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Abstract
The aim of this paper is to establish the boundednes of the commutator [b, Tα ]
generated by θ -type generalized fractional integral Tα and b ∈ ˜RBMO(μ) over a
non-homogeneous metric measure space. Under the assumption that the
dominating function λ satisfies the ε-weak reverse doubling condition, the author
proves that the commutator [b, Tα ] is bounded from the Lebesgue space Lp(μ) into
the space Lq(μ) for 1

q =
1
p – α and α ∈ (0, 1), and bounded from the atomic Hardy

space˜H1
b(μ) with discrete coefficient into the space L

1
1–α ,∞(μ). Furthermore, the

boundedness of the commutator [b, Tα ] on a generalized Morrey space and a Morrey
space is also got.
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1 Introduction
The theories of the function spaces and the singular integral operators play an important
role in the fields of the harmonic analysis and PDE. In particular, during the past 20 to
25 years, many authors have paid much attention to the space of homogeneous type in
the sense of Coifman and Weiss [4, 5] and the metric measure space endowed with non-
doubling measure; for example, see [8, 15, 17, 18, 20–22] and the references therein.

However, the non-doubling measure may not satisfy the well-known doubling condition
being a key assumption on spaces of homogeneous type. To solve this problem, Hytönen
in [9] introduced a new class of metric measure spaces satisfying the so-called upper dou-
bling and the geometrically doubling conditions (see Definitions 1.1 and 1.3 below, respec-
tively). For convenience, the new metric measure space is now called a non-homogeneous
metric measure space. Since then, many papers about the different kinds of function spaces
and singular integral operators on non-homogeneous metric measure space have been
widely focused on; for example, see [2, 7, 11–14, 16, 19] and the references therein. Fur-
thermore, see the monograph [23] to find the more development on harmonic analysis in
this new context.
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Let (X , d,μ) be a non-homogeneous metric measure space in the sense of Hytönen [9].
In this setting, Lin et al. [12] proved that the commutator Tb := bT – Tb generated by
the Calderón–Zygmund operator T and the function b ∈ ˜RBMO(μ) is bounded from the
atomic Hardy space ˜H1(μ) with discrete coefficient into the space L1,∞(μ), and bounded
from Lebesgue space Lp(μ) into the space Lp(μ) for p ∈ (1,∞). Moreover, Ri and Zhang in
[16] proved that the commutators of θ -type Calderón–Zygmund operators with RBMO
functions is bounded from the L∞(μ) into the space RBMO(μ), and bounded from the
Hardy space H1(μ) into the L1(μ). In [7], Fu et al. established some equivalent character-
izations for the boundedness of the generalized fractional integrals over (X , d,μ), more-
over, the boundedness of the multilinear commutators of generalized fractional integrals
with RBMO(μ) functions on Orlicz spaces is obtained. Motivated by these results, in this
paper, we will mainly establish the boundedness of the commutator [b, Tα] generated by
θ -type generalized fractional integral Tα and b ∈ ˜RBMO(μ) on the Lebesgue space, atomic
Hardy space with discrete coefficient, Morrey space and generalized Morrey space.

Before presenting the organization of this paper, we need to recall some necessary no-
tions. The following definitions of the upper doubling and geometrically doubling condi-
tions are from [9].

Definition 1.1 ([9]) A metric measure space (X , d,μ) is said to be upper doubling, if μ is
Borel measure on X and there exist a dominating function

λ : X × (0,∞) → (0,∞)

and a positive constant Cλ depending only on λ such that, for each x ∈ X , r → λ(x, r) is
non-decreasing and, for all x ∈X and r ∈ (0,∞),

μ
(

B(x, r)
) ≤ λ(x, r) ≤ Cλλ

(

x,
r
2

)

. (1.1)

Remark 1.2 From [10], Hytönen et al. have showed that there exists another dominating
function λ̃ such that λ̃ ≤ λ, Cλ̃ ≤ Cλ and, for all x, y ∈X with d(x, y) ≤ r,

λ̃(x, r) ≤ Cλ̃λ̃(y, r). (1.2)

Thus, we always assume that the dominating function λ as in (1.1) satisfies (1.2) in this
paper.

Definition 1.3 ([9]) A metric space (X , d) is said to be geometrically doubling, if there
exists some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi, r

2 )}i of B(x, r) such that the cardinality of this covering is at most N0.

Remark 1.4 Hytönen in [9] has showed that, if a metric space (X , d) is geometrically
doubling, then, for any ε ∈ (0, 1) and ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most N0ε

–n. Here and
in what follows, N0 is as in Definition 1.3 and n := log2 N0.

We now recall the definition of the discrete coefficient ˜K (ρ)
B,S originally introduced by Bui

and Duong (see [1]), which is closer to the quantity introduced by Tolsa in [20].
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Definition 1.5 ([1]) For any ρ ∈ (1,∞) and any two balls B ⊂ S ⊂X , let

˜K (ρ)
B,S := 1 +

N (ρ)
B,S

∑

k=–�logρ 2�

μ(ρkB)
λ(cB,ρkrB)

, (1.3)

where N (ρ)
B,S represents the smallest integer satisfying ρ

N (ρ)
B,S rB ≥ rS , and cB and rB are the

center and radius of ball B, respectively.

Remark 1.6 A continuous version of the coefficient ˜K (ρ)
B,S was given in [9] and [10] as fol-

lows. That is, for any two balls B ⊂ S ⊂X , define

KB,S := 1 +
∫

(2S)\B

dμ(x)
λ(cB, d(x, cB))

. (1.4)

In general, KB,S and ˜K (ρ)
B,S are not equivalent, but, if we take (X , d,μ) = (Rd, | · |,μ) and

λ(x, r) := Crd as in (1.1), it is not difficult to find that

KB,S ∼ ˜K (ρ)
B,S (1.5)

with implicit equivalent positive constants independent of the balls B and S; see [12] for
more details. In addition, by (1.1) and a change of variables, it is easy to obtain the other
form of the ˜K (ρ)

B,S , that is,

˜K (ρ)
B,S ∼ 1 +

N (ρ)
B,S+�logρ 2�+1

∑

k=1

μ(ρkB)
λ(cB,ρkrB)

. (1.6)

Next, we recall the following definition of the fractional coefficient ˜Kα
B,S given in [7].

Definition 1.7 ([7]) Let α ∈ [0, 1). For any two balls B := B(cB, rB) ⊂ S, ˜Kα
B,S is defined by

˜Kα
B,S := 1 +

NB,S
∑

k=1

[

μ(6kB)
λ(cB, 6krB)

]1–α

where NB,S is the smallest integer satisfying 6NB,S rB ≥ rS .

Remark 1.8 If we take α ≡ 0 in Definition 1.7, then the fractional coefficient ˜Kα
B,S is just

the ˜KB,S introduced by Bui and Duong in [1]. Moreover, the reader can see [7, Lemma 3.4]
to find the other properties of the coefficient ˜KB,S .

Although the measure doubling condition is not assumed uniformly for all balls on
(X , d,μ), Hytönen has showed that there are many balls having (η,β)-doubling property.
Namely, for η,β > 1, a ball B ⊂ X is said to be (η,β)-doubling if μ(ηB) ≤ βμ(B). Mean-
while, Hytönen [9] proved that if a metric measure space (X , d,μ) is upper doubling and
β > Clog2 η

λ =: ην , then, for each ball B ⊂X , there exists some j ∈ Z+ such that ηjB is (η,β)-
doubling. Moreover, let (X , d) be a geometrically doubling, β > ηn with n := log2 N0 and μ
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Borel measure onX being finite on bounded sets. Hytönen also showed that there exist ar-
bitrarily small (η,β)-doubling balls centered at x for μ-a.e x ∈X . Furthermore, the radius
of there balls may be chosen to be of the form η–jr for j ∈ N and any preassigned num-
ber r ∈ (0,∞). Throughout this paper, for any η ∈ (1,∞) and ball B, the smallest (η,βη)-
doubling ball of the form ηjB with j ∈ Z+ is denoted by B̃η , where

βη := max
{

η3n,η3ν
}

+ 30n + 30ν . (1.7)

In this paper, if there is no special explanation, we always set η = 6 and simply denote ˜B6

by ˜B.
The definition of θ -type generalized fractional integral is as follows.

