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Abstract
We prove a generalized Hölder-type inequality for measurable operators associated
with a semi-finite von Neumann algebra which is a generalization of the result shown
by Bekjan (Positivity 21:113–126, 2017). This also provides a generalization of the
unitarily invariant norm inequalities for matrix due to Bhatia–Kittaneh, Horn–Mathisa,
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1 Introduction
Let Mn be the space of n × n complex matrices. A norm ||| · ||| on Mn is called unitar-
ily invariant if |||UAV ||| = |||A||| for all A ∈ Mn and all unitary matrices U , V ∈ Mn. Let
A, B ∈ Mn. In 1990, Bhatia and Kittaneh [6] established an arithmetic–geometric mean
inequality for unitarily invariant norms, i.e.,
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Using tensor algebra techniques, a strengthening inequality of (1.1) was presented by Bha-
tia and Davis [5]
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for A, B, X ∈Mn. On the other hand, let A, B ∈ Mn and r > 0, Horn and Mathisa proved in
[15] the following Cauchy–Schwarz inequality for unitarily invariant norms
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Let A, B ∈Mn and 1
p + 1

q = 1, p, q > 1, r ≥ 0. With the properties of C-S semi-norms in hand,
Horn and Zhan [16] established a stronger version of inequality (1.3) as follows:
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which is the Hölder inequality for unitarily invariant norms. In particular, these authors
also showed in [16] that
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Subsequently, a considerable different proofs, equivalent statements, along with some gen-
eralizations, refinements, and applications of inequalities (1.1)–(1.4) were discussed by
many authors. We refer to [1–3, 5, 15, 20] for more information on this topic and histori-
cal references.

Let A, B ∈ Mn and 1
p + 1

q = 1, p, q > 1, α ∈ [0, 1], r ≥ 0 and let TX(α) = αAA∗X + (1 –
α)XBB∗. In 2015, by majorization techniques, Audenaert [2] prove an inequality that in-
terpolates between the arithmetic–geometric mean and Cauchy–Schwarz matrix norm
inequalities
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Recently, Zou [20] presented the inequality for unitarily invariant norms
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which is a unified version of inequalities (1.1) and (1.6).
By the concept of uniform Hardy–Littlewood majorization Bekjan [8] gave a Hölder-

type inequality (1.4) for τ -measurable operators associated with a semi-finite von Neu-
mann algebra and for symmetric Banach spaces norm. In this paper, we will give a gen-
eralized Hölder-type inequality (1.7) for τ -measurable operators under a cohyponormal
condition by adopting a technique similar to the one used by Bekjan and Zou. This is a
generalization of Bekjan’s result in [8].

2 Preliminaries
Let L0 be the set of all Lebesgue measurable functions on (0,∞). A Banach space E ⊆ L0

with the norm ‖ · ‖E satisfying the condition that f ∈ E and ‖f ‖E ≤ ‖g‖E whenever 0 ≤ f ≤
g , f ∈ L0 and g ∈ F , is said to be a Banach function space. A Banach function space E ⊆ L0

is called a symmetric Banach function space if it follows from f ∈ L0, g ∈ E and f ∗ ≤ g∗

that f ∈ E and ‖f ‖E ≤ ‖g‖E , where

f ∗(t) = inf
{

s > 0 : df (s) = m
{

r :
∣
∣f (r)

∣
∣ > s

} ≤ t
}

, t > 0,

and m denotes the Lebesgue measure on (0,∞). The symmetric Banach function space E
is called fully if and only if f ∈ E, g ∈ L0 and

∫ t
0 f ∗(s) ds ≥ ∫ t

0 g∗(s) ds give us that g ∈ E and
‖f ‖E ≥ ‖g‖E . We say that E has order continuous norm if for every net {fi}i∈Λ ⊆ E such
that fi ↓ 0 we have ‖fi‖E ↓ 0. In particular, a symmetric Banach function space which has
order continuous norm is automatically fully symmetric. For 0 < r < ∞, E(r) will denote
the quasi-Banach spaces defined by

E(r) :=
{

g ∈ L0 : |g|r ∈ E
}

and ‖g‖E(r) =
∥
∥|g|r∥∥ 1

r
E .
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For r > 0, we know from [17] that if E is a symmetric Banach function space, then E(r) is
a symmetric quasi-Banach space, and if E has order continuous norm, then E(r) has order
continuous norm.

