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1 Introduction
Perov described the Banach contraction principle for contraction mappings on spaces
equipped with vector-valued metrics in [11]. Later, by a different method, the results of
Perov in [5] were generalized and their fixed point property of a self-mapping over gener-
alized metric space (X, d) was studied.

In this article Mm,m(R+) represents the set of all m × m matrices with components in
R

+, Θ represents the matrix zero and I represents the identity matrix and N0 = N∪ {0}.
Let A ∈ Mm,m(R+), then A is called convergent to zero, if and only if An → 0 as n → ∞.

We refer to [14, 15] for more details.
Let α,β ∈ R

m, where α = (α1, . . . ,αm), β = (β1, . . . ,βm) and c ∈R. Note that αi ≤ βi (resp.
αi < βi) for each 1 ≤ i ≤ m and also αi ≤ c (resp. αi < c) for 1 ≤ i ≤ m, respectively. We
define

α + β := (α1 + β1, . . . ,αm + βm)

and

α · β := (α1 · β1, . . . ,αm · βm).

These are addition and multiplication on R
m (see [5, 7, 8]).

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02472-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02472-z&domain=pdf
mailto:rasoulabazari1361@gmail.com
mailto:r.abazari@iauardabil.ac.ir


Hadi Bonab et al. Journal of Inequalities and Applications        (2020) 2020:204 Page 2 of 16

Definition 1.1 ([5]) Let X be a non-empty set. A mapping d : X2 −→R
m is called a vector-

valued metric on X, if the following properties hold:
(1) d(x1, x2) ≥ 0 for each x1, x2 ∈ X , if d(x1, x2) = 0, if and only if x1 = x2;
(2) d(x1, x2) = d(x2, x1) for each x1, x2 ∈ X ;
(3) d(x1, x2) ≤ d(x1, x3) + d(x3, x2) for each x1, x2, x3 ∈ X .
If x1, x2 ∈ R

m, x1 = (x1
1, . . . , x1

m) and x2 = (x2
1, . . . , x2

m), then x1 ≤ x2 if and only if x1
i ≤ x2

i
for 1 ≤ i ≤ m. A set X is called a generalized metric space, equipped with a vector-valued
metric d and denoted by (X, d).

Now, we need the following equivalent propositions. Their proofs are classic results in
matrix analysis (see for more details [1, 12, 13]).

(1) A → 0;
(2) An → 0 as n → ∞;
(3) |λ| < 1, for each λ ∈C with det(A – λI) = 0;
(4) the matrix I – A is nonsingular and

(I – A)–1 = I + A + · · · + An + · · · ;

(5) Anq −→ 0 and qAn −→ 0 as n −→ ∞, for each q ∈R
m.

Denote the set of all matrices A ∈ Mm,m(R+) where An −→ 0 by ZM. For the sake of sim-
plicity, we identify the row and column vectors in R

m.

Definition 1.2 ([3]) An element (x1, x2) ∈ X2 is called a coupled fixed point of the mapping
F : X2 −→ X if F(x1, x2) = x1, F(x2, x1) = x2.

Definition 1.3 ([10]) Suppose that F : X2 −→ X and g : X −→ X are given. An element
(x1, x2) ∈ X2 is called a coupled coincidence point of the mappings F and g if F(x1, x2) = gx1

and F(x2, x1) = gx2. Then (gx1, gx2) is called a coupled coincidence point.

Definition 1.4 ([15]) Let (X, d,�) be a partially ordered complete metric space. We con-
sider partially ordered set X. We define on X3 the following order, for (x1, x2, x3), (u1, u2,
u3) ∈ X3,

(
u1, u2, u3) � (

x1, x2, x3) ⇔ x1 
 u1, x2 � u2, x3 
 u3.

Definition 1.5 ([2]) .Let (X,�) be a partially ordered set and F : X3 → X. We say that F
has the mixed monotone property if for any x1, x2, x3 ∈ X

x1
1, x1

2 ∈ X, x1
1 � x1

2 ⇒ F
(
x1

1, x2, x3) � F
(
x1

2, x2, x3),

x2
1, x2

2 ∈ X, x2
1 � x2

2 ⇒ F
(
x1, x2

1, x3) 
 F
(
x1, x2

2, x3),

x3
1, x3

2 ∈ X, x3
1 � x3

2 ⇒ F
(
x1, x2, x3

1
) � F

(
x1, x2, x3

2
)
,

that is, F(x1, x2, x3) is monotone non-decreasing in x1 and x3 and is monotone non-
increasing in x2.

Now, we present a triple fixed point of the second kind that used for mixed monotone
mappings (see [9]).
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Definition 1.6 ([9]) An element (x1, x2, x3) ∈ X3 is called a triple fixed point of the map-
ping F : X3 −→ X if

F
(
x1, x2, x3) = x1, F

(
x2, x1, x2) = x2, F

(
x3, x2, x1) = x3.

Definition 1.7 ([2]) Let (X, d) be the complete generalized metric space. The mapping
d : X3 →R

m with

d
[(

x1, x2, x3),
(
u1, u2, u3)] = d

(
x1, u1) + d

(
x2, u2) + d

(
x3, u3)

defines a metric on X3, which, for convenience, we denote by d, too.