Definition 1.9 Let α ∈ (0, 1), and θ be a non-negative and non-decreasing function on
(0,∞) satisfying the condition

∫ 1

0

θ (t)
t

dt < ∞. (1.8)

A kernel Kα(·, ·) ∈ L1
loc(X × X \ {(x, x) : x ∈ X }) is called a θ -type generalized fractional

integral kernel if there exists a constant CKα > 0 only depending on Kα , such that

∣

∣Kα(x, y)
∣

∣ ≤ CKα

[λ(x, d(x, y))]1–α
(1.9)

for all x, y ∈X with x �= y, and for all x, x′, y ∈X ,

∣

∣Kα(x, y) – Kα

(

x′, y
)∣

∣ +
∣

∣Kα(y, x) – Kα

(

y′, x
)∣

∣

≤ CKα θ

(

d(x, x)
d(x, y)

)

1
[λ(x, d(x, y))]1–α

, (1.10)

provided cKα d(x, x′) ≤ d(x, y) with cKα ∈ (0,∞).

Moreover, if we take θ (t) = tδ with δ ∈ (0, 1] in (1.10), then the θ -type generalized frac-
tional integral kernel is just the generalized fractional integral (see [7]).

Let L∞
b (μ) be the space of all L∞(μ) functions with bounded support. A linear operator

Tα is called a θ -type generalized fractional integral with kernel Kα satisfying (1.9) and
(1.10) if, for all f ∈ L∞

b (μ) and x /∈ supp(f ),

Tαf (x) :=
∫

X
Kα(x, y)f (y) dμ(y). (1.11)

We now recall the notation of the space ˜RBMO(μ) given in [6].

Definition 1.10 ([6]) Let ρ ∈ (1,∞) and γ ∈ [1,∞). A function f ∈ L1
loc(μ) is said to be

in the space ˜RBMOρ,γ (μ) if there exist a positive constant C and, for any ball B ⊂ X , a
number fB such that

1
μ(ρB)

∫

B

∣

∣f (x) – fB
∣

∣dμ(x) ≤ C (1.12)
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and, for any two balls B and S such that B ⊂ S,

|fB – fS| ≤ C
[

˜K (ρ)
B,S

]γ . (1.13)

The infimum of the positive constant C satisfying both (1.12) and (1.13) is defined to be
the ˜RBMOρ,γ (μ) norm of f and denoted by ‖f ‖

˜RBMOρ,γ (μ).

From [6], Fu et al. have showed that the space ˜RBMOρ,γ (μ) is independent of the choices
of ρ ∈ (1,∞) and γ ∈ [1,∞). Thus, the space ˜RBMOρ,γ (μ) is simply denoted by ˜RBMO(μ).
Moreover, we can see [13, Remark 2.14] to find more properties of the space ˜RBMO(μ).

Given a function b ∈ ˜RBMO(μ), the commutator [b, Tα] associated with the θ -type gen-
eralized fractional integral Tα is, respectively, defined by

[b, Tα]f (x) =
∫

X
Kα(x, y)

[

b(x) – b(y)
]

f (y) dμ(y). (1.14)

The following notion of the ε-weak reverse doubling condition is from [7]; also see [13].

Definition 1.11 ([7]) Let ε ∈ (0,∞). A dominating function λ is said to satisfy the ε-weak
reverse doubling condition if, for all r ∈ (0, 2 diam(X )) and a ∈ (1, 2 diam(X )/r), there exists
a number C(a) ∈ [1,∞), depending only on a and X , such that, for all x ∈X ,

λ(x, ar) ≥ C(a)λ(x, r) (1.15)

and, moreover,

∞
∑

k=1

1
[C(ak)]ε

< ∞. (1.16)

The organization of this paper is as follows. In Sect. 2, we mainly recall some nec-
essary lemmas being used in the proof of the main theorems. In Sect. 3, we will prove
that the commutator [b, Tα] generated by the θ -type fractional integral operator Tα and
b ∈ ˜RBMO(μ) is bounded from the Lebesgue space Lp(μ) into the space Lq(μ), where
1
q = 1

p – α with α ∈ (0, 1) and p ∈ (1, 1
α

). In Sect. 4, via decomposition of the atomic, the
boundedness of the commutator [b, Tα] from the atomic Hardy space ˜H1

b (μ) with dis-
crete coefficient into the space L 1

1–α ,∞(μ) is obtained. The boundedness of the commu-
tator [b, Tα] on the Morrey space and the generalized Morrey space is also presented in
Sects. 5 and 6, respectively.

Finally, we make some conventions on notation. Throughout the paper, C represents
for a positive constant that is independent of the main parameters involved, but may be
different from line to line. For a μ-measurable set E, χE denotes its characteristic function.
For any p ∈ [1,∞], we denote by p′ its conjugate index, that is, 1

p + 1
p′ = 1. In addition, for

any f ∈ L1
loc(μ) and any measurable set E of X , mB(f ) represents the mean value of the

function f over ball B, namely, mB(f ) := 1
μ(B)

∫

B f (x) dμ(x).
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2 Preliminaries
In this section, we will recall some necessary lemmas which is used in the proof of the main
theorems in this paper. We first need to recall some properties of the discrete coefficient
˜K (ρ)

B,S (see [12]).

Lemma 2.1 ([13]) Let (X , d,μ) be a non-homogeneous metric measure space.
(1) For any ρ ∈ (1,∞), there exists a positive constant C(ρ), depending on ρ , such that,

for any balls B ⊂ R ⊂ S, ˜K (ρ)
B,R ≤ C(ρ)˜K (ρ)

B,S .
(2) For any α ∈ [1,∞) and ρ ∈ (1,∞), there exists a positive constant C(α,ρ), depending

on α and ρ , such that, for all balls B ⊂ S with rS ≤ αrB, ˜K (ρ)
B,S ≤ C(α,ρ).

(3) For any ρ ∈ (1,∞), there exists a constant C(ρ,ν) > 0, depending on ρ and ν , such that,
for all balls B, ˜K (ρ)

B,˜Bρ ≤ C(ρ,ν). Moreover, letting α,β ∈ (1,∞), B ⊂ S be any two
concentric balls such that there exists no (α,β)-doubling ball in the form of αkB with
k ∈N, satisfying B ⊂ αkB ⊂ S, then there exists a positive constant C(α,β ,ν), depending
on α, β and ν , such that ˜K (ρ)

B,S ≤ C(α,β ,ν).
(4) For any ρ ∈ (1,∞), there exists a constant c(ρ,ν) > 0, depending on ρ and ν , such that,

for all balls B ⊂ R ⊂ S,

˜K (ρ)
B,S ≤ ˜K (ρ)

B,R + c(ρ,ν)˜K (ρ)
R,S .

(5) For any ρ ∈ (1,∞), there exists a positive constant c̃(ρ,ν), depending on ρ and ν , such
that, for all balls B ⊂ R ⊂ S, ˜K (ρ)

R,S ≤ c̃(ρ,ν)˜K (ρ)
B,S .

We now recall the following characterizations of the space ˜RBMO(μ) given in [12].

Lemma 2.2 ([13]) Let τ ,ρ ∈ (1,∞), and βρ be as in (1.7). For f ∈ L1
loc(μ), the following

statements are mutually equivalent:
(1) f ∈ ˜RBMO(μ);
(2) there exists a positive constant C such that, for all balls B,

1
μ(τB)

∫

B

∣

∣f (x) – m
˜Bρ (f )

∣

∣dμ(x) ≤ C (2.1)

and, for all (ρ,βρ)-doubling balls B ⊂ S,

∣

∣mB(f ) – mS(f )
∣

∣ ≤ C˜K (ρ)
B,S . (2.2)

Moreover, the infimum of the above constant C in (2) is equivalent to ‖f ‖
˜RBMO(μ).

The following conclusion is from [13, Corollary 2.17].