We suppose that M is a semi-finite von Neumann algebra, namely a von Neumann al-
gebra equipped with a semi-finite, faithful and normal trace τ . We will denote by 1 the
identity in M and P(M) the projection lattice of M. A closed densely defined linear op-
erator x in H with domain D(x) ⊆ H is said to be affiliated with M if u∗xu = x for all
unitary operators u which belong to the commutant M′ of M. Let e⊥

s (|x|) = e(s,∞)(|x|) be
the spectral projection of |x| associated with the interval (s,∞). If x is affiliated with M,
x will be called τ -measurable if and only if τ (e⊥

s (|x|)) < ∞ for some s > 0. The set of all
τ -measurable operators will be denoted by L0(M).

Definition 2.1 Let x ∈ L0(M) and t > 0. The “generalized singular number of x” μt(x) is
defined by

μt(x) = inf
{‖xe‖ : e is a projection in M with τ

(

e⊥) ≤ t
}

.

We will denote simply by λ(x) and μ(x) the functions t → λt(x) and t → μt(x), re-
spectively. The generalized singular number function t → μt(x) is decreasing right-
continuous. For x, y ∈ L0(M) and u, v ∈M, we obtain

μ(x) = μ
(|x|) = μ

(

x∗), μ(uxv) ≤ ‖u‖‖v‖μ(x). (2.1)

Moreover, let f be a continuous increasing function on [0,∞) with f (0) = 0. It follows from
[11, Lemma 2.5, Lemma 2.6 and Corollary 2.8] that

μ
(

f
(|x|)) = f

(

μ
(|x|)) (2.2)

and

τ
(

f
(|x|)) =

∫ τ (1)

0
f
(

μt(x)
)

dt. (2.3)

See [11] for basic properties and detailed information on generalized singular number of x.
Let E be a symmetric Banach function space on (0,∞). We define

E(M) =
{

x ∈ L0(M) : μ(x) ∈ E
}

and ‖x‖E(M) =
∥
∥μ(x)

∥
∥

E .

Then (E(M),‖ · ‖E(M)) is a noncommutative symmetric Banach function space. If E = Lp,
then (E(M),‖·‖E(M)) is the usual noncommutative Lp spaces (Lp(M),‖·‖p). For 0 < r < ∞,
we define

E(M)(r) =
{

x ∈ L0(M) : |x|r ∈ E(M)
}

and ‖x‖E(M)(r) =
∥
∥|x|r∥∥ 1

r
E(M).

As is shown in [10, Proposition 3.1], if E is a symmetric Banach function space, then
E(r)(M) = E(M)(r), where

E(r)(M) =
{

x ∈ L0(M) : μ(x) ∈ E(r)}
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and ‖x‖E(r)(M) = ‖μ(x)‖E(r) . It is well known that E(M)(r) is also a noncommutative fully
symmetric Banach function space when r ≥ 1 and E is fully (cf. [19]).

In the following, unless stated otherwise, we will keep all previous notations throughout
the paper, and we always assume that E is a symmetric Banach function space on (0,∞)
with order continuous norm.

3 Main results
We start this section with several lemmas which will be used in our proof. From [12, The-
orem 3.3] and [13, Lemma 3.4] we have the following two results.

Lemma 3.1 Let x, y ∈M and α ∈ [0, 1]. Then

μs
(∣
∣x∗y

∣
∣
) ≤ μs

(

α|x| 1
α + (1 – α)|y| 1

1–α
)

.

