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1 Introduction
The well known Hermite—Hadamard inequality for a convex function ¥ : & — R on an
interval U of real numbers, with ¢, ¢ € U and ¢ < ¢ is given by

b+ 1 ¢ U(P) +¥(p)
W( 5 >5m ) W(E)désf. (1.1)

Numerous scientists examined this inequality and published various generalizations and
extensions by using fractional integrals and derivatives [5, 8, 15, 16, 18, 19, 23, 25—
29, 32, 33]. The theories of k- and (k, s)-fractional operators are the more generalized way
to express fractional calculus operators (see [21, 22, 24]). The classical fractional operators
become special cases of such theories. Considering late developments in the theory of dif-
ferential and integral equations, it is getting very hard to ignore the existence of integral
inequalities that help determine the bounds on unknown functions. Applications of inte-
gral inequalities are important in various fields of science, like mathematics, physics, en-
gineering, among others, we especially notice initial-value problems, the stability of linear
transformation, integral differential equations, and impulse equations. We refer the read-
ers[1,3,4,6,7,12, 13, 20] for such applications in several branches of mathematics and the
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references therein. Firstly, we give some key definitions and mathematical fundamentals
of the theory of fractional calculus which are utilized in this paper.

Definition 1.1 ([14]) A function v : [¢, ¢] — Ris called convex if the following inequality
holds on an interval [¢, ¢] C R:

Y (vi+ 1 -v)r) vy )+ (1 -v)¥(r),
where [,r € [¢,¢], and v € [0, 1].

Definition 1.2 ([24]) Let ¢ be a continuous function on a finite interval [¢, ¢]. Then the
left and right (k, s)-Riemann-Liouville fractional integrals of order x > 0 are defined by

(s+ 1)1’% T

X_
o ), e e e,
¢

Fgfykw(f) =

and

(s+ 1)1‘% ¢
ka(X) T

( s+1 ‘L'Hl)%

Fp(x) = "t (p)de,

respectively, where k >0, s e R\ {-1}.

Definition 1.3 ([10]) The left and right conformable fractional integral operators J f;;ﬁ and

Jéiﬁ of order B € C, such that Re(8) >0and 0 < x <1, for ¢ € L1[¢, ¢] are defined by

2 —_oV — (v =)\ P!
W) - g [ (Y ) G- v

and

¢ — ) — (0 — )X\
o) = | ((‘” R ) (p = vy y ) dv,
&

respectively, where I" is the Euler gamma function.

Definition 1.4 ([21]) The generalized left and right k-conformable fractional integral op-
erators fj;;ﬁjk and 3;’_’?( of order B € C,Re(B)>0,k>0and0< x <1,for ¢ € Ly [, ¢] are
defined by

oy 1 (- —w-gf N\
)= 1 /¢ ( - ) (- ) E () av

and

=

() =

w((w—m%—(w—v)

1
1 & -
_ dv,
kmﬂ)fp p ) (p-v)*=yv)dv

respectively.
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Definition 1.5 ([11]) A function ¢ : D C R* — R* is called geometric—arithmetically s-
convex on D if s € (0,1], V¢, € D and v € [0, 1], we have

Y (@9"™") < vY(d) + (1 -v)¥(p).
We use the following notations in our upcoming results:
SX(h, D)—class of h-convex functions;
SV (h, D)—class of h-concave functions;
K?2—s-convex functions in the second sense;
P(I)—quasiconvex functions.

Sanja Varosanec presented the class of convex functions in [31] as follows:

Definition 1.6 Let /1: D C R — R be a positive function. We say that  : D CR — R is
h-convex, if ¥ is nonnegative and V¢, ¢ € D, v € (0, 1), we have

¥ (ve +(1-v)p) < h(v)Y () + h(1 - )Y (p). (1.2)
If the inequality in (1.2) is reversed, then v will be /i-concave, i.e., v € SV (h, D). If h(v) = v,
then all nonnegative convex functions belong to SX(/,D) and all nonnegative concave
functions belong to SV (&, D); if h(v) = 1, then SX(h,D) 2 P(D) and if h(v) = v, where
s €(0,1), then SX(h,D) 2 K.