Corollary 2.3 ([13]) For any ρ ∈ (1,∞) and p ∈ [1,∞), there exists a positive constant C,
such that, for all f ∈ ˜RBMO(μ) and ball B,

(

1
μ(ρB)

∫

B

∣

∣f (x) – fB
∣

∣

p dμ(x)
) 1

p
≤ C‖f ‖

˜RBMO(μ). (2.3)

Also, we need to recall some results given in [1].
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Lemma 2.4 ([1]) Let (X , d,μ) be a metric measure space of non-homogeneous type.
(1) Let p ∈ (1,∞), r ∈ (1, p) and ζ ∈ [5,∞). The following maximal operators defined,

respectively, by setting, for all f ∈ L1
loc(μ) and x ∈X ,

Mr,ζ f (x) := sup
B�x

(

1
μ(ζB)

∫

B

∣

∣f (y)
∣

∣

r dμ(y)
) 1

r
,

Nf (x) := sup
B�x,B doubling

1
μ(B)

∫

B

∣

∣f (y)
∣

∣dμ(y),
(2.4)

and

M(ζ )f (x) := sup
B�x

1
μ(ζB)

∫

B

∣

∣f (y)
∣

∣dμ(y),

are bounded on Lp(μ) and also bounded from L1(μ) into L1,∞(μ).
(2) For all f ∈ L1

loc(μ), it holds true that |f (x)| ≤ Nf (x) for μ-almost every x ∈X .

Next, we recall the following lemma from [7].

Lemma 2.5 ([7]) Let α ∈ (0, 1), s ∈ (1, 1
α

), ζ ∈ [5,∞), p ∈ (s, 1
α

) and 1
q = 1

p – α. Then there
exists a positive constant C such that, for all f ∈ Lp(μ),

∥

∥M(α)
s,ζ f

∥

∥

Lq(μ) ≤ C‖f ‖Lp(μ),

where

M(α)
s,ζ f (x) := sup

B�x

{

1
[μ(ζB)]1–αs

∫

B

∣

∣f (y)
∣

∣

s dμ(y)
} 1

s
(2.5)

and the supremum is taken over all balls B � x.

Let α ∈ (0, 1). For all f ∈ L1
loc(μ) and x ∈ X , the sharp maximal function M�,α of f is

defined by

˜M�,αf (x) := sup
B�x

1
μ(6B)

∫

B

∣

∣f (y) – m
˜B(f )

∣

∣dμ(y) + sup
x∈�x

|mB(f ) – mS(f )|
˜Kα

B,S
. (2.6)

where �x := {(B, S) : x ∈ B ⊂ S and B, S are doubling balls}.
We now recall the following lemma from [7].

Lemma 2.6 ([7]) Let f ∈ L1
loc(μ) satisfying that

∫

X f (x) dμ(x) = 0 when ‖μ‖ := μ(X ) < ∞.
Assume that, for some p ∈ (1,∞), inf{1, Nf } ∈ Lp(μ). Then there exists a constant C > 0,
independent of f , such that ‖Nf ‖Lp(μ) ≤ C‖M�,α f ‖Lp(μ).

Finally, we recall the following lemmas given in [7].

Lemma 2.7 ([7]) For any α ∈ [0, 1), there exists some positive constant Pα (big enough),
depending only on Cλ as in (1.1) and α, such that, if m ∈ N, B1 ⊂ B2 ⊂ · · · ⊂ Bm are con-
centric balls with ˜Kα

Bi ,Bi+1
> Pα for i ∈ {1, 2, . . . , m – 1}, then there exists a positive constant

C, depending only on Cλ and α, such that
∑m–1

i=1
˜Kα

Bi ,Bi+1
≤ C˜Kα

B1,Bm .
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Lemma 2.8 ([7]) For any α ∈ [0, 1), there exists some positive constant ˜Pα (large enough),
depending on Cλ, β6 as in (1.7) with η = 6 and α, such that, if x ∈X is some fixed point and
{fB}b�x is a collection of numbers such that |fB – fS| ≤ ˜Kα

B,SCx for all doubling balls B ⊂ S
with x ∈ B satisfying ˜Kα

B,S ≤ ˜Pα , then there exists a positive constant C, depending on Cλ,
β6, α and ˜Pα , such that |fB – fS| ≤ C˜Kα

B,SCx for all doubling balls B ⊂ S with x ∈ B, where Cx

is a positive constant, depending on x, and C a positive constant depending only on Cλ, β6

and α.

3 Boundedness of [b, Tα] on Lebesgue space
In this section, we will establish the boundedness of the commutator [b, Tα] generated
by the θ -type generalized fractional integral Tα and the space ˜RBMO(μ) on the Lebesgue
space Lp(μ) for p ∈ (1,∞). Moreover, the endpoint boundedness of the commutator [b, Tα]
is also obtained.

We now state the main theorems of this section as follows.

Theorem 3.1 Let b ∈ ˜RBMO(μ), α ∈ (0, 1), p ∈ (1, 1
α

) with 1
q = 1

p – α, and Kα satisfy (1.9)
and (1.10). Suppose that Tα is as in (1.11). Then there exists a constant C > 0, such that,
for all f ∈ Lp(μ),

∥

∥[b, Tα](f )
∥

∥

Lq(μ) ≤ C‖b‖
˜RBMO(μ)‖f ‖Lp(μ).

To prove the main theorem, we need to establish the following lemma about the θ -type
generalized fractional integral Tα .

Lemma 3.2 Let α ∈ (0, 1), p ∈ (1, 1
α

) with 1
q = 1

p – α, and Kα satisfy (1.9). Then there exists
a positive constant C, such that, for all f ∈ Lp(μ),

∥

∥Tα(f )
∥

∥

Lq(μ) ≤ C‖f ‖Lp(μ).

Proof For any x ∈X , by applying (1.9) and (1.11), we can get

∣

∣Tαf (x)
∣

∣ ≤
∫

X

∣

∣Kα(x, y)
∣

∣

∣

∣f (y)
∣

∣dμ(y)

≤ C
∫

X

|f (y)|
[λ(x, d(x, y))]1–α

dμ(y)

≤ CIα
(|f |)(x),

where Iα represents the fractional integral operator defined by

Iαf (x) :=
∫

X

f (y)
[λ(x, d(x, y))]1–α

dμ(y), x ∈X .

Furthermore, by the (Lp(μ), Lq(μ))-boundedness of Iα (see [7]), it is difficult to obtain

‖Tαf ‖Lq(μ) ≤ C‖f ‖Lp(μ).

Hence, the proof of Lemma 3.2 is completed. �
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Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1 In a slightly modified way similar to that used in the proof of The-
orem 3.10 in [7], it is not difficult to prove that the case μ(X ) = ∞ holds. Thus, without
loss of generality, we may assume μ(X ) = ∞. Assume that p ∈ (1, 1

α
). First, we claim that,

for all r ∈ (1,∞) and f ∈ Lp(μ),

˜M�,α(

[b, Tα]f
)

(x) ≤ C‖b‖
˜RBMO(μ)

{

M(α)
r,5 f (x) + Mr,6(Tαf )(x) + Tα

(|f |)(x)
}

. (3.1)

Once (3.1) is obtained, taking 1 < r < p < 1
α

, by applying Lemmas 2.4, 2.5 and 2.6, we can
deduce that

∥

∥[b, Tα]f
∥

∥

Lq(μ) ≤ ∥

∥N
(

[b, Tα]f
)∥

∥

Lq(μ) ≤ C
∥

∥˜M�,α(

[b, Tα]f
)∥

∥

Lq(μ)

≤ C‖b‖
˜RBMO(μ)

{∥

∥M(α)
r,5 f

∥

∥

Lq(μ) +
∥

∥Mr,6(Tαf )
∥

∥

Lq(μ) +
∥

∥Tα

(|f |)∥∥Lq(μ)

}

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp(μ),

which is the desired consequence.
Thus, we need to show (3.1). By the definition of the sharp maximal operator ˜M�,α in

(2.6), we should show that, for all x and balls B with B � x,

1
μ(6B)

∫

B

∣

∣[b, Tα]f (y) – hB
∣

∣dμ(y) ≤ C‖b‖
˜RBMO(μ)

{

M(α)
r,5 f (x) + Mr,6(Tαf )(x)

}

. (3.2)

and, for all balls B, S and B � x,

|hB – hS| ≤ C‖b‖
˜RBMO(μ)

{

M(α)
r,5 f (x) + Tα

(|f |)(x)
}

˜K (ρ)
B,S

˜Kα
B,S, (3.3)

where

hB := mB
(

Tα

([

b – mB(b)
]

f χX \ 6
5 B

))

and

hS := mS
(

Tα

([

b – mS(b)
]

f χX \ 6
5 S

))

.