Definition 1.8 ([4]) Let (X,�) be a partially ordered set, F : X3 −→ X and g : X −→ X be
given. We say F has the g-mixed monotone property if for any x1, x2, x3 ∈ X,

x1
1, x1

2 ∈ X, gx1
1 � gx1

2 ⇒ F
(
x1

1, x2, x3) � F
(
x1

2, x2, x3),

x2
1, x2

2 ∈ X, gx2
1 � gx2

2 ⇒ F
(
x1, x2

1, x3) 
 F
(
x1, x2

2, x3),

x3
1, x3

2 ∈ X, gx3
1 � gx3

2 ⇒ F
(
x1, x2, x3

1
) � F

(
x1, x2, x3

2
)
,

that is, F(x1, x2, x3) is monotone non-decreasing in x1 and x3, and monotone non-
increasing in x2.

Definition 1.9 ([15]) Let F : X3 −→ X and g : X −→ X be given. F and g are called com-
patible if

lim
n→+∞ d

(
g(U123), F(V123)

)
= 0,

where U123 = F(x1
n, x2

n, x3
n) and V123 = (gx1

n, gx2
n, gx3

n),

lim
n→+∞ d

(
g(U212), F(V212)

)
= 0,

where U212 = F(x2
n, x1

n, x2
n) and V212 = (gx2

n, gx1
n, gx2

n),

lim
n→+∞ d

(
g(U321), F(V321)

)
= 0,

where U321 = F(x3
n, x2

n, x1
n) and V321 = (gx3

n, gx2
n, gx1

n),
whenever {x1

n}, {x2
n}, and {x3

n} are sequences in X, such that

lim
n→+∞ U123 = lim

n→+∞ gx1
n = x1,

lim
n→+∞ U212 = lim

n→+∞ gx2
n = x2,

lim
n→+∞ U321 = lim

n→+∞ gx3
n = x3,

for some x1, x2, x3 ∈ X.
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Definition 1.10 ([15]) Let F : X3 −→ X and g : X −→ X. The mappings F and g are called
weakly reciprocally continuous if

lim
n→+∞ g(U123) = gx1 or lim

n→+∞ F(V123) = F
(
x1, x2, x3),

lim
n→+∞ g(U212) = gx2 or lim

n→+∞ F(V212) = F
(
x2, x1, x2),

lim
n→+∞ g(U321) = gx3 or lim

n→+∞ F(V321) = F
(
x3, x2, x1),

whenever {x1
n}, {x2

n}, and {x3
n} are sequences in X, such that

lim
n→+∞ U123 = lim

n→+∞ gx1
n = x1,

lim
n→+∞ U212 = lim

n→+∞ gx2
n = x2,

lim
n→+∞ U321 = lim

n→+∞ gx3
n = x3,

for some x1, x2, x3 ∈ X.

Definition 1.11 ([15]) Let F : X3 −→ X and g : X −→ X. The mappings F and g are called
reciprocally continuous if

lim
n→+∞ g(U123) = gx1 and lim

n→+∞ F(V123) = F
(
x1, x2, x3),

lim
n→+∞ g(U212) = gx2 and lim

n→+∞ F(V212) = F
(
x2, x1, x2),

lim
n→+∞ g(U321) = gx3 and lim

n→+∞ F(V321) = F
(
x3, x2, x1),

whenever {x1
n}, {x2

n}, and {x3
n} are sequences in X, such that

lim
n→+∞ U123 = lim

n→+∞ gx1
n = x1,

lim
n→+∞ U212 = lim

n→+∞ gx2
n = x2,

lim
n→+∞ U321 = lim

n→+∞ gx3
n = x3,

for some x1, x2, x3 ∈ X.

Definition 1.12 ([15]) Let (X, d,�) be a partially ordered metric space. We say that X is
regular if the following properties hold:

(i) if a non-decreasing sequence x1
n → x1, then x1

n � x1 for all n ≥ 0,
(ii) if a non-increasing sequence x2

n → x2, then x2 � x2
n for all n ≥ 0.

For the main result of this article, we study existence and uniqueness of triple common
fixed point for a sequence of mappings Tn : X3 → X and g : X → X, where (X, d) is a
complete generalized metric space.

First, we have the following two definitions from [6, 15].
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Definition 1.13 ([15]) Let (X, d) be a metric space and let Tn : X3 → X and g : X −→ X
are given. The sequence {Tn}n∈N0 and the mapping g are said to be compatible if

lim
n→+∞ d

(
g
(
U ′

123
)
, Tn

(
V ′

123
))

= 0,

where U ′
123 = Tn(x1

n, x2
n, x3

n) and V ′
123 = (gx1

n, gx2
n, gx3

n)

lim
n→+∞ d

(
g
(
U ′

212
)
, Tn

(
V ′

212
))

= 0,

where U ′
212 = Tn(x2

n, x1
n, x2

n) and V ′
212 = (gx2

n, gx1
n, gx2

n)

lim
n→+∞ d

(
g
(
U ′

321
)
, Tn

(
V ′

321
))

= 0,

where U ′
321 = Tn(x3

n, x2
n, x1

n) and V ′
321 = (gx3

n, gx2
n, gx1

n), whenever {x1
n}, {x2

n}, and {x3
n} are se-

quences in X, such that

lim
n→+∞ U ′

123 = lim
n→+∞ gx1

n+1 = x1,

lim
n→+∞ U ′

212 = lim
n→+∞ gx2

n+1 = x2,

lim
n→+∞ U ′

321 = lim
n→+∞ gx3

n+1 = x3

for some x1, x2, x3 ∈ X.

