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1 Introduction
The subject of quantum calculus is known as the calculus without limits; it has earned
an eminent reputation and publicity due to its vast applications in mathematics, statis-
tics and physics. Much of the theory of the quantum calculus relies on the Jackson q-
derivatives and q-integrals, which replace the classical derivative by a difference operator,
which allows one to deal with sets of non-differentiable functions. Recently, this area has
been stimulated to grow rapidly by many researchers and a variety of new results can be
found in Refs. [1–16] and the references cited therein. By fixing a real number q such that
0 < q < 1, the q-derivative of a differentiable function ϑ is defined by [1]

Dqϑ(x) =
ϑ(x) – ϑ(qx)

(1 – q)x
(x �= 0).

The q-integrals from 0 to y and from 0 to ∞ are, respectively, defined by [1]

∫ y

0
ϑ(x) dqx = (1 – q)y

∞∑
n=0

ϑ
(
yqn)qn (1)
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and

∫ ∞

0
ϑ(x) dqx = (1 – q)

∞∑
n=–∞

ϑ
(
qn)qn, (2)

provided their respective series converge absolutely. The q-integration by parts is given
by [16]

∫ b

a
g(x)Dqϑ(x) dqx = ϑ(b)g(b) – ϑ(a)g(a) –

∫ b

a
ϑ(qx)Dqg(x) dqx. (3)

In the literature, there have been found two types of q-analogues of the exponential func-
tion introduced as [16–18]

Eq(x) =
∞∑

n=0

q
n(n–1)

2
xn

[n]q!
(x ∈C) (4)

and

eq(x) =
∞∑

n=0

xn

[n]q!
(|x| < |1 – q|–1), (5)

where [n]q = qn–1 + · · ·+ q + 1 and [n]q! = [n]q · · · [n]q are the q-analogues of the integer and
its factorial, respectively. The q-analogues of the gamma function are also given by [5]

Γq(t) =
∫ 1

1–q

0
xt–1Eq(–qx) dqx and Γ̂q(t) =

∫ ∞

0
xt–1eq(–x) dqx. (6)

The useful properties of the q-gamma functions Γq and Γ̂q are obtained in the literature
as follows.

Theorem 1 Let n ∈ N and t ∈R. Then the following identities hold:

(i) Γq(t + 1) = [t]qΓq(t) and Γq(n + 1) = [n]q!, (ii) Γq(t + 1) =
1 – qt

1 – q
Γq(t),

(iii) Γ̂q(t + 1) = q–t[t]qΓ̂q(t) and Γ̂q(1) = 1, (iv) Γ̂q(n) = q
–n(n–1)

2 Γq(n).

The q-analogues of the trigonometric functions sin x and cos x are given by (see, e.g.,
[4])

sinq(at) =
∞∑

n=0

(–1)n q
n(n+1)

2

[2n + 1]q!
a2n+1t2n+1, cosq(at) =

∞∑
n=0

(–1)n q
n(n–1)

2

[2n]q!
a2nt2n,

Sinq(at) =
∞∑

n=0

(–1)n

[2n + 1]q!
a2n+1t2n+1 and Cosq(at) =

∞∑
n=0

(–1)n

[2n]q!
a2nt2n.

This paper is organized as follows. In Sect. 1, we present some preliminaries and nota-
tions that are very useful in the sequel. In Sect. 2, we apply the q-analogues of the Laplace-
type integral operator to certain polynomials and functions of special-types. In Sect. 3,
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we apply the q-analogue F2,q to a certain class of differential operators of arbitrary order.
In Sect. 4, we discuss the convolution product and establish a convolution theorem of the
F2,q integral operator.