With a slightly modified argument similar to that used in the estimates (3.6), (3.7) and
(3.8) in [7, Theorem 3.9], it is not difficult to see that (3.2) holds, too. However, to estimate
(3.2), we still need to estimate the difference |Tα([b – bB]f2) – hB| with f2 = f χX \ 6

5 B. So, for
any y1, y2 ∈ B, write

∣

∣Tα

(

[b – bB]f2
)

(y1) – Tα

(

[b – bB]f2
)

(y2)
∣

∣

≤
∫

X \ 6
5 B

∣

∣Kα(y1, z) – Kα(y2, z)
∣

∣

∣

∣b(z) – bB
∣

∣

∣

∣f (z)
∣

∣dμ(z)

≤
∫

X \6B

∣

∣Kα(y1, z) – Kα(y2, z)
∣

∣

∣

∣b(z) – bB
∣

∣

∣

∣f (z)
∣

∣dμ(z)
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+
∫

6B\ 6
5 B

∣

∣Kα(y1, z) – Kα(y2, z)
∣

∣

∣

∣b(z) – bB
∣

∣

∣

∣f (z)
∣

∣dμ(z)

=: A1 + A2.

With an argument similar to that used in the estimate for I1 in [7, Theorem 3.9], it is not
difficult to get

A1 ≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x).

Hence, we only need to estimate A2. For any y1, y2 ∈ B, by applying (1.8), (1.9), (1.16), the
Hölder inequality and (2.3), we have

A2 ≤ C
∫

X \6B
θ

(

d(y1, y2)
d(y1, z)

) |b(z) – bB||f (z)|
[λ(y1, d(y1, z))]1–α

dμ(z)

≤ C
∞

∑

k=1

∫

6k+1B\6k B
θ

(

rB

d(cB, z)

) |b(z) – bB||f (z)|
[λ(cB, d(cB, z))]1–α

dμ(z)

≤ C
∞

∑

k=1

θ

(

rB

6krB

)

1
[λ(cB, 6k+1rB)]1–α

∫

6k+1B

∣

∣b(z) – bB
∣

∣

∣

∣f (z)
∣

∣dμ(z)

≤ C
∞

∑

k=1

θ

(

rB

6krB

)

1
[λ(cB, 6k+1rB)]1–α

(∫

6k+1B

∣

∣b(z) – b6k+1B
∣

∣

∣

∣f (z)
∣

∣dμ(z)

+ |b6k+1B – bB|
∫

6k+1B

∣

∣f (z)
∣

∣dμ(z)
)

≤ C
∞

∑

k=1

θ

(

rB

6krB

)

1
[λ(cB, 6k+1rB)]1–α

[(∫

6k+1B

∣

∣f (z)
∣

∣

r dμ(z)
) 1

r

×
(∫

6k+1B

∣

∣b(z) – b6k+1B
∣

∣

r′ dμ(z)
) 1

r′
+ k‖b‖

˜RBMO(μ)

[

μ
(

6k+1B
)]1– 1

r

×
(∫

6k+1B

∣

∣f (z)
∣

∣

r dμ(z)
) 1

r
]

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x)

∞
∑

k=1

θ

(

rB

6krB

)

(k + 1)
[λ(cB, 6k+1rB)]1–α

[

μ
(

5 × 6k+1B
)]1–α

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x)

∞
∑

k=1

kθ

(

1
6k

)

[μ(5 × 6k+1B)]1–α

[C(6k+1)]1–α[λ(cB, rB)]1–α

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x)

∞
∑

k=1

θ

(

1
6k

)

kC(1–α)k
λ

[C(6k+1)]1–α

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x),

where we have used the fact that

∣

∣mB(b) – m6k+1B(b)
∣

∣ ≤ Ck‖b‖
˜RBMO(μ).
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Further, combining the estimates for A1 and A2, we conclude that

1
μ(6B)

∫

B

∣

∣[b, Tα]f (y) – hB
∣

∣dμ(y) ≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x).

This, together with (3.6), (3.7) and (3.8) in [7, Theorem 3.9], implies (3.2).
Now we turn to showing (3.3). For any two balls B ⊂ S with B � x, let

N = N (6)
B,S + �logρ 2� + 2.

Write

|hB – hS| =
∣

∣mB
(

Tα

([

b – mB(b)
]

f χX \ 6
5 B

))

– mS
(

Tα

([

b – mS(b)
]

f χX \ 6
5 S

))∣

∣

≤ ∣

∣mB
(

Tα

([

b – mB(b)
]

f χ6B\ 6
5 B

))∣

∣ +
∣

∣mB
(

Tα

([

mB(b) – mS(b)
]

f χX \6B
))∣

∣

+
∣

∣mB
(

Tα

([

b – mS(b)
]

f χ6N B\6B
))∣

∣ +
∣

∣mS
(

Tα

([

b – mS(b)
]

f χ6N B\ 6
5 S

))∣

∣

+
∣

∣mB
(

Tα

([

b – mS(b)
]

f χX \6N B
))

– mS
(

Tα

([

b – mS(b)
]

f χX \6N B
))∣

∣

=: D1 + D2 + D3 + D4 + D5.

Following the proof of [3, Theorem 1] and [1, Theorem 7.6], it is not difficult to get

D1 + D4 ≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 f (x),

D5 ≤ C
[

˜K (6)
B,S

]2‖b‖
˜RBMO(μ)M

(α)
r,5 f (x),

and

D2 ≤ C˜K (6)
B,S‖b‖

˜RBMO(μ)

[

Tα

(|f |)(x) + M(α)
r,5 f (x)

]

.

Finally, we turn to the estimate of D3. For any z ∈ B, by applying (1.9), Definition 1.7, the
Hölder inequality, (2.3) and (2.5), we can conclude that

∣

∣Tα

([

b – mS(b)
]

f χ6N B\6B
)

(z)
∣

∣

≤ C
∫

6N B\6B

|f (y)|
[λ(z, d(z, y))]1–α

∣

∣b(y) – mS(b)
∣

∣dμ(y)

≤ C
N–1
∑

k=1

∫

6k+1B\(6kB)

|f (y)|
[λ(z, d(z, y))]1–α

∣

∣b(y) – mS(b)
∣

∣dμ(y)

≤ C
N–1
∑

k=1

1
[λ(cB, 6krB)]1–α

∫

6k+1B

∣

∣f (y)
∣

∣

∣

∣b(y) – mS(b)
∣

∣dμ(y)

≤ C
N–1
∑

k=1

1
[λ(cB, 6krB)]1–α

{∫

6k+1B

∣

∣f (y)
∣

∣

∣

∣b(y) – m6k+1B(b)
∣

∣dμ(y)

+
∣

∣m6k+1B(b) – mS(b)
∣

∣

∫

6k+1B

∣

∣f (y)
∣

∣dμ(y)
}
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≤ C
N–1
∑

k=1

1
[λ(cB, 6krB)]1–α

{(∫

6k+1B

∣

∣f (y)
∣

∣

r dμ(y)
) 1

r

×
(∫

6k+1B

∣

∣b(y) – m6k+1B(b)
∣

∣

r′ dμ(y)
) 1

r′

+
∣

∣m6k+1B(b) – mS(b)
∣

∣

[

μ
(

6k+1B
)]1– 1

r

(∫

6k+1B

∣

∣f (y)
∣

∣

r dμ(y)
) 1

r
}

≤ C
N–1
∑

k=1

1
[λ(cB, 6krB)]1–α

{(

1
[μ(5 × 6k+1B)]1–αr

∫

6k+1B

∣

∣f (y)
∣

∣

r dμ(y)
) 1

r

×
(

1
μ(5 × 6k+1B)

∫

6k+1B

∣

∣b(y) – m6k+1B(b)
∣

∣

r′ dμ(y)
) 1

r′ [
μ

(

5 × 6k+1B
)]1–α

+
∣

∣m6k+1B(b) – mS(b)
∣

∣

(

1
[μ(5 × 6k+1B)]1–αr

∫

6k+1B

∣

∣f (y)
∣

∣

r dμ(y)
) 1

r

× [

μ
(

5 × 6k+1)] 1
r –α[

μ
(

6k+1B
)]1– 1

r

}

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 (f )(x)

N–1
∑

k=1

[

6k+1B
λ(cB, 6krB)

]1–α

˜K (ρ)
B,S

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 (f )(x)˜K (ρ)

B,S
˜Kα

B,S.