Definition 1.14 ([15]) Let (X, d) be a metric space and let Tn : X3 → X and g : X −→ X
are given. {Tn}n∈N0 and g are called weakly reciprocally continuous if

lim
n→+∞ g

(
U ′

123
)

= gx1,

lim
n→+∞ g

(
U ′

212
)

= gx2,

lim
n→+∞ g

(
U ′

321
)

= gx3,

whenever {x1
n}, {x2

n}, and {x3
n} are sequences in X, such that

lim
n→+∞ U ′

123 = lim
n→+∞ gx1

n+1 = x1,

lim
n→+∞ U ′

212 = lim
n→+∞ gx2

n+1 = x2,

lim
n→+∞ U ′

321 = lim
n→+∞ gx3

n+1 = x3

for some x1, x2, x3 ∈ X.

2 Main results
We start with the following statement, which we will use in the main theorem. Inspired
by Definition 1.8 we have the following definition.



Hadi Bonab et al. Journal of Inequalities and Applications        (2020) 2020:204 Page 6 of 16

Definition 2.1 Let (X,�) be a partially ordered set, Tn : X3 → X, n ∈ N0, and g : X → X.
We say that {Tn}n∈N0 has the g-mixed monotone property if for any x1, x2, x3, x′1, x′2, x′3 ∈ X,

gx1 � gx′1, gx′2 � gx2 and gx3 � gx′3, (2.1)

imply that

Tn
(
x1, x2, x3) � Tn+1

(
x′1, x′2, x′3), Tn+1

(
x′2, x′1, x′2) � Tn

(
x2, x1, x2) and

Tn+1
(
x3, x2, x1) � Tn

(
x′3, x′2, x′1).

(2.2)

Definition 2.2 Suppose that Ti : X3 → X and g : X → X are given. We say {Ti}i∈N0 and g
satisfy the (K) property if

d(Ti
(
x1, x2, x3), Tj

(
u1, u2, u3) ≤ A

[
d
(
g
(
x1), Ti

(
x1, x2, x3))

+ d
(
gu1, Tj

(
u1, u2, u3))]

+ B
(
d
(
gu1, gx1)) (2.3)

for x1, x2, x3, u1, u2, u3 ∈ X with gx1 
 gu1, gu2 
 gx2, gx3 
 gu3 or gx1 � gu1, gu2 �
gx2, gx3 � gu3, I 
= A = (aij), I 
= B = (bij) ∈ Mm,m(R+), (A + B)(I – A)–1 ∈ZM.

Definition 2.3 If T0 and g have a non-decreasing transcendence point in x1
0, x3

0 and a non-
increasing transcendence point in x2

0, then we say T0 and g have a mixed triple transcen-
dence point, if there exist x1

0, x2
0, x3

0 ∈ X such that

T0
(
x1

0, x2
0, x3

0
) 
 gx1

0, T0
(
x2

0, x1
0, x2

0
) � gx2

0 and T0
(
x3

0, x1
0, x2

0
) 
 gx3

0. (2.4)

Lemma 2.4 Let (X, d,�) be a partially ordered complete generalized metric space. Let g be
a self-mapping on X and {Ti}i∈N0 be a sequence of mappings from X3 into X and having a
g-mixed monotone property with Ti(X3) ⊆ g(X). If T0 and g have a mixed triple transcen-
dence point, then

(a) there are sequences {x1
n}, {x2

n} and {x3
n} in X such that

gx1
n = Tn–1

(
x1

n–1, x2
n–1, x3

n–1
)
, gx2

n = Tn–1
(
x2

n–1, x1
n–1, x2

n–1
)

and

gx3
n = Tn–1

(
x3

n–1, x1
n–1, x2

n–1
)
;

(b) {gx1
n}, {gx3

n} are non-decreasing sequences and {gx2
n} is a non-increasing sequence.

Proof (a) By hypothesis, let for x1
0, x2

0, x3
0 ∈ X the condition (2.4) hold. Since T0(X3) ⊆ g(X),

we can define x1
1, x2

1, x3
1 ∈ X such that

gx1
1 = T0

(
x1

0, x2
0, x3

0
)
, gx2

1 = T0
(
x2

0, x1
0, x2

0
)

and

gx3
1 = T0

(
x3

0, x2
0, x1

0
)
.

Again since T0(X3) ⊆ g(X), there exist x1
2, x2

2, x3
2 ∈ X such that

gx1
2 = T1

(
x1

1, x2
1, x3

1
)
, gx2

2 = T1
(
x2

1, x1
1, x2

1
)

and
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gx3
2 = T1

(
x3

1, x2
1, x1

1
)
.