2 F2,q and S2,q analogues of some q-special functions
The Laplace integral operator, among various integral operators, is the most popular and
widely used in several branches of engineering sciences and applied mathematics. The
Laplace-type integral has been firstly defined by Yürekli and Sadek [19] and extended to
a space of generalized functions by Al-Omari [20]. In [4], Ucar et al. have given the q-
analogues of the Laplace-type integral operator of some elementary functions by making a
free use of the identities of the q-Laplace integral operator. One of the goals of this paper is
to provide the q-analogues of the Laplace-type integral operator, with a different approach,
and derive results involving elementary functions and some other difference operators.
The Laplace-type integral operator [19, (1.4)]

L2
(
ϑ(x); y

)
=

∫ ∞

0
x exp

(
–x2y2)ϑ(x) dx

has a close relation with the familiar Laplace integral operator given as

L2
(
ϑ(x); y

)
=

1
2

L
(
ϑ(

√
x); y2).

The q-analogues of the Laplace-type integral operator were introduced by [4]

qL2
(
ϑ(x); y

)
=

1
1 – q2

∫ y–1

0
xEq2

(
q2y2x2)ϑ(x) dqx (7)

and

ql2
(
ϑ(x); y

)
=

1
1 – q2

∫ ∞

0
xeq2

(
–y2x2)ϑ(x) dqx, (8)

provided Re(y) > 0. Here, we introduce two q-analogues of the Laplace-type integral op-
erator in the standard way as

F2,q
(
ϑ(x); y

)
=

∫ ∞

0
xϑ(x)Eq

(
–qx2y2)dqx (9)

and

S2,q
(
ϑ(x); y

)
=

∫ ∞

0
xϑ(x)eq

(
–x2y2)dqx, (10)

provided Re(y) > 0. In what follows, we make a use of Eq. (9) and Eq. (10) and provide a
summary of some results related to the F2,q and S2,q analogues in the course of the follow-
ing theorems.

Theorem 2 Let δ be a real number. Then the following hold:

(i) F2,q
(
x2δ ; y

)
=

Γq(δ + 1)
[2]qy2δ+2 , (ii) S2,q

(
x2δ ; y

)
=

Γ̂q(δ + 1)
[2]qy2δ+2 .
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Proof By aid of Eq. (9), we proceed by

F2,q
(
x2δ ; y

)
=

∫ ∞

0
x2δEq

(
–qx2y2)dqx.

Therefore, by the change of variables x2y2 = z we obtain

F2,q
(
x2δ ; y

)
=

1
[2]qy2δ+2

∫ ∞

0
zδEq(–qz) dqz.

Hence, the proof of the first part (i) of the theorem follows from Eq. (6). The proof of the
second part (ii) follows by similar techniques. The proof of the theorem is completed. �

Consequently, we state without proof the following straightforward corollary.

Corollary 3 The following identities hold:

(i) F2,q
(
x2n; y

)
=

[n]!
[2]qy2n+2 , (ii) S2,q

(
x2n; y

)
= q–n (n–1)

2
[n]q!

[2]qy2n+2 .

Theorem 4 Let δ be a positive real number. Then the following identities hold:

(i) F2,q
(
eq

(
δx2); y

)
=

1
[2]q(y2 – δ)

(|δ| < y2),

(ii) S2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[2]qy2n+2 – q–n(n+1) ,

(iii) F2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

q
n(n–1)

2 δn

[2]qy2n+2 ,

(iv) S2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

–qn

[2]q[n]qy2n+2 δn.

Proof Let δ be a positive real number. Then, by employing Eq. (9) and Eq. (5) we write

F2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[n]q!

∫ ∞

0
x2n+1Eq

(
–qx2y2)dqx.

By using the change of variables z = x2y2, the above equation yields

F2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[n]q!

∫ ∞

0

zn

[2]qy2n+2 Eq(–qz) dqz.

Hence, by invoking the definition of the gamma function given by Eq. (6), we obtain

F2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[n]q!
1

[2]qy2n+2 Γq(n + 1). (11)
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Therefore, by applying Theorem 1, Eq. (11) leads to the geometric series

F2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[2]qy2n+2 =
1

[2]q(y2 – δ)
(|δ| < y2).

This proves the first part of the theorem. By following a like approach, we get

S2,q
(
eq

(
δx2); y

)
=

∞∑
n=0

δn

[2]qy2n+2[n]q!
Γ̂q(n + 1).