The formal definition of the beta function given in [2] is stated as follows:

Definition 1.7 The classical beta function, also called the Euler integral of the first kind,

is a special function defined by
1
B(x,y) = / FI1— P, Rx) > 0,R0) > 0. (1.3)
0
Definition 1.8 ([17]) The integral form of the hypergeometric function is given as
1 ! v-1 c-v-1 —u
B vicz) = o——— | " (1-p)7" (1-2zp)"dp,
B(v,c—v) Jo

for |z| < 1, R(c) > R(v) > 0.

Definition 1.9 ([9]) Consider an interval J C (0,00) = R+ and (s + 1) € R\ {0}. A function
¥ ] — Ris called (s + 1)-convex if

U ([p¢* + (- )1 ]™) < pv (@) + (1 - 9) ¥ (o),

forall ¢, €/ and p € [0,1].
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Lemma 1.10 ([30]) Let v : [¢, 9] — R be a differentiable function on (¢, @) with ¢ < ¢ and
Y € L1[¢, ¢]. Then the following equality for fractional conformable integrals holds:

v(@) +y(p) xPrp+1)
2 2(p — p)1#

_ 1
¢ 2 . /0 [(1-9) - (1--9))"Tv (09 + 1 - p)e) -

(3579 (@) + 3Py (9)]

2 Inequalities involving (k, s)-Riemann-Liouville fractional integral
This section includes mean-type inequalities for (k, s)-Riemann—Liouville fractional inte-

gral operators of order x > 0.

Theorem 2.1 Let ¥ : [¢,¢] C (0,00) — R be an (s + 1)-convex function such that €
L(¢p,¢). Then
(i) fors>-1, we have

w({«pﬁ“ +¢f“]ﬁ> _ G+ DGk
2 - 2((ps+l _ ¢s+1)%

_ ¢(¢)+l/f(<p),
= 2

[F}2 b (@) + FX2 0 (9)]

and

(i) fors< -1, we have

s+1 s+1 % 1 LF k
w([w} ) < SR pxs () 1 25,y (4)]

2 - 2(ps+! — (/JHI)%

_ V@) +vie)
- 2

Proof (i) Since ¥ is an (s + 1)-convex function, we can write
P ([t + A=y ]7T) < v @) + (- ) 0), 2.2)
P ([(1 =)@ 40y 17T < (1= )y (@) + 9 (). (2.3)

Letv = 7, then

1
2

1ﬁ(|:xs+1_+_ys+li|$) < w(x)+1ﬁ(y)'
2 2

Assume x**! = vt + (1 —v)g**! and y**! = (1 — v)@**! + vg**L, then we have

¢s+1+(ps+1 ﬁ
(==

[W([U(pSﬂ +(1- u)¢5+1]%) + ¢([¢s+1(1 —v)+ \)(p”l] ﬁ)]

=

N =
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Multiplying the above inequality by v t~1 and then integrating with respect to v over [0, 1],

o)

<[ [ e v a- e an

we get

I\Jlr—l

+ /0 pi-l [v ([ A -v) + vgo”l]“%)] dv]. (2.4)

Now, let vgp**! + (1 — v)p**! = 1! and (1 — v)¢**! + ve**! = 1¥*1, then (2.4) becomes

$1+ 919 _ s+ DENRGeh) .
w([f] )— ﬁ[ Fil () + F)2 o (8)] (2.5)

Now, by replacing x = ¢, y = ¢ in (2.2) and (2.3), respectively, then adding, we have

v ([t +(1- V)<p”1]”%) +p([A-v)e™t + Wp”l]”%) <[v@® +v)] (2.6)
Multiplying (2.6) by v £ and then integrating over [0, 1], we have

(s + DEi(x + k)

v($) + (o)
2((ps+1 _ ¢s+1)%

[ b+, H/’(‘P) + F;,( sk¢(¢)] 5

(2.7)

