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Abstract
This paper focuses on a class of hider-order nonlinear fractional boundary value
problems. The boundary conditions contain Riemann–Stieltjes integral and nonlocal
multipoint boundary conditions. It is worth mentioning that the nonlinear term and
the boundary conditions contain fractional derivatives of different orders. Based on
the Schauder fixed point theorem, we obtain the existence of solutions under the
hypothesis that the nonlinear term satisfies the Carathéodory conditions. We apply
the Banach contraction mapping principle to obtain the uniqueness of solutions.
Moreover, by using the theory of spectral radius we prove the uniqueness and
nonexistence of positive solutions. Finally, we illustrate our main results by some
examples.
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1 Introduction
In this paper, we consider the class of boundary value problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
0+u(t) + f (t, u(t), Dα1

0+u(t), . . . , Dαn–3
0+ u(t), Dαn–2

0+ u(t)) = 0, 0 < t < 1,
u(0) = Dβ1

0+u(0) = · · · = Dβn–2
0+ u(0) = 0,

Dq0
0+u(1) = c1

∫ 1
0 g1(s)Dq1

0+u(s) dA1(s) + c2
∫ θ

0 g2(s)Dq2
0+u(s) dA2(s)

+ c3
∑m

i=1 γiD
q3
0+u(ξi),

(1.1)

where Dα
0+ is the Riemann–Liouville fractional derivative of order α, n – 1 < α ≤ n

(n ≥ 3), 1 < α – αn–2 ≤ 2; k – 1 < αk ,βk ≤ k, αn–2 – βk ≤ n – 2 – k (k = 1, 2, . . . , n – 2);
αn–2 ≤ qj ≤ q0 ≤ n – 1, cj ≥ 0 (j = 1, 2, 3), α – q0 ≥ 1; γi ≥ 0, 0 < ξ1 < ξ2 < · · · < ξi <
· · · < ξm < 1 (i = 1, 2, . . . , m); 0 ≤ θ ≤ 1, g1, g2 : (0, 1) → [0, +∞) are continuous and belong
to L1(0, 1);

∫ 1
0 g1(s)u(s) dA1(s) and

∫ 1
0 g2(s)u(s) dA2(s) are the Riemann–Stieltjes integrals,
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where A1, A2 : [0, 1] → (–∞, +∞) are functions of bounded variation. In this paper, a func-
tion u ∈ C[0, 1] is called a solution of problem (1.1) if it satisfies (1.1) a.e. on [0, 1].

Fractional calculus and fractional boundary value problems have been researched ex-
tensively to apply them in various areas, including image processing, rheology, electri-
cal networks, virus infection models, and so on. Some interesting results can be found
in [1–11] and the references therein. For example, in [1] the authors discovered that the
motion frequency of a class of neurons should be characterized by noninteger deriva-
tives. Therefore fractional derivatives are introduced to characterize this behavior, which
is not possible by integer-derivative models. In [4] the authors introduced the Riemann–
Liouville fractional derivative of order α (0.5 < α ≤ 1) into a model of HIV infection of
CD4+ T-cells. By using stability analysis the authors obtained a sufficient condition on
the parameters for the stability of the infected steady state. It should be noted that this
fractional model possessed positive solutions, which is desired in any population dynam-
ics. Indeed, there are many definitions of fractional derivatives. Because the Riemann–
Liouville fractional derivative avoids seeking limits, it is widely used in mathematical stud-
ies. The definition of Riemann–Liouville fractional derivative shows that it has some im-
portant properties such as globality. In fact, the Riemann–Liouville fractional derivative
is very suitable for describing viscoelastic material models and processes with memory
properties. It has the advantages of simple modeling and accurate description. Recently,
the research on the properties of solutions of fractional boundary value problems has re-
ceived substantial attention. Some interesting results can be found in [12–64] and the
references therein. For example, in [15] the authors have obtained the existence of one
and two solutions by using the fixed point index theory. In [16], based on the Schaefer
fixed point theorem and Banach contraction principle, the existence and uniqueness of
solutions for a class of fractional boundary value problem are obtained. Moreover, the
higher-order fractional boundary value problems have attracted more attention. We re-
fer to [13–15, 19, 31, 32, 34–37, 44, 45, 58, 59]. For example, in [36] the existence and
uniqueness of solutions are obtained by applying the Krasnoselskii theorem and Banach
fixed point theorem. Based on the Leggett–Williams and Krasnoselskii fixed point theo-
rems, Zhang and Zhong [31] showed the existence of positive solutions for the following
nonlinear fractional boundary value problem:

⎧
⎪⎨

⎪⎩

Dα
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,
Dβ

0+ u(1) = λ
∫ η

0 h(t)Dβ

0+ u(t) dt,

where Dα
0+ is the Riemann–Liouville derivative, n – 1 < α ≤ n (n ≥ 3), β ≥ 1, α – β – 1 > 0,

0 < η ≤ 1, 0 ≤ λ
∫ η

0 h(t)tα–β–1 dt < 1. The nonlinearity f may be singular at t = 0, 1 and u = 0,
and h ∈ L1([0, 1], [0, +∞)) may be singular at t = 0, 1.

Furthermore, the condition that the nonlinearity contains the derivative of the unknown
function, especially the fractional-order derivative, causes some mathematical difficulties
but make the research very interesting. We refer to [19, 21, 25, 27, 29, 37, 44, 50, 59, 61]. For
instance, in [21] the authors investigated the following fractional boundary value problem:

{
–Dα

t x(t) + λf (t, x(t), –Dβ
t x(t)) = 0, 0 < t < 1,

Dβ
t x(0) = 0, Dγ

t x(1) =
∑p–2

j=1 ajDγ
t x(ξj),
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where Dα
0+ is the standard Riemann–Liouville derivative, 1 < α ≤ 2, 0 < β ≤ γ < 1, α–β > 1,

aj ≥ 0 (j = 1, 2, . . . , p – 2),
∑p–2

j=1 ajξ
α–γ –1
j < 1, and f may be singular at t = 0, 1. The existence

and uniqueness of positive solutions was proved by the reduction method of fractional
order and the monotone iterative technique.

Motivated by the papers mentioned, in this paper, we are lead to study problem (1.1). Evi-
dently, our discussion is novel and meaningful. Firstly, problem (1.1) is more general; espe-
cially, the boundary conditions include two types of Riemann–Stieltjes integral boundary
conditions and nonlocal multipoint boundary conditions. Secondly, the nonlinear term f
contains the fractional derivatives of different orders of the unknown function. Thirdly, the
existence of solutions is obtained under the hypothesis that f satisfies the Carathéodory
condition, which is weaker than the continuity conditions. Fourthly, we show the unique-
ness and nonexistence of positive solutions by using appropriate methods. Moreover, in
this paper, our approach in obtaining the corresponding integral operator is the reduction
method of fractional order on account of semigroup properties of the Riemann–Liouville
derivative. We also illustrate the relationship between higher- and lower-order fractional
derivatives.

An outline of this paper is as follows. In Sect. 2, we give some preliminaries and lemmas.
We transform problem (1.1) into a relatively low-order problem by using the reduction
method and obtain the relevant Green’s function. In Sect. 3, we construct two results, one
handing the existence of solutions and the other one managing the uniqueness of solutions
under two different assumptions. In Sect. 4, we obtain the uniqueness of positive solutions
by using spectral radius theory. In Sect. 5, we prove the nonexistence of positive solutions.
In Sect. 6, we illustrate the main results by some examples.

2 Preliminaries
Definition 2.1 Let α > 0. The Riemann–Liouville fractional integral of order α for a func-
tion u : (0,∞) → (–∞, +∞) is defined by

Iα
0+ u(t) =

1
Γ (α)

∫ t

0
(t – s)α–1u(s) ds,

where Γ is the Euler gamma function, that is, Γ (t) =
∫ +∞

0 st–1e–s ds (t > 0), provided that
the right-hand side is pointwise defined on (0,∞).