This, indeed, proves the second part of the theorem. The proof of the third part (iii) follows
from a similar technique. To establish the fourth part (iv) of the theorem, we make use of
the definition of the q-analogue Eq to write

F2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

q
n(n–1)

2

[n]q!
δn

∫ ∞

0
x2x+1eq

(
–x2y2)dqx.

By applying the change of variables z = x2y2, our previous equation becomes

F2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

q
n(n–1)

2

[n]q!
δn

[2]qy2n+2 Γ̂q(n + 1).

Hence, by using Part (iv) of Theorem 1, the equation can be put into the form

F2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

q
n(n–1)

2 δn

[n]q![2]qy2n+2 q
–n(n+1)

2 Γq(n).

Therefore, simple computations yield

F2,q
(
Eq

(
δx2); y

)
=

∞∑
n=0

–qn

[2]q[n]qy2n+2 δn.

Hence, the proof of this theorem is therefore completed. �

Theorem 5 Let δ be a positive real number. Then the following identities hold:

(i) F2,q
(
Cosq

(
δx2); y

)
=

y2

[2]q(y4 + δ2)
(
δ2 < y4),

(ii) S2,q
(
Cosq

(
δx2); y

)
=

1
[2]qy2

∞∑
n=0

(–1)nq
n(n–1)

2
δ2n

y4n ,

(iii) F2,q
(
cosq

(
δx2); y

)
=

1
[2]qy2

∞∑
n=0

q
n(n–1)

2

(
–δ2

y4

)n

,

(iv) S2,q
(
cosq

(
δx2); y

)
=

∞∑
n=0

(–1)n qn( n–1
2 )

[2]qy4n+2 (2n > –1).
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Proof Let δ be a positive real number. Then, by the definition of F2,q and the definition of
Cosq, we write

F2,q
(
Cosq

(
δx2); y

)
=

∞∑
n=0

(–1)n

[2n]q!
δ2n

∫ ∞

0
x4n+1Eq

(
–qx2y2)dqx.

By making the change of variables z = x2y2 we derive

F2,q
(
Cosq

(
δx2); y

)
=

∞∑
n=0

(–1)n

[2n]q!
δ2n

[2]qy4n+2

∫ ∞

0
z2nEq(–qz) dqz

=
∞∑

n=0

(–1)n

[2n]q!
δΓq(2n + 1)

[2]qy4n+2 . (12)

Consequently, by employing Theorem 1, Eq. (12) turns out to be in the form of the geo-
metric series

F2,q
(
Cosq

(
δx2); y

)
=

1
[2]qy2

∞∑
n=0

(
–δ2

y4

)n

.

Therefore, the convergence condition of the geometric series shows that

F2,q
(
Cosq

(
δx2); y

)
=

y2

[2]q(y2 + δ2)
(
δ2 < y4).

The proof of Part (i) is therefore finished. The proof of the Part (ii) follows from Theorem 1,
Part (v) and a similar argument to that employed in the first part. Once again, an argument
similar to the argument we have employed for Part (i) establishes Part (iii). Finally, Part (iv)
is a straightforward result of Theorem 2. This finishes the proof of the theorem. �

A similar statement to the statement of Theorem 5 can be read as follows.

Theorem 6 Let δ be a positive real number. Then the following identities hold true:

(i) F2,q
(
Sinq

(
δx2); y

)
=

δ

[2]q(y4 + δ2)
(
δ2 < y4),

(ii) S2,q
(
Sinq

(
δx2); y

)
=

δ

[2]qy4

∞∑
n=0

(–1)nq
–n(n–1)

2
δ2n

y4n ,

(iii) F2,q
(
sinq

(
δx2); y

)
=

∞∑
n=0

(–1)nq
–n(n–1)

2
δ2n+1

[2]q
y–4n+4,

(iv) S2,q
(
sinq

(
δx2); y

)
=

∞∑
n=0

(–1)n qn

[2n + 1]q

y–4n–4

[2]q
(2n > –1).

The proof of this theorem follows from definitions and a similar argument to that we
already checked for Theorem 5. Details are therefore omitted.
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Now, by following the usual notations of [16] and the facts that

coshq x =
eq(x) + eq(–x)

2
and sinhq x =

eq(x) – eq(–x)
2

(13)

we state the following straightforward corollary.