Further, by applying the definition of mB(f ), we get

D3 =
∣

∣

∣

∣

1
μ(B)

∫

B
Tα

([

b – mS(b)
]

f χ6N B\6B
)

(z) dμ(z)
∣

∣

∣

∣

≤ 1
μ(B)

∫

B

∣

∣Tα

([

b – mS(b)
]

f χ6N B\6B
)

(z)
∣

∣dμ(z)

≤ C‖b‖
˜RBMO(μ)M

(α)
r,5 (f )(x)˜K (ρ)

B,S
˜Kα

B,S.

Thus, combining the estimates D1, D4 and D5, we complete the estimate for (3.3).
If B is a doubling ball and x ∈ B, by (3.2), we have

∣

∣mB
(

[b, Tα]f
)

– hB
∣

∣ ≤ C‖b‖
˜RBMO(μ)

[

M(α)
r,5 f (x) + Mr,6(Tαf )(x)

]

. (3.4)

For any ball B with x ∈ B, ˜K (ρ)
B,˜B ≤ C and ˜Kα

B,˜B ≤ C, by (3.2), (3.3) and (3.4), we can get

1
μ(6B)

∫

B

∣

∣[b, Tα]f (y) – m
˜B
(

[b, Tα]f
)∣

∣dμ(y)

≤ 1
μ(6B)

∫

B

∣

∣[b, Tα]f (y) – hB
∣

∣dμ(y) + |hB – h
˜B| +

∣

∣h
˜B – m

˜B
(

[b, Tα]f
)∣

∣

≤ C‖b‖
˜RBMO(μ)

{

M(α)
r,5 f (x) + Mr,6(Tαf )(x) + Tα

(|f |)(x)
}

. (3.5)

Similar to (3.3), for all doubling balls B ⊂ S with x ∈ B such that ˜Kα
B,S ≤˜Pα , we have

|hB – hS| ≤ C˜K (ρ)
B,S‖b‖

˜RBMO(μ)

[

M(α)
r,5 f (x) + Tα

(|f |)(x)
]

˜Pα .
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Thus, by applying Lemma 2.8, we know that, for all doubling B ⊂ S with x ∈ B,

|hB – hS| ≤ C˜Kα
B,S‖b‖

˜RBMO(μ)

[

M(α)
r,5 f (x) + Tα

(|f |)(x)
]

and, using (3.4), we can get

∣

∣mB
(

[b, Tα]f
)

– mS
(

[b, Tα]f
)∣

∣

≤ ∣

∣mB
(

[b, Tα]f
)

– hB
∣

∣ + |hB – hS| +
∣

∣hS – mS
(

[b, Tα]f
)∣

∣

≤ C˜Kα
B,S‖b‖

˜RBMO(μ)

{

M(α)
r,5 f (x) + Mr,6(Tαf )(x) + Tα

(|f |)(x)
}

.

Combining (3.5) and the above inequality, we can get (3.1). Hence, the proof of Theo-
rem 3.1 is completed. �

4 Boundedness of [b, Tα] on Hardy space with discrete coefficient
As is well known, the dual space of atomic Hardy space ˜H1,q,γ

atb,ρ (μ), which was introduced
by Fu et al. [6], is the space ˜RBMO(μ) associated with the discrete coefficient ˜K (ρ)

B,S . But,in
this section, we will consider the boundedness of the commutator [b, Tα] on the atomic
Hardy space ˜H1,q,γ

atb,b,ρ(μ) which is the subspace of the ˜H1,q,γ
atb,ρ (μ). First, we give the definition

of the atomic Hardy space ˜H1,q,γ
atb,b,ρ(μ) being slightly modified in [15] and [6].

Definition 4.1 Let ρ ∈ (1,∞), q ∈ (1,∞] and γ ∈ [1,∞). Suppose that b ∈ ˜RBMO(μ).
A function h ∈ L1(μ) is called a (b, q,γ ,ρ)λ-atomic block if

(1) there exists a ball B such that supp(h) ⊂ B;
(2)

∫

X h(x) dμ(x) = 0, and
∫

X b(x)h(x) dμ(x) = 0;
(3) for any i ∈ {1, 2}, there exist a function ai supported on a ball Bi ⊂ B and a number

κi ∈C such that h = κ1a1 + κ2a2 and

‖ai‖Lq(μ) ≤ [

μ(ρBi)
] 1

q –1[
˜K (ρ)

Bi ,B
]–γ . (4.1)

Moreover, let

|h|
˜H1,q,γ

atb,b,ρ (μ) := |κ1| + |κ2|.

A function f ∈ L1(μ) is said to belong to the atomic Hardy space ˜H1,q,γ
atb,b,ρ(μ) if there exist

(b, q,γ ,ρ)λ-atomic blocks {hi}∞i=1 such that f =
∑∞

i=1 hi in L1(μ) and

∞
∑

i=1

|hi|
˜H1,q,γ

atb,b,ρ (μ) < ∞.

The ˜H1,q,γ
atb,b,ρ(μ) norm of f is defined by

‖f ‖
˜H1,q,γ

atb,b,ρ (μ) := inf
{

∞
∑

i=1

|hi|
˜H1,q,γ

atb,b,ρ (μ)

}

,

where the infimum is taken over all the possible decompositions of f as above.
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With an argument similar to that used in [6], it is not difficult to show that, for any
q ∈ (1,∞], the atomic Hardy space ˜H1,q,γ

atb,b,ρ(μ) is independent of the choices of ρ and γ

and that, for all q ∈ (1,∞), the spaces ˜H1,q,γ
atb,b,ρ(μ) and ˜H1,∞,γ

atb,b,ρ(μ) coincide with equivalent
norms. Thus, in this section, we denote the space ˜H1,q,γ

atb,b,ρ(μ) by ˜H1
b (μ).

The main theorems of this section are stated as follows.

Theorem 4.2 Let b ∈ ˜RBMO(μ), α ∈ (0, 1) and Tα be as in (1.11) with kernel Kα satisfying
(1.9) and (1.10). Suppose that Tα is bounded on L2(μ). Then there exists a positive constant
C such that, for all f ∈ ˜H1

b (μ),

∥

∥[b, Tα]f
∥

∥

L
1

1–α (μ)
≤ C‖b‖

˜RBMO(μ)‖f ‖
˜H1

b (μ).

Now we give the proof of Theorem 4.2.

Proof of Theorem 4.2. Without loss of generality, we may assume that ρ = 6 as in (4.1)
and q0 := 1

1–α
for α ∈ (0, 1). For any function f ∈ ˜H1

b (μ), by Definition 4.1, we can get a
decomposition

f (x) =
∞

∑

i=1

hi(x),

where hi is an (∞, 2, 2)-atomic block, supp(hi) ⊂ Si and

∞
∑

i=1

|hi|
˜H1,∞,2

atb,6 (μ) ≤ 2‖f ‖
˜H1

b (μ).

Moreover, for each fixed i, we can further decompose the atomic block hi as

hi := κi,1ai,1 + κi,2ai,2, (4.2)

where, for any j ∈ {1, 2}, κi,j ∈C, ai,j is a bounded function supported on some ball Bi,j ⊂ Si

satisfying

‖ai,j‖L∞(μ) ≤ {

μ(2Bi,j)
[

˜K (2)
Bi,j ,Si

]2}–1, (4.3)

and |hi|
˜H1,∞,2

atb,b,2(μ) = |κi,1| + |κi,2|. Write

∫

X

∣

∣[b, Tα]f (x)
∣

∣

q dμ(x)

≤ C
∞

∑

i=1

∫

X

∣

∣[b, Tα]hi(x)
∣

∣

q dμ(x)

≤ C
∞

∑

i=1

∫

2Si

∣

∣[b, Tα]hi(x)
∣

∣

q dμ(x) + C
∞

∑

i=1

∫

X \2Si

∣

∣[b, Tα]hi(x)
∣

∣

q dμ(x)

=: C
∞

∑

i=1

(

F1
i + F2

i
)

.
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For F1
i , by applying (4.2), write

F1
i ≤

2
∑

j=1

|κi,j|q
∫

2Si

∣

∣[b, Tα]ai,j(x)
∣

∣

q dμ(x)

≤ C
2

∑

j=1

|κi,j|q
∫

2Bi,j

∣

∣[b, Tα]ai,j(x)
∣

∣

q dμ(x)

+ C
2

∑

j=1

|κi,j|q
∫

2Si\(2Bi,j)

∣

∣[b, Tα]ai,j(x)
∣

∣

q dμ(x)

= : F1,1
i + F1,2

i .