Continuing this technique, we get

gx1
n = Tn–1

(
x1

n–1, x2
n–1, x3

n–1
)
, gx2

n = Tn
(
x2

n–1, x1
n–1, x2

n–1
)

and

gx3
n = Tn

(
x3

n–1, x2
n–1, x1

n–1
)
, for all n ≥ 0.

(2.5)

(b) Now, by mathematical induction, we show that

gx1
n � gx1

n+1, gx2
n 
 gx2

n+1 and gx3
n � gx3

n+1, (2.6)

for all n ≥ 0. To this end, since (2.4) holds, in the light of

gx1
1 = T0

(
x1

0, x2
0, x3

0
)
, gx2

1 = T0
(
x2

0, x1
0, x3

0
)

and gx3
1 = T0

(
x3

0, x2
0, x1

0
)
,

we have

gx1
0 � gx1

1, gx2
0 
 gx2

1, gx3
0 � gx3

1,

that is, (2.6) holds for n = 0. We assume that (2.6) holds for some n > 0. Now, by (2.5) and
(2.6), the result is achieved. Thus, we are done. �

Before expressing the main theorems, we first give the following examples.

Example 2.5
1. A = 1

4
( 1 1

1 1

)
and B = 1

6
( 1 1

1 1

)
are matrices in ZM. It is easy to see that

(A + B)(I – A)–1 ∈ZM.
2. A =

( 1
3 0
0 1

3

)
and B =

( 0 1
3

1
3 0

)
are matrices in ZM. It is easy to see that

(A + B)(I – A)–1 ∈ZM.
3. Let A = αI and B = ((I – α)3 – α)I be matrices in ZM. Then for α = 1

4 , 1
5 , 1

7 , 1
8 it is clear

that (A + B)(I – A)–1 ∈ZM.

Theorem 2.6 In addition to the conditions of Lemma 2.4, let g(X) ⊆ X be complete,
{Ti}i∈N0 and g be compatible, weakly reciprocally continuous, where g is monotonic non-
decreasing, continuous, and satisfies the condition (K). If g(X) is regular and A, B are
nonzero matrices in ZM, then {Ti}i∈N0 and g have a triple coincidence point.

Proof Let {x1
n}, {x2

n} and {x3
n} be the same sequences which are constructed in Lemma 2.4.

By (2.3), we get

d
(
gx1

n, gx1
n+1

)
= d

(
Tn–1

(
x1

n–1, x2
n–1, x3

n–1
)
, Tn

(
x1

n, x2
n, x3

n
))

≤ A
[
d
(
gx1

n–1, Tn–1
(
x1

n–1, x2
n–1, x3

n–1
))

+ d
(
gx1

n, Tn
(
x1

n, x2
n, x3

n
))]

+ B(d
(
gx1

n, gx1
n–1

)

= A
[
d
(
gx1

n–1, gx1
n
)

+ d
(
gx1

n, gx1
n+1

)]

+ B(d
(
gx1

n, gx1
n–1

)
.
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It follows that

d
(
gx1

n, gx1
n+1

) ≤ (A + B)(I – A)–1d
(
gx1

n–1, gx1
n
)

(2.7)

and similarly

d
(
gx2

n, gx2
n+1

) ≤ (A + B)(I – A)–1d
(
gx2

n–1, gx2
n
)

(2.8)

and

d
(
gx3

n, gx3
n+1

) ≤ (A + B)(I – A)–1d
(
gx3

n–1, gx3
n
)
. (2.9)

Adding (2.7)–(2.9), we have

δn := d
(
gx1

n, gx1
n+1

)
+ d

(
gx2

n, gx2
n+1

)
+ d

(
gx3

n, gx3
n+1

)

≤ (A + B)(I – A)–1[d
(
gx1

n–1, gx1
n
)

+ d
(
gx2

n–1, gx2
n
)

+ d
(
gx3

n–1, gx3
n
)]

=
(
(A + B)(I – A)–1)δn–1.

We set C = (A + B)(I – A)–1, for all n ∈N, then

Θ ≤ δn ≤ Cδn–1 ≤ C2δn–2 ≤ · · · ≤ Cnδ0.

Moreover, with repeated use of the triangle inequality and for p > Θ , we get

d
(
gx1

n, gx1
n+p

)
+ d

(
gx2

n, gx2
n+p

)
+ d

(
gx3

n, gx3
n+p

)

≤ d
(
gx1

n, gx1
n+1

)
+ d

(
gx2

n, gx2
n+1

)
+ d

(
gx3

n, gx3
n+1

)

+ d
(
gx1

n+1, gx1
n+2

)
+ d

(
gx2

n+1, gx2
n+2

)
+ d

(
gx3

n+1, gx3
n+2

)

+ · · · + d
(
gx1

n+p–1, gx1
n+p

)
+ d

(
gx2

n+p–1, gx2
n+p

)

+ d
(
gx3

n+p–1, gx3
n+p

)

= δn + δn+1 + · · · + δn+p–1

≤ (
Cn + Cn+1 + · · · + Cn+p–1)δ0

≤ Cn(I + C + · · · + Cp–1 + · · · )δ0

= Cn(I – C)–1δ0.