Corollary 7 Let δ be positive real number. Then we have

(i) F2,q
(
coshq

(
δx2); y

)
=

y2

[2]q(y2 – δ2)
, (ii) F2,q

(
sinhq

(
δx2); y

)
=

δ

[2]q(y4 – δ2)
.

The proof of this corollary directly follows from Eq. (13), Theorems 5 and 6. Details are
omitted.

3 F2,q of q-differential operators
We devote this section to computations related to the F2,q integral and some differential
operators. First of all, we derive the following theorem.

Theorem 8 Let y > 0. Then we have

Dx,qEq
(
–qx2y2) = –xy2

∞∑
n=0

(–1)nq
(n+1)n

2
(
1 + qn+1)y2nx2n. (14)

Proof By Eq. (4), we write

Dx,qEq
(
–qx2y2) =

∞∑
n=1

(–1)n q
(n–1)n

2

[n]q!
[2n]qqny2nx2n–1.

But simple computations then yield

[2n]q =
1 – q2n

1 – q
=

1 – (qn)2

1 – q
= [n]q

(
1 + qn).

Hence, shifting the lower bound of the above summation implies

Dx,qEq
(
–qx2y2) =

∞∑
n=0

(–1)n+1 q
(n–1)n

2

[n]q!
(
1 + qn+1)y2n+2x2n+1

= –xy2
∞∑

n=0

(–1)nq
(n+1)n

2
(
1 + qn+1)y2nx2n.

The proof of the theorem is therefore finished. �

Theorem 9 Let �q(x) = 1
x Dx,q. Then we have

F2,q(�qϑ ; y) = –ϑ(0) +
1 + q

q2 y2F2,q

(
ϑ ;

y
q

)
.
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Proof By the q-integration by parts given by Eq. (3), we write

F2,q(�qϑ ; y) =
∫ ∞

0
Dx,qϑ(x)eq

(
–qx2y2)dqx

= –f (0) –
∫ ∞

0
ϑ(qx)DqEq

(
–qx2y2)dqx. (15)

Hence, by applying Theorem 8, Eq. (15) can be expressed as

F2,q(�qϑ ; y) = –ϑ(0) + y2
∫ ∞

0
xϑ(qx)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
(
1 + qn+1)y2xx2x dqx. (16)

Therefore, by changing the variables as qx = z (dqx = 1
q dqz), we transfer Eq. (16) into the

form

F2,q(�qϑ ; y) = –ϑ(0) + y2
∫ ∞

0
q–1zϑ(z)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
(
1 + qn+1)y2nz2nq–1 dqz

= –ϑ(0) + y2 + q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
y2nq–2n dqz

+ q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
qn+1y2nq–2nz2n dqz.

Thus, by multiplying the previous equation by q–nqn, we obtain

F2,q(�qϑ ; y) = –ϑ(0) + q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
q–3ny2nqnz2n dqz

+ q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n q
(n+1)n

2

[n]q!
qn+1q–3ny2nqnz2n dqz.

Thus, this equation can be nicely expressed as

F2,q(�qϑ ; y) = –ϑ(0) + q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n

[n]q!
q

(n–1)n
2

(
y2

q2

)n

qnz2n dqz

+ q–2y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n

[n]q!
q

(n–1)n
2 ·

(
y2

q2

)n

qnz2nq dqz.

Finally, the preceding equation can be written as

F2,q(�qϑ ; y) = –ϑ(0) + q–2y2
∫ ∞

0
zϑ(z)Eq

(
–q

(
y
q

)2n

z2n
)

dqz

+ q–1y2
∫ ∞

0
zϑ(z)Eq

(
–q

(
y
q

)2n

z2n
)

dqz

= –ϑ(0) + q–2y2L2,q

(
ϑ ;

y
q

)
+ q–1y2F2,q

(
ϑ ;

y
q

)
.