Choosing suitable p1, q1, such that 1 < p1 < 1
α

, 1 < q < q1 and 1
q1

= 1
p1

– α. Applying the
Hölder inequality, ˜K (2)

Bi,j ,Si
≥ 1 and Theorem 3.1, we can deduce that

F1,1
i ≤ C

2
∑

j=1

|κi,j|q
(∫

2Bi,j

∣

∣[b, Tα]ai,j(x)
∣

∣

q× q1
q dμ(x)

)
q

q1 [

μ(2Bi,j)
]1– q

q1

≤ C
2

∑

j=1

|κi,j|q
(∫

2Bi,j

∣

∣[b, Tα]ai,j(x)
∣

∣

q1 dμ(x)
)

q
q1 [

μ(2Bi,j)
]1– q

q1

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q‖ai,j‖q
Lp1 (μ)

[

μ(2Bi,j)
]1– q

q1
)

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

[

μ(2Bi,j)
]

q
p1

[

μ(2Bi,j)
]1– q

q1
)

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

[

μ(2Bi,j)
]1+ q

p1
– q

q1
)

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

[

μ(2Bi,j)
]1+αq

)

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q
)

.

Denote N1 := N2Bi,j ,2Si . For F1,2
i , by (1.1), (1.9), the Minkowski inequality, (2.3) and the

fact that ‖ai,j‖L∞(μ) ≤ [μ(2Bi,j)]–1[˜K (2)
Bi,j ,Si

]–2, we can deduce that

F1,2
i ≤ C

2
∑

j=1

|κi,j|
∫

2Si\(2Bi,j)

∣

∣

∣

∣

∫

Bi,j

Kα(x, y)
(

b(x) – b(y)
)

ai,j(y) dμ(y)
∣

∣

∣

∣

q

dμ(x)

≤ C
2

∑

j=1

|κi,j|q
∫

2Si\(2Bi,j)

(∫

Bi,j

|b(x) – b(y)||ai,j(y)|
λ(x, d(x, y))

dμ(y)
)q

dμ(x)

≤ C
2

∑

j=1

|κi,j|q
∫

2Si\(2Bi,j)

(∫

Bi,j

|b(x) – mBi,j (b)||ai,j(y)|
[λ(x, d(x, y))]1–α

dμ(y)
)q

dμ(x)
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+ C
2

∑

j=1

|κi,j|q
∫

2Si\(2Bi,j)

(∫

Bi,j

|b(y) – mBi,j (b)||ai,j(y)|
[λ(x, d(x, y))]1–α

dμ(y)
)q

dμ(x)

≤ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣ai,j(y)
∣

∣

(∫

2Si\(2Bi,j)

|b(x) – mBi,j (b)|q
λ(x, d(x, y))

dμ(x)
) 1

q
dμ(y)

}q

+ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣b(y) – mBi,j (b)
∣

∣

∣

∣ai,j(y)
∣

∣

(∫

2Si\(2Bi,j)

dμ(x)
λ(x, d(x, y))

) 1
q

dμ(y)
}q

≤ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣ai,j(y)
∣

∣

(N1–1
∑

k=1

∫

2k+1Bi,j\(2k Bi,j)

|b(x) – mBi,j (b)|q
λ(cBi,j , d(x, cBi,j ))

dμ(x)
) 1

q
dμ(y)

}q

+ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣b(y) – mBi,j (b)
∣

∣

∣

∣ai,j(y)
∣

∣

×
(∫

2Si\(2Bi,j)

dμ(x)
λ(cBi,j , d(cBi,j , x))

) 1
q

dμ(y)
}q

≤ C
2

∑

j=1

|κi,j|q
{(N1–1

∑

k=1

1
λ(cBi,j , 2krBi,j )

∫

2k+1Bi,j

∣

∣b(x) – mBi,j (b)
∣

∣

q dμ(x)
) 1

q

×
∫

Bi,j

∣

∣ai,j(y)
∣

∣dμ(y)
}q

+ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣b(y) – mBi,j (b)
∣

∣

∣

∣ai,j(y)
∣

∣dμ(y)
}q(N1–1

∑

k=1

μ(2k+1Bi,j)
λ(cBi,j , 2k+1rBi,j )

)

≤ C‖b‖q
˜RBMO(μ)

2
∑

j=1

|κi,j|q
(∫

Bi,j

∣

∣ai,j(y)
∣

∣dμ(y)
)q

×
(N1–1

∑

k=1

μ(2k+1Bi,j)
λ(cBi,j , 2k+1rBi,j )

)

+ C
2

∑

j=1

|κi,j|q
{∫

Bi,j

∣

∣b(y) – mBi,j (b)
∣

∣

∣

∣ai,j(y)
∣

∣dμ(y)
}q(N1–1

∑

k=1

μ(2k+1Bi,j)
λ(cBi,j , 2k+1rBi,j )

)

≤ C‖b‖q
˜RBMO(μ)

2
∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

[

μ(Bi,j)
]q

˜K (2)
Bi,j ,Si

+ C
2

∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

(∫

Bi,j

∣

∣b(y) – mBi,j (b)
∣

∣

∣

∣ai,j(y)
∣

∣dμ(y)
)q

˜K (2)
Bi,j ,Si

≤ C‖b‖q
˜RBMO(μ)

2
∑

j=1

|κi,j|q‖ai,j‖q
L∞(μ)

[

μ(Bi,j)
]q

˜K (2)
Bi,j ,Si

≤ C‖b‖q
˜RBMO(μ)

2
∑

j=1

|κi,j|q
[

μ(Bi,j)
]q

˜K (2)
Bi,j ,Si

[

μ(2Bi,j)
]–q[

˜K (2)
Bi,j ,Si

]–2q

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|q
)

.



Lu Journal of Inequalities and Applications        (2020) 2020:202 Page 17 of 23

Combining the estimates for F1,1
i and F1,2

i , we have

F1
i ≤ C‖b‖q

˜RBMO(μ)

(
2

∑

j=1

|κi,j|q
)

.

Now we turn to F2
i , by applying the vanishing condition of hi, the Hölder inequality,

(1.10), (1.16) and y ∈ Si, we can get

F2
i =

∫

X \2Si

∣

∣

∣

∣

∫

X
Kα(x, y)

(

b(x) – b(y)
)

hi(y) dμ(y)
∣

∣

∣

∣

q

dμ(x)

=
∫

X \2Si

∣

∣

∣

∣

∫

X
Kα(x, y)

(

b(x) – b(y)
)

hi(y) dμ(y)

–
∫

X
Kα(x, cSi )

(

b(x) – b(y)
)

hi(y) dμ(y)
∣

∣

∣

∣

q

dμ(x)

≤
∫

X \2Si

(∫

Si

∣

∣Kα(x, y) – Kα(x, cSi )
∣

∣

∣

∣b(x) – b(y)
∣

∣

∣

∣hi(y)
∣

∣dμ(y)
)q

dμ(x)

≤
{∫

Si

∣

∣hi(y)
∣

∣

(∫

X \2Si

∣

∣Kα(x, y) – Kα(x, cSi )
∣

∣

q∣
∣b(x) – b(y)

∣

∣

q dμ(x)
) 1

q
dμ(y)

}q

≤ C
{∫

Si

∣

∣hi(y)
∣

∣

[∫

X \2Si

[

θ

(

d(y, cSi )
d(x, y)

)]q |b(x) – mSi (b)|q
λ(y, d(x, y))

dμ(x)
] 1

q
dμ(y)

+
∫

Si

∣

∣hi(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣

[∫

X \2Si

[

θ

(

d(y, cSi )
d(x, y)

)]q dμ(x)
λ(y, d(x, y))

] 1
q

dμ(y)
}q

≤ C
{∫

Si

∣

∣hi(y)
∣

∣

[ ∞
∑

k=1

∫

2k+1Si\2k Si

[

θ

(

rSi

d(x, cSi )

)]q |b(x) – mSi (b)|q
λ(cSi , d(x, cSi ))

dμ(x)
] 1

q
dμ(y)

+
∫

Si

∣

∣hi(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣

×
[ ∞
∑

k=1

∫

2k+1Si\2k Si

[

θ

(

rSi

d(x, cSi )