We have

d
(
gx1

n, gx1
n+p

)
+ d

(
gx2

n, gx2
n+p

)
+ d

(
gx3

n, gx3
n+p

)

≤ (
(A + B)(I – A)–1)n(I – (A + B)(I – A)–1)–1

δ0.



Hadi Bonab et al. Journal of Inequalities and Applications        (2020) 2020:204 Page 9 of 16

Now, taking the limit as n → +∞, we conclude

lim
n→+∞ d

(
gx1

n, gx1
n+p

)
+ d

(
gx2

n, gx2
n+p

)
+ d

(
gx3

n, gx3
n+p

)
= 0.

This implies that

lim
n→+∞ d

(
gx1

n, gx1
n+p

)
= lim

n→+∞ d
(
gx2

n, gx2
n+p

)
= lim

n→+∞ d
(
gx3

n, gx3
n+p

)
= 0.

Thus, {gx1
n}, {gx2

n} and {gx3
n} are Cauchy sequences in X. Since g(X) is complete, there exists

(x′1, x′2, x′3) ∈ X3, with

lim
n→+∞

{
gx1

n
}

= gx′1 := x1, lim
n→+∞{gyn} = gx′2 := x2 and

lim
n→+∞{gzn} = gx′3 := x3.

By construction, we have

lim
n→+∞ gx1

n+1 = lim
n→+∞ Tn

(
x1

n, x2
n, x3

n
)

= x1,

lim
n→+∞ gx2

n+1 = lim
n→+∞ Tn

(
x2

n, x1
n, x2

n
)

= x2,

and

lim
n→+∞ gx3

n+1 = lim
n→+∞ Tn

(
x3

n, x2
n, x1

n
)

= x3.

Since {Ti}i∈N0 and g are weakly reciprocally continuous and compatible, we have

lim
n→+∞ Tn

(
gx1

n, gx2
n, gx3

n
)

= gx1,

lim
n→+∞ Tn

(
gx2

n, gx1
n, gx2

n
)

= gx2,

and

lim
n→+∞ Tn

(
gx3

n, gx2
n, gx1

n
)

= gx3.

Since {gx1
n} and {gx3

n} are non-decreasing and {gx2
n} is non-increasing, using the regularity

of X, we have gx1
n � x1, x2 � gx2

n and gx3
n � x3 for all n ≥ 0. So by (2.3), we get

d(Ti
(
x1, x2, x3), Tn

(
gx1

n, gx2
n, gx3

n
) ≤ A

[
d
(
gx1, Ti

(
x1, x2, x3))

+ d(g
(
gx1

n, Tn
(
gx1

n, gx2
n, gx3

n
))]

+ B(d
(
g
(
gx1

n, gx1)).

Taking the limit as n → +∞, we obtain gx1 = Ti(x1, x2, x3). Similarly, it can be proved that
gx2 = Ti(x2, x1, x2) and gx3 = Ti(x3, x2, x1). Thus, (x1, x2, x3) is a triple coincidence point of
{Ti}i∈N and g . �

If in Theorem 2.6 g is the identity mapping, then we have the following corollary.
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Corollary 2.7 Let (X, d,�) be a partially ordered complete generalized metric space. Let
{Ti}i∈N∪{0} be a mixed monotone sequence of mappings from X3 into X, where {Tm} and Id :
X → X satisfy the (K) property. Also T0 and Id have a mixed transcendence point. If g(X)
is regular, then there exists (x1, x2, x3) ∈ X3, such that x1 = Ti(x1, x2, x3), x2 = Ti(x2, x1, x2),
and x3 = Ti(x3, x2, x1) for i ∈N0.

Definition 2.8 We say that (x1, x2, x3) is a triple comparable with (u1, u2, u3) if and only if

x1 
 u1, x2 � u2, x3 
 u3 or

x1 � u1, x2 
 u2, x3 � u3 or

x1 
 u2, x2 � u3, x3 
 u1 or

x1 � u2, x2 
 u3, x3 � u1 or

x1 
 u3, x2 � u1, x3 
 u2 or

x1 � u3, x2 
 u1, x3 � u2.

If in the above definition we replace (x1, x2, x3) and (u1, u2, u3) with (gx1, gx2, gx3) and
(gu1, gu2, gu3), we call (x1, x2, x3) a triple comparable with (u1, u2, u3) with respect to g .

Theorem 2.9 Let (X, d,�) be a partially ordered complete generalized metric space. Let g
be a self-mapping on X and {Ti}i∈N0 be a sequence of mappings from X3 into X. Let {Ti}i∈N0

and g satisfy the condition (K) and have triple coincidence points comparable with respect
to g , then {Ti}i∈N0 and g have a unique triple common fixed point.

Proof According to Theorem 2.6, the set of tripled coincidence points is non-empty. First,
we show that, if (x1, x2, x3) and (x′1, x′2, x′3) are triple coincidence points, that is, if

gx1 = Ti
(
x1, x2, x3), gx2 = Ti

(
x2, x1, x2), gx3 = Ti

(
x3, x2, x1),

gx′1 = Ti
(
x′1, x′2, x′3), gx′2 = Ti

(
x′2, x′1, x′2), gx′3 = Ti

(
x′3, x′2, x′1),

then gx1 = gx′1, gx2 = gx′2 and gx3 = gx′3. Since the set of triple coincidence points is a triple
comparable, applying condition (2.3) implies

d
(
gx1, gx′1) = d

(
Ti

(
x1, x2, x3), Tj

(
x′1, x′2, x′3))

≤ A
[
d
(
gx1, Ti

(
x1, x2, x3)) + d

(
gx′1, Tj

(
x′1, x′2, x′3))]

+ Bd
(
gx′1, gx1).