Now, from (2.5) and (2.7), we get the desired result. This completes the proof of (i).
(ii) The proof of (ii) is similar to (i), so is omitted. Thus, the proof of the theorem is
completed. 0

Example 2.2 By plotting the graphs of (2.1) for a convex function ¥ () = e®, we check
that both inequalities are valid. It is known that the (k,s)-Riemann-Liouville fractional
integrals of this function for s = 0 are given by

P = iy | -t d 8)
and

R i /w(@—m%‘le"dp (2.9)

AT A ' '

By utilizing these expressions in the double inequality (2.1), we get

1
26¢TW<LX/ [((p_@)% Li(p- q))% ]epdp§e¢+e‘”. (2.10)
k(o — @)%

The three functions given by the left, middle, and right sides of the double inequality
(2.10) are plotted in Fig. 1 against x € (0, 1]. The graphs of the functions show the validity
of dual inequality.
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Figure 1 The graphs illustrate the validity of the double inequality (2.10) for the case ¢ =0, ¢ = 1,and k=1

Theorem 2.3 Let y : [¢, 9] C (0,00) — R be a differentiable function on (¢, @) with ¢ < ¢,

s € R\ {~1} such that ' € L[, ¢], then
(i) fors> -1, we have

(@) +¥(p) (+DEMG+k) .
2 apri-genk [E3u (@) + Ei23 v (9)]

((ps+1 _ ¢s+1)
2(s+ 1)

1 1 1
x /O [(1- @)t = () FINFT Y (9" + (1 - )e™) ™ | dp,

where N = (p¢**! + (1 - p)p**);
(ii) fors< -1, we can write

(@) +¥(p) s+ DEMG+K) . \
2 - 21 — (ps+1)% [thklp(fﬂ) + F;,’k‘lﬁ((ﬁ)]

- (¢s+1 _ (PS+1)
T 2s+1)

x /01[(1 _ o)t — (@) My (90 + (1 ) )7 dip,
where M = (@™ + (1 - 9)$*").
Proof (i) Consider
I= /01[(1 —o)F — (@ FINF Y (g™ + (- p)e™) T | dip
- /01(1 - @)%Nﬁ—lw[(m,m e @)(ﬂ“l)”%] i

=L -1 (2.11)
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Integrating I; by parts, we get

s+1

1‘T¢s+1w( )
x(s+1) s+ s+ %
- s / 1- ) F 1y (96 + (1 - p)p™) ) dip.

Let p¢**! + (1 - p)¢**! = us+1, then (2.12) becomes

1 1)? ¢ x_
1= ﬁ‘“‘ﬂ) %/ (! = )y () du
s+1 (s+1)k”1“k(x+k) 5
) S+1 ¢s+1 W(ﬂ) ( s+1 ¢s+1) X w((]&)

Now, integrating I, by parts, we have the equation

s+1
]2 = s+1 ¢s+1 W(d))
1 Loy L
g [ (e =) ) d.

Let p¢**! + (1 — p)¢**! = u*+1, then (2.13) becomes

s+1 x(s+1)? /‘” ) =
I = s+1 o os+1\ % s d
2 s+1 ¢s+1 w(d)) + ( s+l ¢s+1) ((P u ) u Ipl(u) u
~ s+1 (s+1)_’r I(x +k)
- _¢s+1 _ ¢s+1 W(d’) + ( s+l ¢5+1) k+1 ¢+ klp( )-

Now, by using the values of I; and I, in (2.11), we get

s+1 (s + D)E 1y + &) R
I= WI//«D)— (¢s+1_¢sfl)%+l F(Z*vkw(qb)
s+1 (s + 1) (x +K)
STV @) - (¢s+1—¢:1)%+1 EXS i (9)
1 DE L + k s
b )Eﬁw;ﬁ“ LS (S(;H)lk_ d)sff;(;l N ES 0 (0) + P2 @),

which gives
V(@) + ¥ (9) s+ DE Ny + k)
2 ( s+1 ¢s+1)—

(s+1 ¢)s+1)
- o

[ ot /J/’((”) FX Skl/f(ﬁb)]

»\x

This completes the proof of (i)

1
T

(@)%]Nﬁ%—lw/[(p(psﬂ + (1 _ @)¢S+1) 5+

Page 7 of 19

(2.12)

(2.13)

]dp.