Lemma 3.2 Let x, y ∈M such that xy is a self-adjoint operator. For every r > 0, we obtain

∫ t

0
μs(xy)r ds ≤

∫ t

0
μs(yx)r ds, t > 0.

Remark 3.3 If x, y are normal operators in L0(M), then μs(xy) = μs(yx), s > 0. Indeed, we
conclude from (2.1) and (2.2) (see also [11, Lemma 2.5]) that
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2 = μt(yx).

Recall that an operator x ∈ L0(M) is said to be hyponormal if x∗x ≥ xx∗, cohyponormal
if x∗ is hyponormal.

Lemma 3.4 Let x, y ∈M and r ≥ 0. If α ∈ [0, 1] and xx∗(yy∗)α is cohyponormal, then

∫ t

0
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∣x∗y

∣
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(

(1 – α)xx∗ + αyy∗) r
2 ds, t > 0.

Proof By (2.2) and Lemma 3.2 we have
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Since xx∗(yy∗)α is cohyponormal, [8, Corollary 4.5] yields
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,

and hence, [11, Theorem 4.2(iii)] and Lemma 3.1 tell us that
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≤
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This completes the proof. �

Remark 3.5 Let x, y ∈M and r ≥ 0, α ∈ [0, 1]. (2.1) now yields μt(xx∗yy∗) = μt(yy∗xx∗) for
all t > 0. If yy∗(xx∗)α is hyponormal, then from Lemma 3.4 we have
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Proposition 3.6 Let α ∈ [0, 1], r ≥ 0, 1 < p, q < ∞ with 1
p + 1

q = 1 and let x, y ∈ E(M)(2r). If
xx∗(yy∗)α is cohyponormal, then x∗y ∈ E(M)(r),
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where T(α) = αxx∗ + (1 – α)yy∗.

Proof If
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then the inequality (3.1) is obvious, and so we always suppose that
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First we assume that x, y ∈ E(M)(2r) ∩ M. According to [4, Theorem 3] and Lemma 3.4,
we have x∗y ∈ E(M)(r) and
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∥
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∥
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∥
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In the general case, for y, x ∈ L0(M), let x = u|x| and y = v|y| be the polar decomposition
of x and y, respectively. We assume also that |y| =

∫ ∞
0 λdeλ(|y|) and |x| =

∫ ∞
0 λdeλ(|x|)
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are the spectral decomposition of |y| and |x|, respectively. Set yn = v
∫ n

0 λdeλ(|y|) and xn =
u

∫ n
0 λdeλ(|x|). Then

μt(x – xn) ≤ μt
(|x|)χ(0,τ (e[n,∞)(|x|))), |x – xn| =

∫ ∞

n
λdeλ

(|x|).

From [18, Proposition 21 of Chapter I] and [11, Lemma 3.1] we conclude that
τ (e[n,∞)(|x|)) → 0 and μt(x – xn) ↓ 0 as n → ∞. Similarly, μt(y – yn) ↓ 0 as n → ∞. Since
E has order continuous norm, we see that

∥
∥μt(yn – y)2r∥∥

1
2
E ↓ 0,

∥
∥μt(xn – x)2r∥∥

1
2
E ↓ 0 (3.2)

as n → ∞. Thus, [4, Theorem 3] gives
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∣
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∥
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∥
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ny
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∥

r
E(M)(r) +
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∥
∥

r
E(M)(r)

}

≤ C
{∥
∥x∗

n
∥
∥

r
E(M)(2r)‖yn – y‖r

E(M)(2r) +
∥
∥x∗

n – x∗∥∥r
E(M)(r)‖y‖r

E(M)(r)

}

= C
{∥
∥μt

(

x∗
n
)∥
∥

r
E(2r)‖μ(yn – y)‖r

E(2r) +
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E(r)
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∥μt(y)
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∥
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E(r)