Therefore, as I 
= B ∈ ZM, d(gx1, gx′1) = Θ , that is, gx1 = gx′1. Similarly, it can be proved
that gx2 = gx′2 and gx3 = gx′3. So gx1 = gx2 = gx3 = gx′1 = gx′2 = gx′3.

Therefore, {Ti}i∈N and g have a unique triple coincidence point (gx1, gx1). Since two com-
patible mappings commute at their coincidence points, thus, clearly, {Ti}i∈N and g have a
unique tripled common fixed point whenever {Ti}i∈N and g are weakly compatible. �
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Example 2.10 Let X = [0, 1]. Define

d
(
x1, x2) =

(
|x1 – x2|
|x1 – x2|

)

.

Then (X, d) is a partially ordered complete generalized metric space. Define

A =

(
1
3 0
0 1

3

)

and B =

(
0 1

3
1
3 0

)

.

Because A and B are nonzero matrices in ZM and considering the mapping Ti : X3 → X
and g : X → X with

Ti
(
x1, x2, x3) =

x1 + x2 + x3

3i , g
(
x1) = 9x1,

it can be easily verified by mathematical induction that the inequality (2.3) holds for all
x1, x2, x3 ∈ X, that is, we see that the greatest value of the first side happens when i = 1, j →
∞, in this case for i = 1 we have

(
| x1+x2+x3

3 – u1+u2+u3

3j |
| x1+x2+x3

3 – u1+u2+u3

3j |

)

≤
(

1
3 0
0 1

3

)(
|9x1 – x1+x2+x3

3 | + |9u1 – u1+u2+u3

3j |
|9x1 – x1+x2+x3

3 | + |9u1 – u1+u2+u3

3j |

)

+

(
0 1

3
1
3 0

)(
|9(u1 – x1)|
|9(u1 – x1)|

)

.

Now for j = j + 1 we have

α :=

(
| x1+x2+x3

3 – 1
3

u1+u2+u3

3j |
| x1+x2+x3

3 – 1
3

u1+u2+u3

3j |

)

≤
(

1
3 0
0 1

3

)(
|9x1 – x1+x2+x3

3 | + |3u1 – 1
3

u1+u2+u3

3j |
|9x1 – x1+x2+x3

3 | + |3u1 – 1
3

u1+u2+u3

3j |

)

+

(
0 3
3 0

)(
|( u1

3 – x1)|
|( u1

3 – x1)|

)

:= β .

So

α ≤ 1
3

(
| x1+x2+x3

3 – u1+u2+u3

3j |
| x1+x2+x3

3 – u1+u2+u3

3j |

)

+
2
3

(
| x1+x2+x3

3 |
| x1+x2+x3

3 |

)

≤ 1
3

(
1
3 0
0 1

3

)(
|9x1 – x1+x2+x3

3 | + |9u – u1+u2+u3

3j |
|9x1 – x1+x2+x3

3 | + |9u – u1+u2+u3

3j |

)

+
1
3

(
0 3
3 0

)(
|u1 – x1|
|u1 – x1|

)

+
2
3

(
| x1+x2+x3

3 |
| x1+x2+x3

3 |

)

≤ β .
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Thus all the hypotheses of Theorem 2.6 are satisfied and (0, 0, 0) is the triple coincident
point of g and {Ti}i∈N0 . Moreover, using the same {Ti}i∈N0 and g in Theorem 2.9, (0, 0, 0)
is the unique triple common fixed point of g and {Ti}i∈N0 .

Before explaining the application, it is necessary to provide the following definition,
which we will use in Theorem 3.1.

Definition 2.11 Let A = (aij) and B = (bij) be two matrices in ZM. Then

A ≤ B ⇔ aij ≤ bij, 1 ≤ i, j ≤ m

max{A, B} = C = (cij) where cij = max{aij, bij}.

Clearly if A ≤ B then max{A, B} = B.

3 Application 1
In this part, we will use the results of Sect. 2 to extract some results for the existence and
uniqueness of solutions of the integral equations system. Consider the following integral
equations system:

x1(t) =
∫ T

0
(f

(
t, s, x1(s)

)
+ g

(
t, s, x2(s)

)
+ h

(
t, s, x3(s)

)
ds + v(t),

x2(t) =
∫ T

0
(f

(
t, s, x2(s)

)
+ g

(
t, s, x3(s)

)
+ h

(
t, s, x1(s)

)
ds + v(t),

x3(t) =
∫ T

0
(f

(
t, s, x3(s)

)
+ g

(
t, s, x1(s)

)
+ h

(
t, s, x2(s)

)
ds + v(t),

(3.1)

for all t, s ∈ [0, T], for some T > 0.
Let X = C([0, T],R) be continuous real functions, defined on the interval [0, T], endowed

with a metric

d
(
x1, x2) =

(
max0≤t≤T |x1(t) – x2(t)|
max0≤t≤T |x1(t) – x2(t)|

)

.