(ii) The proof of (ii) is similar to (i), so is omitted. Thus, the proof of the theorem is

completed.

O
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Theorem 2.4 Let i : [¢, 9] C (0,00) — R be a differentiable function on (¢, ¢), ¢ < ¢, such
that ' € L{¢, ¢]. If |¥'|¢, where g > 1, is (s + 1)-convex, then

@) fors>-1,
Vo) vl (Szz(pl)_r’qijk) [E5b 0+ E v @)
-] ()
x [[¥' @ + |w/(¢)|g]]‘%, (2.14)

(ii) fors<-1,

V@) +¥(p)  (s+ )%y +h) )
2 - 2((,0“1—(?”1)% [ [ kl//((p)+F£ klﬁ(d))]‘

(¢s+1 _ ¢s+l) . s . ¢s+l 17% 1
=St (@)l ()

< [l @) + |¢/<¢>|g]]g.

Proof (i) Applying Theorem 2.3, modulus property, Holder’s inequality, and (s + 1)-

convexity of [{/'|¢, we get

DEMx +k
‘1/f(¢)+l/f(<.0) (S:' szf l;:i(rl‘; )[ngskw( )+ FXskw( )]

s+1 s+1 1 1
_ ‘% [a -p)E = (@) FINTT Y (99" + (1 —@W”l)”‘]d@‘

<

s+1 s+1 ) B
% | [a-o)F + @F Ny (o + 1 p)w”l)”‘]ds@‘

s+1 s+1
(g™ —¢*") a
s+1) (/N ' dp)
1

1 1 g
x ( fo [(1-p)t + (p)ﬂw(mm +(1-p)g*)™1 |gd60)

s+1 ¢s+1) 11
s+1) (/ Nt dga)
o :
x(f0 [A-p)F +(p )k][@|w’(¢)lg+(1—@)|w/(¢)g]d@)

( s+1 ¢s+1) s . ¢s+1 l—é 1
g G et I €y

1

<[V @ + yw’<¢>|g]]g.

1

Oq

This completes the proof of (i).
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1.0

-1.0

Figure 2 The graphs illustrate the result of the double inequality given by (2.15) for the case ¢ =0, ¢ = 1, and
k=1

(ii) The proof of (ii) is similar to (i), so is omitted. Thus, the proof of the theorem is

completed. d

Example 2.5 By plotting the graphs of inequalities of Theorem 2.4 for the convex function
V() = p? and g = 2, we prove the validity of the results. Substitution of (2.8) and (2.9) into
inequality (2.14) gives

¢2+<P2 X ! X 1 X _17.2
_ — k — )% d
5 SYTPY: /0 [(0-)F " +(p-¢)c ' dp
k 2 1
s(¢—¢>><x+k> (¢* +9%)2. (2.15)

The three functions given by the left, middle and right sides of the double inequality
(2.15) are plotted in Fig. 2 against x € (0,1]. The graphs of the functions illustrate the
validity of both inequalities.

3 Inequalities involving conformable fractional integral operator
This section contains mean-type inequalities for conformable fractional integral operators

by using /-convexity.

Theorem 3.1 Let 3;(,;5 and 31 be the left- and right-sided generalized conformable frac-
tional integrals operators of order B € C,Re(B) >0and 0< x <1.Let vy :[p,90] > Rbea
positive mapping with ¥ € L1[$, 9] and 0 < ¢ < ¢. If { is h-convex on (¢, ¢], then

d+o
(%)
h(3)xPr(B+1)
(o —p)xp

< x8h( 3 ) [v@) + vio)]

[358w () + 35w (9)]

1
x/ (1= )’V () + h(1 = v)] dv. (3.1)
0

Page 9 of 19
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Proof Since ¥ is h-convex function, we can write