}

= C
{∥
∥μt(xn)2r∥∥

1
2
E

∥
∥μ(yn – y)2r∥∥

1
2
E +

∥
∥μt(xn – x)2r∥∥

1
2
E

∥
∥μt(y)2r∥∥

1
2
E

}

,

where the constant C from the triangle inequality in E(M)(r). Therefore, the fact
‖μt(xn)2r‖ 1

2
E ≤ ‖μt(x)2r‖ 1

2
E and (3.2) imply that ‖|x∗

nyn – x∗y|r‖E(M) → 0 as n → ∞. More-
over, ‖|x∗

nyn|r‖E(M) → ‖|x∗y|r‖E(M) as n → ∞. In the same manner we can see that

∥
∥
(

αxnx∗
n + (1 – α)yny∗

n
) rp

2
∥
∥

1
p
E(M) → ∥

∥
(

αxx∗ + (1 – α)yy∗) rp
2
∥
∥

1
p
E(M)

and

∥
∥
(

(1 – α)xnx∗
n + αyny∗

n
) rq

2
∥
∥

1
q
E(M) → ∥

∥
(

(1 – α)xx∗ + αyy∗) rq
2
∥
∥

1
q
E(M).

This completes the proof. �

Remark 3.7 Let 1 < p, q < ∞ with 1
p + 1

q = 1. If α = 0, then xx∗(yy∗)α = xx∗ is cohyponormal.
Therefore, Proposition 3.6 yields x∗y ∈ E(M)(r) and

∥
∥
∣
∣x∗y

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣yy∗∣∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣xx∗∣∣

rq
2
∥
∥

1
q
E(M),

which is a main result of [4].

Remark 3.8 It is necessary for us to remark here that, it can be observed in [7, Lemma 2]
without a proof that μ(ab) = μ(ba) when ab, ba ∈ L1(M). However, we are not able to give
it a proof at this moment. On the other hand, the authors were informed by an anonymous
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referee that μ(ab) = μ(ba) does not hold even in the matrix case. On account of this, there
could be a gap in the proof of [13, Theorem 3.6] and we give a corresponding illustration
as follows: Set r ≥ 1, α ∈ [0, 1] and let xx∗(yy∗)α be cohyponormal. Using Proposition 3.6
to the case E = L1 and p = q = 2, we have

∥
∥
∣
∣x∗y

∣
∣
r∥
∥

L1(M) ≤ ∥
∥
∣
∣αxx∗ + (1 – α)yy∗∣∣r∥

∥
1
2
L1(M)

∥
∥
∣
∣(1 – α)xx∗ + αyy∗∣∣r∥

∥
1
2
L1(M),

i.e.,

∥
∥x∗y

∥
∥

2
Lr(M) ≤ ∥

∥αxx∗ + (1 – α)yy∗∥∥
Lr (M)

∥
∥(1 – α)xx∗ + αyy∗∥∥

Lr (M),

which is the result of [14, Theorem 3.6] under a cohyponormal condition.

Theorem 3.9 Let α ∈ [0, 1] and 1 < p, q < ∞ with 1
p + 1

q = 1. Assume also that r ≥
max{ 2

p , 2
q }, x, y ∈ E(M)(2r) and z ∈ P(M). If zxx∗z(zyy∗z)α is cohyponormal, then x∗zy ∈

E(M)(r),

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣Tz(α)

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣Tz(1 – α)

∣
∣

rq
2
∥
∥

1
q
E(M),

where Tz(α) = αxx∗z + (1 – α)zyy∗.