We define the partial order “�” on X as follows:
for x1, x2 ∈ X, x1 � x2 ⇔ x1(t) � x2(t) for any t ∈ [0, T].
Thus, (X, d,�) is a partially ordered complete generalized metric space. For (3.1) we

consider the following hypotheses:
(i) f , g, h ∈ [0, T] × [0, T] ×R −→R

2 are continuous;
(ii) v : [0, T] −→R is continuous;

(iii) there exists ρ : [0, T] −→ M2×2([0, T]), such that, for all x1, x2 ∈ X ,

0 ≤ ∣
∣f

(
t, s, x1(s)

)
– f

(
t, s, x2(s)

)∣∣ ≤ ρ1(t)d
(
x1, x2),

0 ≤ ∣
∣g

(
t, s, x2(s)

)
– g

(
t, s, x1(s)

)∣∣ ≤ ρ2(t)d
(
x1, x2),

0 ≤ ∣
∣h

(
t, s, x1(s)

)
– h

(
t, s, x2(s)

)∣∣ ≤ ρ3(t)d
(
x1, x2),

(3.2)
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for all s, t ∈ [0, T] with ρ(t) ≤ A =
( 1

3 0
0 1

3

)
and ρ(t) ≤ B =

( 0 1
3

1
3 0

)
. Because A and B are

nonzero matrices in ZM;
(iv) we suppose that ρ1(t) + ρ2(t) + ρ3(t) < 1 and

ρ(t) = max
{
ρ1(t),ρ2(t),ρ3(t)

}
;

(v) there are functions α,β ,γ : [0, T] −→R which are continuous, such that

α ≤
∫ T

0
(f

(
t, s,α(s)

)
+ g

(
t, s,β(s)

)
+ h

(
t, s,γ (s)

)
ds + v(t),

β ≥
∫ T

0
(f

(
t, s,β(s)

)
+ g

(
t, s,α(s)

)
+ h

(
t, s,β(s)

)
ds + v(t),

γ ≤
∫ T

0
(f

(
t, s,γ (s)

)
+ g

(
t, s,β(s)

)
+ h

(
t, s,α(s)

)
ds + v(t).

Theorem 3.1 Under hypotheses (i)–(v), (3.1) has a unique solution in X.

Proof We consider the operator defined by Ti : X3 −→ X, with

T
(
x1, x2, x3) = Ti

(
x1, x2, x3)

=
∫ T

0
(f

(
t, s, x1(s)

)
+ g

(
t, s, x2(s)

)
+ h

(
t, s, x3(s)

)
ds + v(t),

for any x1, x2, x3 ∈ X and t, s ∈ [0, T].
We prove that the operator {Ti}i∈N fulfills the conditions of Corollary 2.7. First, we show

that {Ti}i∈N has the mixed monotone property. Let x1, u1 ∈ X with x1 ≤ u1 and t, s ∈ [0, T],
then we have

Ti
(
u1, x2, x3)(t) – Ti

(
x1, x2, x3)(t) =

∫ T

0
(f

(
t, s, u1(s)

)
– f

(
t, s, x1(s)

)
ds.

Given that x1(t) ≤ u1(t) for all t ∈ [0, T] and based on our assumption (3.2), we have

Ti
(
u1, x2, x3)(t) – Ti

(
x1, x2, x3)(t) ≥ 0,

that is, Ti(u1, x2, x3)(t) ≥ Ti(x1, x2, x3)(t). For x2, u2 ∈ X with x2 ≤ u2 and t, s ∈ [0, T], then
we have

Ti
(
x1, x2, x3)(t) – Ti

(
x1, u2, x3)(t) =

∫ T

0
(f

(
t, s, x2(s)

)
– f

(
t, s, u2(s)

)
ds.

Given that x2(t) ≤ u2(t) for all t ∈ [0, T] and based on our assumption (3.2), we have

Ti
(
x1, x2, x3)(t) – Ti

(
x1, u2, x3)(t) ≤ 0,

that is, Ti(x1, x2, x3)(t) ≥ Ti(x1, u2, x3)(t). Similarly, we have

Ti
(
x1, x2, u3)(t) – Ti

(
x1, u2, x3)(t) ≥ 0,
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that is, Ti(x1, x2, x3)(t) ≤ Ti(x1, x2, u3)(t). So, {Ti}i∈N has the mixed monotone property.
Now, we estimate d(Ti(x1, x2, x3), Tj(u1, u2, u3)) for x1 � u1, u2 � x2, x3 � u3 or x1 

u1, u2 
 x2, x3 
 u3 and with {Ti}i∈N having the mixed monotone property, we get

d
(
Ti

(
x1, x2, x3), Tj

(
u1, u2, u3))

=

(
max0≤t≤T |Ti(x1, x2, x3)(t) – Tj(u1, u2, u3)(t)|
max0≤t≤T |Ti(x1, x2, x3)(t) – Tj(u1, u2, u3)(t)|

)

.