)]q dμ(x)
λ(cSi , d(x, cSi ))

] 1
q

dμ(y)
}q

≤ C
{∫

Si

∣

∣hi(y)
∣

∣

[ ∞
∑

k=1

∫

2k+1Si

1
λ(cSi , 2krSi )

[

θ

(

rSi

2krSi

)]q
∣

∣b(x) – mSi (b)
∣

∣

q dμ(x)
] 1

q
dμ(y)

+
∫

Si

∣

∣hi(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣

( ∞
∑

k=1

[

θ

(

rSi

2krSi

)]q
μ(2k+1Si)

λ(cSi , 2krSi )

) 1
q

dμ(y)
}q

≤ C
{∫

Si

∣

∣hi(y)
∣

∣dμ(y)
( ∞

∑

k=1

μ(2k+2Si)
λ(cSi , 2krSi )

[

θ

(

1
2k

)]q

× 1
μ(2k+2Si)

∫

2k+1Si

∣

∣b(x) – mSi (b)
∣

∣

q dμ(x)
) 1

q

+
∫

Si

∣

∣hi(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣dμ(y)
[ ∞
∑

k=1

θ

(

1
2k

)]}q
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≤ C
{∫

Si

∣

∣hi(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣dμ(y) +
∫

Si

∣

∣hi(y)
∣

∣dμ(y)
( ∞

∑

k=1

μ(2k+2Si)
λ(cSi , 2krSi )

[

θ

(

1
2k

)]q

× 1
μ(2k+2Si)

∫

2k+1Si

(∣

∣b(x) – m2k+1Si (b)
∣

∣ +
∣

∣m2k+1Si (b) – mSi (b)
∣

∣

)q dμ(x)
) 1

q
}q

≤ C
{ 2
∑

j=1

|κi,j|
∫

Bi,j

∣

∣ai,j(y)
∣

∣

∣

∣b(y) – mSi (b)
∣

∣dμ(y)

+ ‖b‖
˜RBMO(μ)

∫

Si

∣

∣hi(y)
∣

∣dμ(y)
( ∞

∑

k=1

μ(2k+2Si)
λ(cSi , 2krSi )

[

θ

(

1
2k

)]q

(k + 1)q
) 1

q
}q

≤ C‖b‖q
˜RBMO(μ)

{ 2
∑

j=1

|κi,j|‖ai,j‖L∞(μ)μ(Bi,j)

+
2

∑

j=1

|κi,j|‖ai,j‖L∞(μ)
[

μ(Bi,j)
]

( ∞
∑

k=1

μ(2k+2Si)
λ(cSi , 2krSi )

[

θ

(

1
2k

)]q

(k + 1)q
) 1

q
}q

≤ C‖b‖q
˜RBMO(μ)

{ 2
∑

j=1

|κi,j| +
2

∑

j=1

|κi,j|
[ ∞
∑

k=1

(

μ(2k+2Si)
λ(cSi , 2krSi )

) 1
q
θ

(

1
2k

)

(k + 1)
]}q

≤ C‖b‖q
˜RBMO(μ)

{ 2
∑

j=1

|κi,j| +
2

∑

j=1

|κi,j|
[ ∞
∑

k=1

(

μ(2k+2Si)
[C(2k+1)]λ(cSi , rSi )

) 1
q
θ

(

1
2k

)

k
]}q

≤ C‖b‖q
˜RBMO(μ)

{ 2
∑

j=1

|κi,j| +
2

∑

j=1

|κi,j|
[ ∞
∑

k=1

(

kC
k
q
λ

[C(2k+1)]
1
q

)

+
∞

∑

k=1

θ

(

1
2k

)]}q

≤ C‖b‖q
˜RBMO(μ)

(
2

∑

j=1

|κi,j|
)q

,

where we have used the following inequality (see [16]):

∫ 1

0

θ (t)
t

dt ≥
∞

∑

k=1

∫ 21–k

2–k

θ (2–k)
21–k dt ≥ C

∞
∑

k=1

θ
(

2–k).

Combining the above estimates for F1
i and F2

i , we can deduce that

∥

∥[b, Tα]f
∥

∥

Lq(μ) =
(∫

X

∣

∣[b, Tα]f (x)
∣

∣

q dμ(x)
) 1

q
≤ C

∞
∑

i=1

|hi|
˜H1,∞,2

atb,b,2(μ) ≤ C‖f ‖
˜H1

b (μ).

Thus, we complete the proof of Theorem 4.2. �

5 Boundedness of [b, Tα] on Morrey space
In this section, we will mainly establish the boundedness of the commutator [b, Tα] gen-
erated by Tα and the space ˜RBMO(μ) on the Morrey space. Before giving the main result
of this section, we first recall the definition of the Morrey space introduced by Cao and
Zhou in [2].
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Definition 5.1 ([2]) Let k > 1. For any 1 < q ≤ p < ∞, define

Mp
q(μ) :=

{

f ∈ Lq
loc(μ) : ‖f ‖Mp

q (μ) < ∞}

,

where

‖f ‖Mp
q (μ) := sup

B

[

μ(kB)
] 1

p – 1
q

(∫

B

∣

∣f (y)
∣

∣

q dμ(y)
) 1

q
. (5.1)

From [2], Cao and Zhou have showed that the norm ‖f ‖Mp
q (μ) is independent of the

choice of k for k > 1.
The main theorem of this section is stated as follows.

Theorem 5.2 Let b ∈ ˜RBMO(μ), Kα satisfy (1.9) and (1.10), 1 < q ≤ p < ∞, 1 < t ≤ s < ∞,
α ∈ (0, 1), and 1

s = 1
p – α, s

t = p
q . Suppose that Tα is as in (1.11). Then there exists a constant

C > 0, such that, for all f ∈ Mp
q(μ),

∥

∥[b, Tα]f
∥

∥

Ms
t (μ) ≤ C‖b‖

˜RBMO(μ)‖f ‖Mp
q (μ).

To prove the main theorem, we need to recall and establish the following lemmas.

Lemma 5.3 ([2]) If 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, α ∈ (0, 1), and 1
s = 1

p – α, s
t = p

q . Then the
operator M(α)

s,ζ is bounded from Mp
q(μ) into Ms

t(μ).

Lemma 5.4 ([2]) If ζ > 5 and 1 < r < q ≤ p < ∞, then the maximal operator Mr,ζ in
Lemma 2.4 is bounded on Mp

q(μ).

Lemma 5.5 ([14]) Let f ∈ L1
loc(μ) satisfying that

∫

X f (x) dμ(x) = 0 when ‖μ‖ := μ(X ) < ∞.
Assume that, for some p, q satisfying 1 < q ≤ p < ∞, inf{1, Nf } ∈ Mp

q(μ). Then there exists
a constant C > 0, independent of f , such that ‖Nf ‖Mp

q (μ) ≤ C‖M�,αf ‖Mp
q (μ).

Lemma 5.6 Let Kα satisfy (1.9), 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, α ∈ (0, 1), and 1
s = 1

p – α,
s
t = p

q . Then there exists a positive constant C, such that, for all f ∈ Mp
q(μ),

∥

∥Tα(f )
∥

∥

Ms
t (μ) ≤ C‖f ‖Mp

q (μ).

Proof With an argument similar to that used in the proof of Lemma 3.2, it is not difficult
to obtain

∣

∣Tαf (x)
∣

∣ ≤ CIα
(|f |)(x), x ∈X .

By applying the (Mp
q(μ), Ms

t(μ))-boundedness of Iα (see [2, Theorem 20]), we have

∥

∥Tα(f )
∥

∥

Ms
t (μ) ≤ C

∥

∥Iα
(|f |)∥∥Ms

t (μ) ≤ C‖f ‖Mp
q (μ).

Hence, the proof of Lemma 5.6 is completed. �

Now we give the proof of Theorem 5.2 as follows.
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Proof of Theorem 5.2 By applying Lemma 2.4, (3.1), and Lemmas 5.3–5.6, we have

∥

∥[b, Tα]f
∥

∥

Ms
t (μ) ≤ ∥

∥N
(

[b, Tα]f
)∥

∥

Ms
t (μ) ≤ ∥

∥M�,α(

[b, Tα]f
)∥

∥

Ms
t (μ)

≤ C‖b‖
˜RBMO(μ)

{∥

∥M(α)
r,5 f

∥

∥

Ms
t (μ) +

∥

∥Mr,6(Tαf )
∥

∥

Ms
t (μ) +

∥

∥Tα

(|f |)∥∥Ms
t (μ)

}

≤ C‖b‖
˜RBMO(μ)

{‖f ‖Mp
q (μ) + ‖Tαf ‖Ms

t (μ) + ‖f ‖Mp
q (μ)

}

≤ C‖b‖
˜RBMO(μ)‖f ‖Mp

q (μ).