¥ (v + (L= v)y) < (WY (x) + (1 -v)¥ () (3.2)

and

Y (1= v)x+vy) <h(1-v)P(x) + H)YY). (3.3)

Letv= %, then

0(552) =a(3 ) w015 )vor=i(5 ) v + vl

Assume x = v¢ + (1 —v)p and y = ¢(1 — v) + v, then we have

0(%52) <(5 )00+ a-vig) + w0 - +v0))

Multiplying the above inequality by (1 — v*)#~1vX~1 and then integrating with respect to
v over [0, 1], we get

H(E23) [
: hG) [/01(1 =) Y (v + (1= v)g) dv

1
+/ (1—vx)ﬁ_lvx"llﬁ((l—v)¢+v¢)dv],
0

which can also be written as

1 (é+¢
Xﬂw< 2 >
1
< h<%> [/0 (1- vx)ﬂ_lvx"lw(vgi) +(1-v)p) dv]
1 ! -1
+h<—) |:/ (1—vX) vx’lw((l—v)¢+v<p)dv]. (3.4)
2/ LJo
Now, let v + (1 —v)g = u and (1 — v)¢ + vy = v, then (3.4) becomes
1 (¢+e
xﬁw< 2 >
WG xPACB) [ X (¢ p-1 4
S P [FGD ¢«¢—¢V—%w—uﬁ) (¢ — )"y (u) du
+ 1 w((fﬂ - )~ (V—¢)X)S_I(V—¢)X_11/f(V)dV],
r'B) Jg

which can be written as

w(¢ +<p> - hW(3)xPIr(B+1)
2 (p — p)1P

[358w (0) + 35w (9)]. (3.5)

Page 10 of 19
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Now, by replacing x = ¢, ¥ = ¢ in (3.2) and (3.3), respectively, then adding we have

Y (ve + (1 =)p) + ¥ ((1=v)p +ve) < [hW) + (1 =) |[¥() + ¥ (9)]. (3.6)
Multiplying (3.6) by (1 — v¥)#~1vx~1 and then integrating over [0, 1], we have
h(l)XﬂF(,B*'l) ~1.B ~X:B
W[d;+ Y (p) + Jé— W(ff’)]
1 ! B-1
<xh(3) (v @) + v [ (=) V00 4= )] 67)
Now, from (3.5) and (3.7), we get the desired result. O

Example 3.2 We verify the result of Theorem 3.1 for the convex function v () = 2 and

h(v) = v. It is known that the conformable fractional integrals of this function for 8 = 1 are

given by
1 Y 1,2
- [ w-eriera (3.8)
¢
and
1 Y 1,2
3@ - [ -vyiean, (39)
¢
Substituting these expressions into inequality (3.1), we get
1
2£$+%) < X / [(¢ — U)X’l +(v— ¢)Xﬁl]ezu dv < [62¢ + eZ(p]. (3.10)
(0 =9)* Jo

The three functions given by the left, middle, and right sides of this double inequality
are plotted in Fig. 3 against x € (0, 1] to show clearly that both inequalities are valid.

Theorem 3.3 Let v : [¢, 9] — R be a differentiable function on (¢, ) with ' € L1[¢, ¢].
If |¥'| is an h-convex function on [¢, @], then the following inequality for fractional con-

N

. . . n Lz
0.2 04 0.6 0.8 1.0

Figure 3 The graphs illustrate the validity of the dual inequality (3.10) for the case ¢ =0 and ¢ =1
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formable integrals holds:

‘I/f(tb) +y(p) x’r(+1)
2

gy B V@) +ag:ﬂw<¢>]’

_ 1
< %[W@I / [(1-99)"+ (1= - ) Jhle) d
0
! p 8
+|w’(<p)|/0 [(1-p")" +(1-(1-p)) ]h(l—[fa)d@].