Definition 2.2 Let α > 0. The Riemann–Liouville’s fractional derivative of order α for a
continuous function u : (0,∞) → (–∞, +∞) is defined by

Dα
0+ u(t) =

(
d
dt

)n

In–α
0+ u(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0

u(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] is the integer part of α, provided that the right-hand side is pointwise
defined on (0,∞). In particular, if α = n ∈ N+, then Dα

0+ u(t) = u(n)(t).

Lemma 2.1 ([64]) Let α > 0. Suppose that u ∈ C(0, 1) ∩ L1(0, 1). Then the equation

Dα
0+ u(t) = 0
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has a unique solution

u(t) = d1tα–1 + d2tα–2 + · · · + dN tα–N , di ∈ (–∞, +∞), i = 1, 2, . . . , N ,

where N is the smallest integer greater than or equal to α.

Lemma 2.2 ([64]) Suppose that u ∈ C(0, 1) ∩ L1(0, 1) and Dα
0+ u ∈ C(0, 1) ∩ L1(0, 1). Then

Iα
0+ Dα

0+ u(t) = u(t) + d1tα–1 + d2tα–2 + · · · + dN tα–N ,

where di ∈ (–∞, +∞) (i = 1, 2, . . . , N ), N is the smallest integer greater than or equal to α.

Lemma 2.3 ([5]) If u ∈ L1(0, 1) and α ≥ β > 0, then

Dα
0+ Iα

0+ u(t) = u(t), Dβ

0+ Iα
0+ u(t) = Iα–β

0+ u(t).

Let v = Dαn–2
0+ u. Then we can transform problem (1.1) into the equivalent problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα–αn–2
0+ v(t) + f (t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)) = 0,
Dβn–2–αn–2

0+ v(0) = 0, 0 < t < 1,
Dq0–αn–2

0+ v(1) = c1
∫ 1

0 g1(s)Dq1–αn–2
0+ v(s) dA1(s)

+ c2
∫ θ

0 g2(s)Dq2–αn–2
0+ v(s) dA2(s) + c3

∑m
i=1 γiD

q3–αn–2
0+ v(ξi),

(2.1)

where 1 < α – αn–2 ≤ 2.

Lemma 2.4 Suppose that problem (1.1) has a solution u ∈ C[0, 1]. Then problem (2.1) has
a solution v = Dαn–2

0+ u. On the contrary, if problem (2.1) has a solution v ∈ C[0, 1], then
problem (1.1) has a solution u = Iαn–2

0+ v.

Proof Suppose that problem (1.1) has a solution u ∈ C[0, 1]. Let

v(t) = Dαn–2
0+ u(t), t ∈ [0, 1]. (2.2)

In view of Lemma 2.2, we have

Iαn–2
0+ v(t) = Iαn–2

0+ Dαn–2
0+ u(t) = u(t) + d1tαn–2–1 + · · · + dn–2tαn–2–(n–2)

for some di ∈ (–∞, +∞) (i = 1, 2, . . . , n – 2), that is,

u(t) = Iαn–2
0+ v(t) – d1tαn–2–1 – · · · – dn–2tαn–2–(n–2).

The boundary conditions u(0) = Dβ1
0+u(0) = · · · = Dβn–3

0+ u(0) = 0 indicate that dn–2 = · · · =
d1 = 0. Hence we have

u(t) = Iαn–2
0+ v(t), t ∈ [0, 1]. (2.3)
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It follows from Lemma 2.3 that

Dαi
0+ u(t) = Dαi

0+ Iαn–2
0+ v(t) = Iαn–2–αi

0+ v(t), i = 1, 2, . . . , n – 3. (2.4)

Furthermore, we obtain

Dα
0+ u(t) = Dα

0+ Iαn–2
0+ v(t) =

dn

dtn In–α
0+ Iαn–2

0+ v(t) =
dn

dtn In–(α–αn–2)
0+ v(t)

=
d2

dt2
dn–2

dtn–2 In–2
0+ I2–(α–αn–2)

0+ v(t)

=
d2

dt2 I2–(α–αn–2)
0+ v(t) = Dα–αn–2

0+ v(t). (2.5)