Proof Let T(α) = αxx∗ + (1 – α)yy∗. Then z ∈ P(M) and Proposition 3.6 force that

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) =
∥
∥
∣
∣x∗zzy

∣
∣
r∥
∥

E(M)

≤ ∥
∥
(

zT(α)z
) rp

2
∥
∥

1
p
E(M)

∥
∥
(

zT(1 – α)z
) rq

2
∥
∥

1
q
E(M)

and

2μt
(

zT(α)z
)

= μ
(

z
(

T(α)z + zT(α)
)

z
) ≤ μ

(

T(α)z + zT(α)
)

, (3.3)

and hence

∥
∥
(

zT(α)z
) rp

2
∥
∥

1
p
E(M) ≤

∥
∥
∥
∥

(
T(α)z + zT(α)

2

) rp
2
∥
∥
∥
∥

1
p

E(M)
.

Similarly,

∥
∥
(

zT(1 – α)z
) rq

2
∥
∥

1
q
E(M) ≤

∥
∥
∥
∥

∣
∣
∣
∣

zT(1 – α) + T(1 – α)z
2

∣
∣
∣
∣

rq
2
∥
∥
∥
∥

1
q

E(M)
.

Therefore,

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M)

≤
∥
∥
∥
∥

∣
∣
∣
∣

zT(α) + T(α)z
2

∣
∣
∣
∣

rp
2
∥
∥
∥
∥

1
p

E(M)

∥
∥
∥
∥

∣
∣
∣
∣

zT(1 – α) + T(1 – α)z
2

∣
∣
∣
∣

rq
2
∥
∥
∥
∥

1
q

E(M)
. (3.4)
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A simple computation shows

T(α)z + zT(α)
2

=
1
2
{

αxx∗z + (1 – α)zyy∗ +
(

αxx∗z + (1 – α)zyy∗)∗}.

According to [11, Theorem 4.4(ii)] and (2.1), we have

∫ t

0
μs

(
T(α)z + zT(α)

2

)

ds

≤
∫ t

0
μs

(
1
2
(

αxx∗z + (1 – α)zyy∗)
)

ds

+
∫ t

0
μs

(
1
2
(

αxx∗z + (1 – α)zyy∗)∗
)

ds

=
∫ t

0
μs

(

αxx∗z + (1 – α)zyy∗)ds.

Since rp
2 ≥ 1, from [9, Theorem 2.1] and (2.2) we can assert that

∫ t

0
μs

(∣
∣
∣
∣

T(α)z + zT(α)
2

∣
∣
∣
∣

rp
2
)

ds =
∫ t

0
μs

(
T(α)z + zT(α)

2

) rp
2

ds

≤
∫ t

0
μs

(

αxx∗z + (1 – α)zyy∗) rp
2 ds

=
∫ t

0
μs

(∣
∣αxx∗z + (1 – α)zyy∗∣∣

rp
2
)

ds.

Consequently,

∥
∥
∥
∥

∣
∣
∣
∣

zT(α) + T(α)z
2

∣
∣
∣
∣

rp
2
∥
∥
∥
∥

E(M)
≤ ∥

∥
∣
∣αxx∗z + (1 – α)zyy∗∣∣

rp
2
∥
∥

E(M). (3.5)

In the same way as used above, we can also prove that

∥
∥
∥
∥

∣
∣
∣
∣

zT(1 – α) + T(1 – α)z
2

∣
∣
∣
∣

rq
2
∥
∥
∥
∥

E(M)
≤ ∥

∥
∣
∣(1 – α)xx∗z + αzyy∗∣∣

rq
2
∥
∥

E(M). (3.6)

Therefore, inequalities (3.4), (3.5) and (3.6) give

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣αxx∗z + (1 – α)zyy∗∣∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣(1 – α)xx∗z + αzyy∗∣∣

rq
2
∥
∥

1
q
E(M). �

Remark 3.10 Let α ∈ [0, 1] and 1 < p, q < ∞ with 1
p + 1

q = 1. Assume also that r ≥ max{ 2
p , 2

q },
x, y ∈ E(M)(2r) and z ∈M. We write Tz(α) = αxx∗z + (1 – α)zyy∗ and we wish to prove

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣Tz(α)

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣Tz(1 – α)

∣
∣

rq
2
∥
∥

1
q
E(M).