(3.11)

Proof By using Lemma 1.10, modulus property, and /s-convexity, we have

‘¢(¢) +¥(@) xPT(B+1)
2

2(g) - ¢)xﬂ [J;Lﬂl//((p) + ‘Njéﬂl//(d’)]’

_ 1
_ ‘ (¢ . }) /0 [ —pr)f —(1-(1 _@)X)"“]w’(m +(1-p)yp) d@’

<(¢>—¢)

- 2

(p—9)
2

/01[(1 —9) + (1-1-9)) v/ (9 + (1 - 9)0) dso‘

=

1
/0 [(1-9%)" + (1= (1= p)) |[h@)|¥' (@) + (1 - ©)|¥'()|] dp

_ 1
- o [ 10-99" + (- a- ) io)ap

1
+ Iw/(w){/o [(1-9%)" + (1-(1-p))]ha - p)d@],

which completes the proof. O

Example 3.4 We verify the result of Theorem 3.3 for the convex function ¥ (v) =e”, 8 =1,
and /(v) = v. In this case, inequality (3.11) is given by

x(1+e)
1+yx

x(1+e)
1+yx

1
<(l+e-yx / [(v L (- v)X_l]e” dv < (3.12)
0

The three functions given by the left, middle, and right sides of this double inequality
are plotted in Fig. 4 against x € (0, 1] to show that both inequalities are valid.

2F Rigt -
1 }‘-"'-—
.’ ) \ -
Seo. 02 0.4 0.6 \ 0.8 1.0
\\.\ Middle
-1} . ..
P O e
_2F
Figure 4 The graphs illustrate validity of the double inequality given by (3.12) for the case ¢ =0, ¢ = 1, and
O<x <1
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Corollary 3.5 Ifwe take h(p) = 1 in Theorem 3.3, then we get the result:

V(@) +y(p) xXPr+1)
2 2(p — p)xk

1
Lo "”[|w¢>| II/f’(w)I]B<;,ﬁ+1>,

[35 v () + ;’-ﬁww]’

where B denotes the usual beta function.

Corollary 3.6 Ifwe take h(p) = g in Theorem 3.3, then we get the result for simple convex

function presented below:

’ww)ww) KT+ ) Jxﬁ¢(¢)+3xﬂw(¢)]’
ot (2

2 2Ap-9)¥f
S(<p—¢>>[|1/f(<¢>)|+|1/f(<p)|] ( B 1)
X 2

Corollary 3.7 If we take h(g) = ©° in Theorem 3.3, where s € (0,1), then the result for
geometric—arithmetically s-convex functions is as follows:

br
‘vf«»)w«p) );(w (ﬁq;;)[wﬂw() é’—ﬁww]’

< (§0—¢)[IW(¢)I ; Ilﬂ/(w)l][B<S+l,ﬂ+1>
X

< ﬁ + 1)231(_51 I’M M%_l)}-
X X

4 Inequalities involving generalized k-conformable fractional integral
operators
In this section, mean-type inequalities for k-conformable fractional integral operator by

using /1-convexity are established.

Theorem 4.1 Let ngk and J(p f

fractional integrals operators of order k >0, Re(B8) >0and 0< x <1.Lety: [¢, 9] — R be
a positive mapping with € L1[¢, 9] and 0 < ¢ < ¢. If { is h-convex on (¢, ¢], then

be the left- and right-sided generalized k-conformable

2 (@ — ik ot (@) + 30 0(9)]

1
Xﬁ ( >[¢(¢)+I/f(<ﬂ)]/( vx)%_lvx‘l[h(v)+h(1—v)]dv.

w(¢+<ﬂ> < h(3 )Xka(,3+k)[~X,3

Proof Since v is an h-convex function, we can write

Y (v + (L= v)y) <)Y () + h(1 - )Y () (4.1)
and

Y (1= v)x+vy) <h(1-v)P () + H)Y Q). (4.2)
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Letv = %, then

w(’%) < hG)w(x) . h(%)w) = h(%)[w(x) ).