Now, for all t ∈ [0, T] by using (3.2), we have

∣
∣Ti

(
x1, x2, x3)(t) – Tj

(
u1, u2, u3)(t)

∣
∣

=
∣∣
∣∣

∫ T

0
(f

(
t, s, x1(s)

)
+ g

(
t, s, x2(s)

)
+ h

(
t, s, x3(s)

)
ds

–
∫ T

0
(f

(
t, s, u1(s)

)
+ g

(
t, s, u2(s)

)
+ h

(
t, s, u3(s)

)
ds

∣∣∣
∣

≤
∫ T

0

∣∣(f
(
t, s, x1(s)

)
– f

(
t, s, u1(s)

)∣∣ds

+
∫ T

0

∣∣(g
(
t, s, x2(s)

)
– g

(
t, s, u2(s)

)∣∣ds

+
∫ T

0

∣
∣(h

(
t, s, x3(s)

)
– h

(
t, s, u3(s)

)∣∣ds

≤ ρ1(t)d
(
x1, u1) + ρ2(t)d

(
x2, u2) + ρ3(t)d

(
x3, u3)

≤ ρ(t)
(
d
(
x1, u1) + d

(
x2, u2) + d

(
x3, u3))

≤ B
(
d
(
x1, u1) + d

(
x2, u2) + d

(
x3, u3)).

Consequently,

d
(
Ti

(
x1, x2, x3), Tj

(
u1, u2, u3)) ≤ B

(
d(x1, u1) + d(x2, u2) + d(x3, u3)
d(x1, u1) + d(x2, u2) + d(x3, u3)

)

≤ A
[
d
(
x1, Ti

(
x1, x2, x3)) + d

(
u1, Tj

(
u1, u2, u3))]

+ Bd
(
u1, x1).

Let α,β ,γ be the same as (v); then we have

α ≤ Ti(α,β ,γ ), β ≥ Ti(β ,α,β), γ ≤ Ti(γ ,β ,α).

If x1
0 = α, x2

0 = β , x3
0 = γ , then all assumptions of Corollary 2.7 are fulfilled. So, there

exists a triple fixed point (x1, x2, x3) for the operator {Ti}i∈N; that is, Ti(x1, x2, x3) =
x1, Ti(x2, x1, x2) = x2 , and Ti(x3, x2, x1) = x3 for i ∈N. �
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4 Application 2
Now if we consider the sequence of the integral equations system below, in which

x1(t) =
∫ T

0
(fi

(
t, s, x1(s)

)
+ gi

(
t, s, x2(s)

)
+ hi

(
t, s, x3(s)

)
ds + v(t),

x2(t) =
∫ T

0
(fi

(
t, s, x2(s)

)
+ gi

(
t, s, x3(s)

)
+ hi

(
t, s, x1(s)

)
ds + v(t),

x3(t) =
∫ T

0
(fi

(
t, s, x3(s)

)
+ gi

(
t, s, x1(s)

)
+ hi

(
t, s, x2(s)

)
ds + v(t),

(4.1)

for all t, s ∈ [0, T], for some T > 0, then, similar to Theorem 3.1, this sequence of the inte-
gral equations system with the conditions given below will have a simultaneous solution.

Let X = C([0, T],R) be equipped with metric defined in Sect. 3 and “�” be the partial
order on X. Thus, (X, d,�) is a partially ordered complete generalized metric space. For
(4.1) we consider the following hypotheses:

(i) fi, gi, hi ∈ [0, T] × [0, T] ×R −→R
2 are continuous;

(ii) v : [0, T] −→R is continuous;
(iii) there exists ρ : [0, T] −→ M2×2([0, T]), such that, for all x1, x2 ∈ X , we have

0 ≤ ∣∣fi
(
t, s, x1(s)

)
– fi

(
t, s, x2(s)

)∣∣ ≤ ρ1(t)d
(
x1, x2),

0 ≤ ∣∣gi
(
t, s, x2(s)

)
– gi

(
t, s, x1(s)

)∣∣ ≤ ρ2(t)d
(
x1, x2),

0 ≤ ∣∣hi
(
t, s, x1(s)

)
– hi

(
t, s, x2(s)

)∣∣ ≤ ρ3(t)d
(
x1, x2),

(4.2)

for all s, t ∈ [0, T] with ρ(t) ≤ A =
( 1

3 0
0 1

3

)
and ρ(t) ≤ B =

( 0 1
3

1
3 0

)
;

(iv) we suppose that ρ1(t) + ρ2(t) + ρ3(t) < 1 and

ρ(t) = max
{
ρ1(t),ρ2(t),ρ3(t)

}
;

(v) there are functions α,β ,γ : [0, T] −→R which are continuous, such that

α ≤
∫ T

0
(fi

(
t, s,α(s)

)
+ gi

(
t, s,β(s)

)
+ hi

(
t, s,γ (s)

)
ds + v(t),

β ≥
∫ T

0
(fi

(
t, s,β(s)

)
+ gi

(
t, s,α(s)

)
+ hi

(
t, s,β(s)

)
ds + v(t),

γ ≤
∫ T

0
(fi

(
t, s,γ (s)

)
+ gi

(
t, s,β(s)

)
+ hi

(
t, s,α(s)

)
ds + v(t).
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