2, i = 1, . . . , n. Then

n∑

i=1

1
Λi(Ω)

∣
∣∇2ϕi

∣
∣2

=
n–1∑

i=1

1
Λi(Ω)

∣
∣∇2ϕi

∣
∣2 +

1
Λn(Ω)

∣
∣∇2ϕi

∣
∣2

=
n–1∑

i=1

1
Λi(Ω)

∣
∣∇2ϕi

∣
∣2 +

1
Λn(Ω)

(
(
ρ ′′)2 +

3(n – 1)
r4

(
ρ – rρ ′)2 –

n–1∑

j=1

∣
∣∇2ϕj

∣
∣2

)

≤
n–1∑

i=1

1
Λi(Ω)

∣
∣∇2ϕi

∣
∣2 +

n–1∑

j=1

1
Λj(Ω)

( (ρ ′′)2 + 3(n–1)
r4 (ρ – rρ ′)2

n – 1
–

∣
∣∇2ϕj

∣
∣2

)

=
1

n – 1

(
(
ρ ′′)2 +

3(n – 1)
r4

(
ρ – rρ ′)2

) n–1∑

i=1

1
Λi(Ω)

. (3.6)
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Similarly, we have

n∑

i=1

1
Λi(Ω)

|∇ϕi|2 =
n–1∑

i=1

1
Λi(Ω)

|∇ϕi|2 +
1

Λn(Ω)
|∇ϕi|2

=
n–1∑

i=1

1
Λi(Ω)

|∇ϕi|2 +
1

Λn(Ω)

(
n – 1

r2 ρ2 +
(
ρ ′)2 –

n–1∑

j=1

|∇ϕj|2
)

≤
n–1∑

i=1

1
Λi(Ω)

|∇ϕi|2 +
n–1∑

j=1

1
Λj(Ω)

( n–1
r2 ρ2 + (ρ ′)2

n – 1
– |∇ϕj|2

)

=
1

n – 1

(
n – 1

r2 ρ2 +
(
ρ ′)2

) n–1∑

i=1

1
Λi(Ω)

. (3.7)

On the other hand,

n∑

i=1

|ϕi|2 = ρ2. (3.8)

Substituting (3.6)–(3.8) into (3.5), we have

1
n – 1

n–1∑

i=1

1
Λi(Ω)

≥
∫

Ω
ρ2 dx

∫

Ω
((ρ ′′)2 + 3(n–1)

r4 (ρ – rρ ′)2 + τ ( n–1
r2 ρ2 + (ρ ′)2)) dx

=
∫

Ω
ρ2 dx

∫

Ω
N[ρ] dx

≥
∫

BΩ
ρ2 dx

∫

BΩ
N[ρ] dx

=
1

Λ1(BΩ )
, (3.9)

the last step is deduced by Lemma 2.2. If the equality holds, then equality holds in (3.9),
which implies Ω must be a unit ball. By Lemma 2.3, for any domain Ω in R

n, we get

1
n – 1

n–1∑

i=1

1
Λi(Ω)

≥ 1
Λ1(BΩ )

. (3.10)

This completes the proof of Theorem 3.1. �

Theorem 3.2 Let Ω be a bounded domain in an n-dimensional Euclidean space R
n and

let BΩ be the ball of same volume as Ω , then the first (n – 1) eigenvalues of (1.5) in Ω satisfy

1
n – 1

n–1∑

i=1

Λi(Ω) ≤ (
1 – ηn,τ ,|Ω|A2(Ω)

)
Λ1(BΩ ). (3.11)

Proof Case 1. Ω is a bounded domain in R
n of class C1 with the same measure as the unit

ball B. By a similar argument as in the proof of Theorem 3.1, we have

Λi(Ω)
∫

Ω

ϕ2
i dx ≤

∫

Ω

(∣
∣∇2ϕi

∣
∣2 + τ |∇ϕi|2

)
dx, i = 1, . . . , n. (3.12)
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Summing over i from 1 to n, we have

n∑

i=1

Λi(Ω)
∫

Ω

ϕ2
i dx ≤

n∑

i=1

∫

Ω

(∣
∣∇2ϕi

∣
∣2 + τ |∇ϕi|2

)
dx =

∫

Ω

N[ρ] dx. (3.13)