This finishes the proof of the theorem. �
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Theorem 10 Let y be a positive real number. Then we have

F2,q
(
�2

q; y
)

= –(�qϑ)(0) –
1 + q

q2 y2ϑ(0) +
(1 + q)2

(q2)2
y2

q2 y2F2,q

(
ϑ ,

y
q2

)
. (17)

Proof Let y > 0. Then, by using Theorem 9, we obtain

F2,q
(
�2

q; y
)

= –(�qϑ)(0) +
1 + q

q2 y2
(

–ϑ(0) +
1 + q

q2

(
y
q

)2

F2,q

(
ϑ ,

y
q2

))

= –(�qϑ)(0) –
1 + q

q2 y2ϑ(0) +
(

1 + q
q2

)2 y2

q2 y2F2,q

(
ϑ ;

y
q2

)
.

Hence, the proof of the theorem is finished. �

Theorem 11 Let y be a positive real number. Then we have

F2,q
(
�3

qϑ ; y
)

= –
(
�2

qϑ
)
(0) –

1 + q
q2 y2�qϑ(0) –

(1 + q)2

(q2)2
y2

q2 y2ϑ(0)

+
(1 + q)3

(q2)3
y2

q4
y2

q2 y2F2,q

(
ϑ ,

y
q3

)
.

Proof By taking into account Theorem 9 and using simple computations, we have

F2,q
(
�3

qϑ ; y
)

= F2,q
(
�q�

2
qϑ ; y

)
= –�2

qϑ(0) +
1 + q

q2 y2F2,q

(
�2ϑ ;

y
q

)
. (18)

By utilizing Theorem 10, Eq. (18) together with computations reveals

F2,q
(
�3

qϑ ; y
)

= –�2
qϑ(0) +

1 + q
q2 y

(
–

1 + q
q2

(
y
q

)2

ϑ(0) – �qϑ(0)
)

+
1 + q

q2 y
(

(1 + q)2

(q2)2
y2

q2 – q2
y2

q2 F2,q

(
ϑ ,

y
q3

))

= –
(
�2

qϑ
)
(0) –

1 + q
q2 y2�qϑ(0) –

(1 + q)2

(q2)2
y2

q2 y2ϑ(0)

+
(1 + q)3

(q2)3
y2

q4
y2

q2 y2F2,q

(
ϑ ,

y
q3

)
.

This finishes the proof of the theorem. �

Theorem 12 Let y be a positive real number. Then we have

F2,q
(
�4

qϑ ; y
)

= –�3
qϑ(0) –

1 + q
q2 y2�2

qϑ(0) –
(

1 + q
q2

)2( y
q

)2

y2�qϑ(0)

–
(

1 + q
q2

)3 y2

q4
y2

q2 .y2ϑ(0)

+
(

1 + q
q2

)4 y2

q6
y2

q4
y2

q2 y2F2,q

(
ϑ ;

y
q4

)
.
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Proof Let y > 0 be given arbitrary. Then, by employing Theorem 10, we derive that

F2,q
(
�4

qϑ ; y
)

= –�3
qϑ(0) +

1 + q
q2 y2L2,q

(
�3

qϑ ;
y
q

)

= –�3
qϑ(0) +

1 + q
q2 y2

(
–�2

qϑ(0) –
1 + q

q2

(
y
q

)2

�qϑ(0)
)

–
1 + q

q2 y2
((

1 + q
q2

)2 y2

q4
y2

q2 ϑ(0) +
(

1 + q
q2

)3 y2

q6
y2

q4
y2

q2 F2,q

(
ϑ ,

y
q4

))
.

Therefore, further simplifications on the above equation yield

F2,q
(
�4

qϑ ; y
)

= –�3
qϑ(0) –

1 + q
q2 y2�2

qϑ(0) –
(

1 + q
q2

)2( y
q

)2

y2�qϑ(0)

×
(

1 + q
q2

)3 y2

q4
y2

q2 y2ϑ(0) +
(

1 + q
q2

)4

y2 y2

q6
y2

q4
y2

q2 F2,q

(
ϑ ,

y
q4

)
.