Hence, we complete the proof of Theorem 5.2. �

6 Boundedness of [b, Tα] on generalized Morrey space
In this section, we will consider the boundedness of the commutator [b, Tα] generated by
the ˜RBMO(μ) function and Tα on generalized Morrey space Lp,φ(μ). First, we recall the
following definition of the generalized Morrey space given in [14].

Definition 6.1 ([15]) Let k > 1 and 1 < p < ∞. Suppose that φ : (0,∞) → (0,∞) is an
increasing function. Then the generalized Morrey space Lp,φ(μ) is defined by

Lp,φ(μ) :=
{

f ∈ Lp
loc(μ) : ‖f ‖Lp,φ (μ) < ∞}

,

where

‖f ‖Lp,φ (μ) = sup
B

(

1
φ(μ(kB))

∫

B

∣

∣f (x)
∣

∣

p dμ(x)
) 1

p
. (6.1)

From [14], Lu and Tao have showed that the norm ‖ ·‖Lp,φ (μ) is independent of the choice
k for k > 1.

The main theorem of this section is stated as follows.

Theorem 6.2 Let Kα satisfy (1.9) and (1.10), b ∈ ˜RBMO(μ), 1 < p < q < ∞, 1
q = 1

p – α with
α ∈ (0, 1), and φ be an increasing function. Suppose that Tα is as in (1.11), the mapping
t �→ φ(t)

t is almost decreasing and there exists a constant C > 0 such that

φ(t)
t

≤ C
φ(s)

s
(6.2)

for s ≤ t, and the λ satisfies the ( 1
p – α)-weak reverse doubling condition. Then there exists

a positive constant C, such that, for all f ∈ Lp,φ(μ),

∥

∥[b, Tα]f
∥

∥

Lq,φq/p (μ) ≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ).

Proof Without loss of generality, we may assume that k = 8 in (6.1). Decompose the func-
tion f (x) as

f (x) := f1(x) + f2(x),
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where f1(x) = f χ6B(x) and f2(x) = f χX \6B(x). Write

∥

∥[b, Tα]f
∥

∥

Lq,φq/p (μ) ≤ ∥

∥[b, Tα]f1
∥

∥

Lq,φq/p (μ) +
∥

∥[b, Tα]f2
∥

∥

Lq,φq/p (μ) =: E1 + E2.

By applying Lemma 3.2, we have

E1 = sup
B

1

[φ(μ(8B))]
1
p

(∫

B

∣

∣[b, Tα]f1(x)
∣

∣

q dμ(x)
) 1

q

≤ C‖b‖
˜RBMO(μ) sup

B

1

[φ(μ(8B))]
1
p
‖f1‖Lp(μ)

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ).

For any x ∈ B, by applying (1.9), the Hölder inequality and Lemma 2.2, we can get

∣

∣[b, Tα]f2(x)
∣

∣ ≤
∫

X \6B

∣

∣Kα(x, y)
∣

∣

∣

∣b(x) – b(y)
∣

∣

∣

∣f (y)
∣

∣dμ(y)

≤ C
∫

X \6B

|f (y)|
[λ(x, d(x, y))]1–α

∣

∣b(x) – b(y)
∣

∣dμ(y)

≤ C
∞

∑

k=1

∫

6k+1B\6k B

|f (y)|
[λ(x, d(x, y))]1–α

∣

∣b(x) – b(y)
∣

∣dμ(y)

≤ C
∞

∑

k=1

1
[λ(cB, 6krB)]1–α

[

∣

∣b(x) – m
˜6k+1B

(b)
∣

∣

∫

6k+1B

∣

∣f (y)
∣

∣dμ(y)

+
∫

6k+1B

∣

∣f (y)
∣

∣

∣

∣b(y) – m
˜6k+1B

(b)
∣

∣dμ(y)
]

≤ C
∞

∑

k=1

1
[λ(cB, 6krB)]1–α

{

∣

∣b(x) – m
˜6k+1B

(b)
∣

∣

(∫

6k+1B

∣

∣f (y)
∣

∣

p dμ(y)
) 1

p

× [

μ
(

6k+1B
)]1– 1

p +
(∫

6k+1B

∣

∣f (y)
∣

∣

p dμ(y)
) 1

p

×
(∫

6k+1B

∣

∣b(y) – m
˜6k+1B

(b)
∣

∣

p′
dμ(y)

) 1
p′ }

≤ C‖f ‖Lp,φ (μ)

∞
∑

k=1

1
[λ(cB, 6krB)]1–α

{∣

∣b(x) – m
˜6k+1B

(b)
∣

∣

[

φ
(

μ
(

2 × 6k+1B
))] 1

p

× [

μ
(

6k+1B
)]1– 1

p + ‖b‖
˜RBMO(μ)

[

φ
(

μ
(

2 × 6k+1B
))] 1

p
[

μ
(

6k+1B
)]1– 1

p
}

≤ C‖f ‖Lp,φ (μ)

∞
∑

k=1

[λ(cB, 6k+1rB)]1– 1
p

[λ(cB, 6krB)]1–α

[

φ
(

μ
(

2 × 6k+1B
))] 1

p

× {∣

∣b(x) – m
˜6k+1B

(b)
∣

∣ + ‖b‖
˜RBMO(μ)

}

≤ C‖f ‖Lp,φ (μ)

∞
∑

k=1

[

λ
(

cB, 6k+1rB
)]α– 1

p
[

φ
(

μ
(

2 × 6k+1B
))] 1

p

× {∣

∣b(x) – m
˜6k+1B

(b)
∣

∣ + ‖b‖
˜RBMO(μ)

}

,
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furthermore, by applying Definition 6.1, (2.3) and (6.2), we can deduce that

E2 = sup
B

1

[φ(μ(8B))]
1
p

(∫

B

∣

∣[b, Tα](f2)(x)
∣

∣

q dμ(x)
) 1

q

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

[

λ
(

cB, 6k+1rB
)]α– 1

p sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

[

μ(B)
] 1

p –α

+ C‖f ‖Lp,φ (μ)

∞
∑

k=1

[

λ
(

cB, 6k+1rB
)]α– 1

p sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

×
(∫

B

∣

∣b(x) – m
˜6k+1B

(b)
∣

∣

q dμ(x)
) 1

q

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

1

[C(6k+1)]
1
p –α

sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

+ C‖f ‖Lp,φ (μ)

∞
∑

k=1

[

λ
(

cB, 6k+1rB
)]α– 1

p sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

×
(∫

B

∣

∣b(x) – m
˜6k+1B

(b)
∣

∣

q dμ(x)
) 1

q

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

1

[C(6k+1)]
1
p –α

sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

+ C‖f ‖Lp,φ (μ)

∞
∑

k=1

1

[C(6k+1)]
1
p –α

1

[λ(cB,rB )]
1
p –α

sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

×
{(∫

B

∣

∣b(x) – m
˜B(b)

∣

∣

q dμ(x)
) 1

q
+

[

μ(B)
] 1

p –α∣

∣m
˜B(b) – m

˜6k+1B
(b)

∣

∣

}

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

1 + k

[C(6k+1)]
1
p –α

sup
B

[φ(μ(2 × 6k+1B))]
1
p

[φ(μ(8B))]
1
p

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

1 + k

[C(6k+1)]
1
p –α

sup
B

[φ(λ(cB, 2 × 6k+1rB))]
1
p

[φ(λ(cB, 6k+1rB))]
1
p

× [φ(λ(cB, 6k+1rB))]
1
p

[φ(λ(cB, 1
2 × 6k+1rB))]

1
p

× · · · × [φ(λ(cB, rB))]
1
p

[φ(μ(8B))]
1
p

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ)

∞
∑

k=1

(1 + k)C
k
p
λ

[C(6k+1)]
1
p –α

≤ C‖b‖
˜RBMO(μ)‖f ‖Lp,φ (μ).

Hence, the proof of Theorem 6.2 is finished. �
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