Since
∑n

i=1 ϕ2
i = ρ2, for any point p ∈ Ω , by a transformation of coordinates if necessary,

we have ϕ2
i ≤ ρ2

n–1 , i = 1, . . . , n. Then

n∑

i=1

Λi(Ω)ϕ2
i =

n–1∑

i=1

Λi(Ω)ϕ2
i + Λn(Ω)ϕ2

n

=
n–1∑

i=1

Λi(Ω)ϕ2
i + Λn(Ω)

(

ρ2 –
n–1∑

j=1

ϕ2
j

)

≥
n–1∑

i=1

Λi(Ω)ϕ2
i +

n–1∑

j=1

Λj

(
ρ2

n – 1
– ϕ2

j

)

=
n–1∑

i=1

Λi
ρ2

n – 1
. (3.14)

Substituting (3.13) into (3.14), we have

1
n – 1

n–1∑

i=1

Λi(Ω) ≤
∫

Ω
N[ρ] dx

∫

Ω
ρ2 dx

. (3.15)

On the other hand, we have

Λ1(B) =
∫

B N[ρ] dx
∫

B ρ2 dx
. (3.16)

Combining (3.15) and (3.16), we have

Λ1(B)
∫

B
ρ2 dx –

1
n – 1

n–1∑

i=1

Λi(Ω)
∫

Ω

ρ2 dx ≥
∫

B
N[ρ] dx –

∫

Ω

N[ρ] dx. (3.17)

From equation (16) in [4], we know that

Λ1(B)
∫

B
ρ2 dx – Λ1(Ω)

∫

Ω

ρ2 dx ≤ C(1)
n,τ

(
Λ1(B) – Λ1(Ω)

)
,

where C(1)
n,τ = nωn

∫ 1
0 ρ2(r)rn–1 dr. Then we have

Λ1(B)
∫

B
ρ2 dx –

1
n – 1

n–1∑

i=1

Λi(Ω)
∫

Ω

ρ2 dx ≤ C(1)
n,τ

(

Λ1(B) –
1

n – 1

n–1∑

i=1

Λi(Ω)

)

. (3.18)

From (15) and (20) in [4], we know that

Λ1(B)
∫

B
ρ2 dx – Λ1(Ω)

∫

Ω

ρ2 dx ≥
∫

B/B1

N(ρ) dx –
∫

B2/B
N(ρ) dx,
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and
∫

B/B1

N(ρ) dx –
∫

B2/B
N(ρ) dx = C(2)

n,τ α
2,

where B1 and B2 are two balls centered at the origin with radii r1, r2 such that |Ω ∩ B| =
|B1| = ωnrn

1 and |Ω/B| = |B2/B| = ωn(rn
2 – 1). Then we have

∫

B
N[ρ] dx –

∫

Ω

N[ρ] dx ≥ C(2)
n,τ

|Ω�B|
|Ω| , (3.19)

where C(2)
n,τ = nωn((3 + τ )(R(1) – R′(1))2 + 2τR′(1)(R(1) – R′(1)))cn.

Combining (3.18) and (3.19), we have

Λ1(B) –
1

n – 1

n–1∑

i=1

Λi(Ω) ≥ C(2)
n,τ

C(1)
n,τ

A2(Ω),

which implies that

1
n – 1

n–1∑

i=1

Λi(Ω) ≤ Λ1(B)
(

1 –
C(2)

n,τ

Λ1(B)C(1)
n,τ

A2(Ω)
)

. (3.20)

Case 2. Ω is the generic domain in R
n of class C1. Since

Λi(τ ,Ω) = s4Λi
(
s–2τ , sΩ

)
, i = 1, . . . , n, (3.21)

for all s > 0. Taking s = (ωn/|Ω|) 1
n , for any domain Ω in R

n of class C1, we infer from (3.21)
that

1
n – 1

n–1∑

i=1

Λi(τ ,Ω) = s4 1
n – 1

n–1∑

i=1

Λi
(
s–2τ , sΩ

)

≤ s4Λ1
(
s–2τ , B

)
(

1 –
C(2)

n,s–2τ

Λ1(s–2τ , B)C(1)
n,s–2τ

A2(sΩ)
)

= Λ1
(
s–2τ , B

)
(

1 –
C(2)

n,s–2τ

Λ1(s–2τ , B)C(1)
n,s–2τ

A2(Ω)
)

.

Setting ηn,τ ,|Ω| =
C(2)

n,s–2τ

Λ1(s–2τ ,B)C(1)
n,s–2τ

, we have (1.10). This completes the proof of Theo-

rem 3.2. �
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