However, we do not succeed in proving it at this moment.
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Theorem 3.11 Let r > 0 and x, y ∈ E(M)(2r), 0 ≤ z ∈ M. Assume also that α ∈ [0, 1] and
1 < p, q < ∞ with 1

p + 1
q = 1. If z 1

2 xx∗z 1
2 (z 1

2 yy∗z 1
2 )α is cohyponormal, then x∗zy ∈ E(M)(r)

and

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣T(α)z

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣T(1 – α)z

∣
∣

rq
2
∥
∥

1
q
E(M),

where T(α) = αxx∗ + (1 – α)yy∗.

Proof First it follows from [4, Theorem 3] that x∗zy ∈ E(M)(r). Since z is positive, Propo-
sition 3.6 gives

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) =
∥
∥
∣
∣x∗z

1
2 z

1
2 y

∣
∣
r∥
∥

E(M)

≤ ∥
∥
(

z
1
2 T(α)z

1
2
) rp

2
∥
∥

1
p
E(M)

∥
∥
(

z
1
2 T(1 – α)z

1
2
) rq

2
∥
∥

1
q
E(M),

and hence Lemma 3.2 leads to

∥
∥
(

z
1
2 T(α)z

1
2
) rp

2
∥
∥

1
p
E(M) =

∥
∥z

1
2 T(α)z

1
2
∥
∥

r
2

E(M)( rp
2 )

≤ ∥
∥T(α)z

∥
∥

r
2

E(M)( rp
2 )

=
∥
∥
∣
∣T(α)z

∣
∣

rp
2
∥
∥

1
p
E(M).

Similarly,

∥
∥
(

z
1
2 T(1 – α)z

1
2
) rq

2
∥
∥

1
q
E(M) ≤ ‖|T(1 – α)z| rq

2 ‖
1
q
E(M).

Therefore,

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣T(α)z

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣T(1 – α)z

∣
∣

rq
2
∥
∥

1
q
E(M).

This completes the proof. �

Remark 3.12 (1) Let α ∈ [0, 1] and 1 < p, q < ∞ with 1
p + 1

q = 1 and let r ≥ max{ 2
p , 2

q }. For
x, y ∈ E(M)(2r) and z ∈ P(M), write Tz(α) = αxx∗z + (1 – α)zyy∗ and T(α) = αxx∗ + (1 –
α)yy∗. Assume also that zxx∗z(zyy∗z)α is cohyponormal. Combining Theorem 3.11 with
Theorem 3.9 we have

∥
∥
∣
∣x∗zy

∣
∣
r∥
∥

E(M) ≤ min{a, b},

where

a =
∥
∥
∣
∣Tz(α)

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣Tz(1 – α)

∣
∣

rq
2
∥
∥

1
q
E(M)

and

b =
∥
∥
∣
∣T(α)z

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣T(1 – α)z

∣
∣

rq
2
∥
∥

1
q
E(M).
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(2) Let r > 0, x, y ∈ E(M)(2r), 0 ≤ z ∈ M and α ∈ [0, 1], 1 < p, q < ∞ with 1
p + 1

q = 1. If
z 1

2 yy∗z 1
2 (z 1

2 xx∗z 1
2 )α is cohyponormal, then x∗zy ∈ E(M)(r). Moreover, the fact μt(|x∗zy|r) =

μt(x∗zy)r = μt(y∗zx)r = μt(|y∗zx|r) and Theorem 3.11 yields

∥
∥
∣
∣y∗zx

∣
∣
r∥
∥

E(M) ≤ ∥
∥
∣
∣T(α)z

∣
∣

rp
2
∥
∥

1
p
E(M)

∥
∥
∣
∣T(1 – α)z

∣
∣

rq
2
∥
∥

1
q
E(M),

where T(α) = αxx∗ + (1 – α)yy∗.
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