Equivalently, we have

Dβn–2
0+ u(t) = Dβn–2–αn–2

0+ v(t), (2.6)

Dqi
0+ u(t) = Dqi–αn–2

0+ v(t), i = 0, 1, 2, 3. (2.7)

From (2.2)–(2.5) we have

Dα–αn–2
0+ v(t) + f

(
t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)
)

= Dα
0+u(t) + f

(
t, u(t), Dβ1

0+u(t), . . . , Dβn–3
0+ u(t), Dαn–2

0+ u(t)
)

= 0. (2.8)

It follows (2.6) and (2.7) that

Dβn–2–αn–2
0+ v(0) = Dβn–2

0+ u(0) = 0, (2.9)

Dq0–αn–2
0+ v(1) = Dq0

0+ u(1)

= c1

∫ 1

0
g1(s)Dq1–αn–2

0+ v(s) dA1(s) + c2

∫ θ

0
g2(s)Dq2–αn–2

0+ v(s) dA2(s)

+ c3

m∑

i=1

γiD
q3–αn–2
0+ v(ξi). (2.10)

According to (2.8), (2.9), and (2.10), we conclude that problem (2.1) has a solution v =
Dαn–2

0+ u.
On the contrary, if problem (2.1) has a solution v ∈ C[0, 1], then problem (1.1) has a

solution u = Iαn–2
0+ v. The proof is similar to that of Lemma 3 in [59], and we omit it. �

Remark 2.4 In view of Lemma 2.4, we infer that researching solutions of problem (1.1) is
equivalent to the work on considering solutions of problem (2.1) under the premise that
1 < α – αn–2 ≤ 2. Note that the corresponding integral operator of problem (2.1) can be
considered in the space C[0, 1], which avoids doing the work in a complex space. Therefore
our work focusses on problem (2.1) in the following:
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Lemma 2.5 Let h ∈ C(0, 1) ∩ L1(0, 1). Then the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα–αn–2
0+ v(t) + h(t) = 0, 0 < t < 1, 1 < α – αn–2 ≤ 2,

Dβn–2–αn–2
0+ v(0) = 0,

Dq0–αn–2
0+ v(1) = c1

∫ 1
0 g1(s)Dq1–αn–2

0+ v(s) dA1(s)
+ c2

∫ θ

0 g2(s)Dq2–αn–2
0+ v(s) dA2(s) + c3

∑m
i=1 γiD

q3–αn–2
0+ v(ξi)

(2.11)

is equivalent to

v(t) =
∫ 1

0
H(t, s)h(s) ds (2.12)

with

H(t, s) = H0(t, s) + tα–αn–2–1
(∫ 1

0
H1(τ , s)g1(τ ) dA1(τ )

)

+ tα–αn–2–1
(∫ θ

0
H2(τ , s)g2(τ ) dA2(τ )

)

+ tα–αn–2–1
m∑

i=1

γiH3(ξi, s), (2.13)

where

H0(t, s) =
1

Γ (α – αn–2)

{
tα–αn–2–1(1 – s)α–q0–1 – (t – s)α–αn–2–1, s ≤ t,
tα–αn–2–1(1 – s)α–q0–1, t ≤ s,

Hi(t, s) =
ci

σΓ (α – αn–2)Γ (α – qi)

{
tα–qi–1(1 – s)α–q0–1 – (t – s)α–qi–1, s ≤ t,
tα–qi–1(1 – s)α–q0–1, t ≤ s,

i = 1, 2, 3,

σ =
1

Γ (α – q0)
–

c1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) –

c3

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

	= 0.