Hence, the proof of the theorem is finished. �

By following techniques similar to the techniques already used for Theorems 10–12, we
reach the following result.

Corollary 13 Let y > 0. Then we have

F2,q
(
�n

qϑ ; y
)

= –
n–1∑
j=1

(
1 + q

q2

)n–j–1 ∏ n–j–1
k=1

y2

q2k–2 �j
qϑ(0) –

(
1 + q

q2

)n–1

×
∏

n–1
k=1

y2

q2k–2 ϑ(0) +
(

1 + q
q2

)n ∏
n
k=1

y2

q2k–2 F2,q

(
ϑ ,

y
qn

)
.

Let us now check the following differentiation formula.

Theorem 14 Let y be a positive real number. Then we have

Dx,qeq
(
–x2y2) = –y2x

∞∑
n=0

(–1)n

[n]q!
(
1 + qn+1)y2nx2n.

Proof Let y be a positive real number. Then, from the definitions, we have

Dx,qeq
(
–x2y2) =

∞∑
n=1

(–1)n [2n]q

[n]q!
y2nx2n–1.

But, as earlier, we know that

[2n]q =
1 – q2n

1 – q
=

1 – (qn)2

1 – q
= [n]q

(
1 + qn).
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Hence, invoking these results in the previous summation gives

Dx,qeq
(
–x2y2) =

∞∑
n=1

(–1)n [n]q

[n]q!
(
1 + qn)y2nx2n–1

=
∞∑

n=1

(–1)n

[n – 1]q!
(
1 + qn)y2nx2n–1

=
∞∑

n=0

(–1)n+1

[n]q!
(
1 + qn+1)y2n+2x2n+1

= –y2x
∞∑

n=0

(–1)n

[n]q!
(
1 + qn+1)y2nx2n.

This finishes the proof of the theorem. �

Theorem 15 Let �q(x) = 1
x Dx,q be given. Then we have

S2,q(�qϑ ; y) = –ϑ(0) + q–1y2S2,q

(
ϑ ;

y
q

)
+ y2S2,q

(
ϑ ;

y√q

)
.

Proof By making use of Eq. (9) and employing Eq. (3), we establish that

S2,q(�qϑ ; y) =
∫ ∞

0
Dx,qϑ(x)eq

(
–x2y2)dqx

= ϑ(x)eq
(
–x2y2)∣∣∞

0 –
∫ ∞

0
ϑ(qx)Dx,qeq

(
–x2y2)dqx.

Therefore, substituting the integral bounds in the first part suggests we have

S2,q(�qϑ ; y) = –ϑ(0) –
∫ ∞

0
ϑ(qx)Dx,qeq

(
–x2y2)dqx. (19)

Hence, by virtue of Theorem 10, Eq. (19) reveals

S2,q(�qϑ ; y) = –ϑ(0) + y2
∫ ∞

0
ϑ(qx)x

∞∑
n=0

(–1)n

[n]q!
(
1 + qn+1)y2nx2n dqx.

The change of variables qx = z yields dqx = 1
q dqz. Therefore, the above equation together

with certain technical computations implies

S2,q(�qϑ ; y) = –ϑ(0) + y2
∫ ∞

0
ϑ(z)

z
q

∞∑
n=0

(–1)n

[n]q!
(
1 + qn+1)y2n z2n

q2n
1
q

dqz

= –ϑ(0) + y2
∫ ∞

0
ϑ(z)

∞∑
n=0

(–1)n

[n]q!
(1 + qn+1)

q2(n+1) y2nz2n dqz

= –ϑ(0) + y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n

[n]q!
(
q–2n–1–n + q

)
y2nz2n dqz
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= –ϑ(0) + q–1y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n

[n]q!

(
y2

q2

)n

z2n dqz

+ y2
∫ ∞

0
zϑ(z)

∞∑
n=0

(–1)n

[n]q!

(
y2

√q2

)n

z2n dqz

= –ϑ(0) + q–1y2
∫ ∞

0
zϑ(z)eq

(
y2

q2 z2
)

dqz

+ y2
∫ ∞

0
zϑ(z)eq

(
y2

q2 z2
)

z2n dqz

= –ϑ(0) + q–1y2S2,q

(
ϑ ;

y
q

)
+ y2S2,q

(
ϑ ;

y√q

)
.