Assume x = v¢p + (1 —v)p and y = ¢(1 — v) + ¢v, then we have

W(¢;¢>§h<;ﬁw@¢+ﬂ—vW)+w@u—W+v@}

Multiplying the above inequality by (1 — v* )f’_lvx ~1 and then integrating with respect to

v over [0, 1], we get

¢+ 1 1 By
X,3¢< 5 >_h<§>|:[; (l—vx)k X w(‘)¢)+(1—1})¢)d\)

1 .
+/ (l—vx)k vX_lw((l—v)¢+v<p)dv]. (4.3)
0

Now, let v + (1 —v)g = u and (1 — v)¢ + v = v, then (4.3) becomes

¢+¢>
xﬁ¢< 2

L
= ((LX—kqs) k(ﬂ)[rk(ﬁ)/ (0 -9 = (@ -w") (g = uy 1y (W du

B
k

1-2 7
‘ f (0 - )" = (v=¢)")

X -1
Al (v )" w(v)dv],

which can be written as

h I; k
w(¢;¢>§ G )(Xk q:)(ﬁ O30 + 30 @] (@4)
w_

Now, by replacing x = ¢, y = ¢ in (4.1) and (4.2), respectively, then adding we have
Y (vp + (1=v)p) + ¥ (1 - )¢ +ve) < [A) + H(1 - v)|[¥(®) + ¥ (9)]. (4.5)

Multiplying (4.5) by (1 — v* )%‘lvx‘1 and then integrating over [0, 1], we have

n(Yy kg + &
MDD 318 ) + 32 06)]
(p—9)k
1
<¥h< )[1//(¢)+1//(<p)]/ (1- X)%_lvx’l[h(v)+h(1—v)]dv. (4.6)

Now, from (4.4) and (4.6), we get the desired result. O
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Theorem 4.2 Let v : [¢p, 9] — R be a differentiable function on (¢, ) with ¢ < ¢ and
¥ € L[, ¢]. Then the following equality for k-conformable fractional integral holds:

B
(@) +¥(p) xFL(B+K)r yp ~ 0B
5 2o F (35w (@) + 33w (9)]

-9 (' g
-2 [Ha-pf-0-a-00)

F =N

[/ (0o + (1 - p)p) de.

Proof Consider

By (96 + (1 - p)o) d

1= [1a-9)f-(-a-97)
ARk

- [10-a-o1)

=L - L. (4.7)

v/ (9 +(1-p)p)dp

g]w’(m +(1-p)p)dp

Integrating by parts and using substitution u = p¢ + (1 — ©)@, we have

F IS

1/ (99 + (1 - p)p) dep

1
h= [ 10-97)
Vi)  Bx (!

To—¢ kle—¢)Jo
B

_ v (p) _ Bx ¢ Y S PUYSY i Ty | d
o Mw—mﬁ”hé(w BV~ (o~ w) (g -y ) d

B
_Ylp)  xFI(B+K)  yp
99 (pog) S @)

B_
(1- ") X W (pg + (1 - p)gp) dp

Also, we have

1 B
= [ 10--99 10 (00 + 1 o)) do

@ B [N b )
‘¢—¢+kw—¢xé(1(1 9)) 1= (96 + (1~ 9)o) dp
_ _I//(d’) + Bx /¢:(’0((¢_¢)X _ (u_qb)x)%—l(u_d))x_lw(u)du

0= K-

B
) 1R,
o—¢ + ((p_(p)%’fl J¢+'k‘//(§0)~

By using the obtained values of I; and I, in (4.7) and then multiplying the result by @,
we get the desired result. O

Theorem 4.3 Let v : [¢, 9] — R be a differentiable function on (¢, ) with ' € L1[¢, ¢].
If |Y'| is an h-convex function on (¢, ¢], then the following inequality for fractional con-
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formable integral holds:

I k
|w<¢);w( ) xEndp+ )[3;+ﬁk¢(¢)+3£ﬂkw(¢)]‘
2Ap-9)%

B B
13

5—¢[|w(¢>)|/ [(1-99)F+(1-1-p)*)F]|hp)de
<p)|/ (1-(1-p) )%]h(l—md&o]