Proof By Lemma 2.2 problem (2.11) can be rewritten as

v(t) = d1tα–αn–2–1 + d2tα–αn–2–2 –
∫ t

0

(t – s)α–αn–2–1

Γ (α – αn–2)
h(s) ds, (2.14)

where di ∈ (–∞, +∞) (i = 1, 2) are arbitrary constants. The condition Dβn–2–αn–2
0+ v(0) = 0

means that d2 = 0. So we have

v(t) = d1tα–αn–2–1 – Iα–αn–2
0+ h(t). (2.15)
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By Lemma 2.3 we have

Dq0–αn–2
0+ v(1) = d1

Γ (α – αn–2)
Γ (α – q0)

–
1

Γ (α – q0)

∫ 1

0
(1 – s)α–q0–1h(s) ds, (2.16)

Dq1–αn–2
0+ v(t) = d1

Γ (α – αn–2)
Γ (α – q1)

tα–q1–1 –
1

Γ (α – q1)

∫ t

0
(t – s)α–q1–1h(s) ds, (2.17)

Dq2–αn–2
0+ v(t) = d1

Γ (α – αn–2)
Γ (α – q2)

tα–q2–1 –
1

Γ (α – q2)

∫ t

0
(t – s)α–q2–1h(s) ds, (2.18)

Dq3–αn–2
0+ v(t) = d1

Γ (α – αn–2)
Γ (α – q3)

tα–q3–1 –
1

Γ (α – q3)

∫ t

0
(t – s)α–q3–1h(s) ds. (2.19)

Substituting (2.16)–(2.19) into the boundary condition

Dq0–αn–2
0+ v(1) = c1

∫ 1

0
g1(s)Dq1–αn–2

0+ v(s) dA1(s)

+ c2

∫ θ

0
g2(s)Dq2–αn–2

0+ v(s) dA2(s) + c3

m∑

i=1

γiD
q3–αn–2
0+ v(ξi),

we have

d1 =
1

σΓ (α – αn–2)

{
1

Γ (α – q0)

∫ 1

0
(1 – s)α–q0–1h(s) ds

–
c1

Γ (α – q1)

∫ 1

0

(∫ s

0
(s – τ )α–q1–1h(τ ) dτ

)

g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0

(∫ s

0
(s – τ )α–q2–1h(τ ) dτ

)

g2(s) dA2(s)

–
c3

Γ (α – q3)

m∑

i=1

γi

∫ ξi

0
(ξi – s)α–q3–1h(s) ds

}

,

where

σ =
1

Γ (α – q0)
–

c1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) –

c3

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i 	= 0. (2.20)

Hence we have

v(t) = –
1

Γ (α – αn–2)

∫ t

0
(t – s)α–αn–2–1h(s) ds

+
tα–αn–2–1

σΓ (α – αn–2)

{
1

Γ (α – q0)

∫ 1

0
(1 – s)α–q0–1h(s) ds

–
c1

Γ (α – q1)

∫ 1

0

(∫ s

0
(s – τ )α–q1–1h(τ ) dτ

)

g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0

(∫ s

0
(s – τ )α–q2–1h(τ ) dτ

)

g2(s) dA2(s)
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–
c3

Γ (α – q3)

m∑

i=1

γi

∫ ξi

0
(ξi – s)α–q3–1h(s) ds

}

= –
1

Γ (α – αn–2)

∫ t

0
(t – s)α–αn–2–1h(s) ds

+
tα–αn–2–1

Γ (α – αn–2)

∫ 1

0
(1 – s)α–q0–1h(s) ds

+
1

σΓ (α – αn–2)

∫ 1

0
(1 – s)α–q0–1h(s) ds

×
{

c1tα–αn–2–1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

+
c2tα–αn–2–1

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) +

c3tα–αn–2–1

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

}

–
c1tα–αn–2–1

σΓ (α – αn–2)Γ (α – q1)

∫ 1

0

(∫ s

0
(s – τ )α–q1–1h(τ ) dτ

)

g1(s) dA1(s)

–
c2tα–αn–2–1

σΓ (α – αn–2)Γ (α – q2)

∫ θ

0

(∫ s

0
(s – τ )α–q2–1h(τ ) dτ

)

g2(s) dA2(s)

–
c3tα–αn–2–1

σΓ (α – αn–2)Γ (α – q3)

m∑

i=1

γi

∫ ξi

0
(ξi – s)α–q3–1h(s) ds

=
1

Γ (α – αn–2)