Hence, the proof of this theorem is completed. �

4 F2,q of q-convolution products
In this section we focus on giving a convolution theorem for the F2,q integral operator.
For, let us assume ϑ(t) = t2δ and θ (t) = t2γ –1, δ,γ > 0. Then the q-convolution product is
defined for ϑ and θ as (see [15, Eq. (44)])

(ϑ ∗ θ )q(t) =
∫ t

0
ϑ(x)θ (t – qx) dqx, (20)

provided the integral exists. The following is a very useful property.

Theorem 16 Let ϑ(t) = t2δ and θ (t) = t2γ –1, δ,γ > 0. Then we have

(ϑ ∗ θ )q(t) = t2δ+2γ Γq(2δ + 1)Γq(2γ )
Γq(2δ + 2γ + 1)

.

Proof By using the integral equation given by Eq. (20), we get

(ϑ ∗ θ )q(t) =
∫ t

0
x2δ(t – qx)2γ –1 dqx.

The change of variables x = tz transforms the equation into the form

(ϑ ∗ θ )q(t) =
∫ 1

0
t2+1z2δ(t – qtz)2γ –1 dqz

=
∫ 1

0
t2+1z2δt2γ –1(1 – qz)2γ –1 dqz

= t2δ+2γ

∫ 1

0
z2δ(1 – qz)2γ –1 dqz

= t2δ+2γ Bq(2δ + 1, 2γ ),

where Bq is the q-analogue of the Beta function,

Bq(δ,γ ) =
∫ 1

0
tδ(1 – qt)γ –1 dqt. (21)
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Hence, by the well-known formula Bq(δ,γ ) = Γq(δ)Γq(γ )
Γq(δ+γ ) , we get

(ϑ ∗ θ )q(t) = t2δ+2γ Γq(2δ + 1)Γq(2γ )
Γq(2δ + 2γ + 1)

.

This finishes the proof of the above result. �

Now, by the aid of Theorem 16, we establish the following convolution theorem.

Theorem 17 Let δ,γ > 0, δ + γ > – 1
2 , ϑ(x) = x2δ and θ (x) = x2γ –1. Then we have

F2,q
(
(ϑ ∗ θ )q(x); y

)
=

1
[2]q

Γq(2δ + 1)Γq(2γ )Γq(δ + γ + 1)
Γq(2δ + 2γ + 1)

y–2δ–2γ –2.

Proof Let δ,γ > 0, ϑ(x) = x2δ and θ (x) = x2γ –1 be given. Then we obtain

F2,q
(
(ϑ ∗ θ )q; y

)
=

∫ ∞

0
(ϑ ∗ θ )q(x)xEq

(
–qx2y2)dqx

=
Γq(2δ + 1)Γq(2γ )
Γq(2δ + 2γ + 1)

∫ ∞

0
x2δ+2γ xEq

(
–qx2y2)dqx.

Hence, from above, we obtain

F2,q
(
(ϑ ∗ θ )q; y

)
=

Γq(2δ + 1)Γq(2γ )
Γq(2δ + 2γ + 1)

F2,q
(
x2(δ+γ ); y

)
. (22)

Therefore, by aid of Theorem 2, we put Eq. (22) into the form

F2,q
(
(ϑ ∗ θ )q; y

)
=

Γq(2δ + 1)Γq(2γ )
Γq(2δ + 2γ + 1)

Γq(δ + γ + 1)
[2]qy2δ+2γ +2 ,

δ,γ > 0, δ + γ > – 1
2 .

This finishes the proof of the theorem. �

5 Conclusion
The q-Laplace-type integral operator was applied to certain polynomials and various func-
tions of q-trigonometric types. Such results were extended to q-hyperbolic functions and
some other q-differential operators. By using q-differentiation formulas, several deriva-
tives of the q-Laplace-type integral operator were obtained. On top of that, some related
formulas as well as a convolution theorem were also discussed in detail.
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