Proof By using Lemma 4.2, modulus property, and /z-convexity, we have

I k
‘ ACORRAC) X2k(¢ k—(i )+X Ot + 3 "kw)]‘

B

‘(o ¢)/ )F—(1-(1-p) )%]w’(p¢+(l—l@)¢)d@‘
( —

StﬂT@/o [(l_px)
—o) [ g

S@/O [(1-9X)F +(1-(1-p))

_ 1
_ ¢)[|¢/(¢)|/ [(l—px)g+(1—(1—50)X)§]h(@)d50

o
e

+(1-1-) ) ¥ (9o +(1-p)e) d@‘

T

[ ¥ ()] + h(1 - )| ¥ (¢)|] do

B 8
K

|w<go)|/ [(1-97)f + (1--p)) ]h(l—mdp}
which completes the proof. O

Corollary 4.4 If we take h(g) = 1 in Theorem 4.3, then we get the result presented below:

k
w<¢);w( ¢) x;: k_(Z)+ )[3£fk1/f(w>+3$“’kw<¢>]‘
Lo "”[|w(¢>| V(1B ( f“)

where B denotes the usual beta function.

Corollary 4.5 If we take h(g) = g in Theorem 4.3, then we get the result for simple convex
function presented below.

T k
‘ww)ww) Al tﬁ)[ﬁkw(@w;ﬁkw(w]‘

2(p—¢) &

S(w—qb)[hﬂ( )I+|¢(<p)|] <_,ﬁ+1>'
X 2 x k
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Corollary 4.6 If we take h(p) = ©° in Theorem 4.3, where s € (0,1), then the result for
geometric—arithmetically s-convex functions is as follows:

kF k
‘I/f@) + 1/’(‘0) X k(,B ‘:ﬁ ) [J;ﬁkw(@) +3$ ﬁkw((p)]‘
20p-¢)k
§(¢—¢)[Iw( )'+"““’)'][B<“1,E+1>
X 2 x k

.\ B(l, B, 1)2& (_s, 1 Muﬂ
x k X xk

5 Applications to quadrature formulae
This section consists some particular inequalities which generalize some classical results
like the trapezoid inequality. Also Hadamard’s inequality can be observed.

Proposition 5.1 (Hadamard’s inequality) By using the assumptions of Theorem 2.1 with
x =1,5s=0, and k = 1, we get the following Hadamard's inequality:

1ﬁ(¢+<p> / V) dv < w<¢);w(¢)' (5.1)

2

Proposition 5.2 By using the assumptions of Theorem 3.1 with x =1, 8 =1, and h(v) = v,
we get the Hadamard’s inequality (5.1).

Proposition 5.3 By utilizing the assumptions of Corollary 3.5 with x =1 and p = 1, we get
the following “trapezoid inequality”.

2
’(rp poLACohe 457 /vf( ao| = 1y + [y ]

Proposition 5.4 By utilizing the assumptions of Corollary 3.6 with x =1 and B = 1, we get
the following “trapezoid inequality™.

@) +v(p) [ (p-9)? ,

-0 OO [T yya| < O v+ v o)

Proposition 5.5 By using the assumptions of Theorem 2.4 with x =1,k =1, and s =0, we
get the following “trapezoid inequality”:

1@—@%—/5%@@ <

6 Conclusions

(¢ - ¢)? (|x//(¢)|g ¥ |w/(<p)|g)%
2 2 ’

In the current article, we presented generalizations of some mean-type inequalities for
fractional integrals of (k, s)-Riemann and conformable type. For this purpose, we utilized
the (s + 1)- and s-convex mappings. This work includes equalities so that we can make
progress in finding more inequalities by using different functions. The validity of the re-
sults is illustrated by considering different convex functions and then by plotting graphs.
The presented work includes quadrature formulas as bounds of novel inequalities. The



Samraiz et al. Journal of Inequalities and Applications (2020) 2020:208 Page 18 of 19

findings of this investigation complement those of previous studies. Simply, the recent
study confirms the earlier results and plays an additional role by making generalizations.
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