{∫ 1

0
tα–αn–2–1(1 – s)α–q0–1h(s) ds

–
∫ t

0
(t – s)α–αn–2–1h(s) ds

}

+
c1tα–αn–2–1

σΓ (α – αn–2)Γ (α – q1)

{∫ 1

0

(∫ 1

0
sα–q1–1(1 – τ )α–q0–1h(τ ) dτ

–
∫ s

0
(s – τ )α–q1–1h(τ ) dτ

)

g1(s) dA1(s)
}

+
c2tα–αn–2–1

σΓ (α – αn–2)Γ (α – q2)

{∫ θ

0

(∫ 1

0
sα–q2–1(1 – τ )α–q0–1h(τ ) dτ

–
∫ s

0
(s – τ )α–q2–1h(τ ) dτ

)

g2(s) dA2(s)
}

+
c3tα–αn–2–1

σΓ (α – αn–2)Γ (α – q3)

m∑

i=1

γi

(∫ 1

0
ξ

α–q3–1
i (1 – τ )α–q0–1h(τ ) dτ

–
∫ ξi

0
(ξi – τ )α–q3–1h(τ ) dτ

)

.

Thus problem (2.11) has a unique solution

v(t) =
∫ 1

0
H0(t, s)h(s) ds +

∫ 1

0
tα–αn–2–1

(∫ 1

0
H1(s, τ )h(τ ) dτ

)

g1(s) dA1(s)

+
∫ θ

0
tα–αn–2–1

(∫ 1

0
H2(s, τ )h(τ ) dτ

)

g2(s) dA2(s)
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+ tα–αn–2–1
∫ 1

0

m∑

i=1

γiH3(ξi, s)h(s) ds

=
∫ 1

0
H0(t, s)h(s) ds +

∫ 1

0
tα–αn–2–1

(∫ 1

0
H1(τ , s)g1(τ ) dA1(τ )

)

h(s) ds

+
∫ 1

0
tα–αn–2–1

(∫ θ

0
H2(τ , s)g2(τ ) dA2(τ )

)

h(s) ds

+
∫ 1

0
tα–αn–2–1

m∑

i=1

γiH3(ξi, s)h(s) ds

=
∫ 1

0
H(t, s)h(s) ds, (2.21)

where H(t, s) is defined by (2.13). �

Lemma 2.6 Let ci ≥ 0 (i = 1, 2, 3), σ > 0 (defined in Lemma 2.5), and

∫ 1

0
tα–q1–1g1(t) dA1(t) ≥ 0,

∫ θ

0
tα–q2–1g2(t) dA2(t) ≥ 0.

Then the functions Hi(t, s) (i = 0, 1, 2, 3) defined in Lemma 2.5 satisfy the following proper-
ties:

(1) Hi ∈ C([0, 1] × [0, 1], [0, +∞)), and Hi(t, s) > 0 for t, s ∈ (0, 1), i = 0, 1, 2, 3.
(2) tα–αn–2–1K0(s) ≤ H0(t, s) ≤ tα–αn–2–1J0(s) for t, s ∈ [0, 1], where

K0(s) =
(1 – s)α–q0–1

Γ (α – αn–2)
(
1 – (1 – s)q0–αn–2

)
, J0(s) =

1
Γ (α – αn–2)

(1 – s)α–q0–1.

(3) tα–qi–1Ki(s) ≤ Hi(t, s) ≤ tα–qi–1Ji(s) for t, s ∈ [0, 1], where

Ki(s) =
ci

σΓ (α – αn–2)Γ (α – qi)
(1 – s)α–q0–1(1 – (1 – s)q0–qi

)
, i = 1, 2, 3,

Ji(s) =
ci

σΓ (α – αn–2)Γ (α – qi)
(1 – s)α–q0–1, i = 1, 2, 3.

Proof Obviously, (1) holds. We only prove (2) and (3).
(2) For 0 ≤ s ≤ t ≤ 1,

H0(t, s) ≥ 1
Γ (α – αn–2)

{
tα–αn–2–1(1 – s)α–q0–1 – (t – ts)α–αn–2–1}

≥ 1
Γ (α – αn–2)

tα–αn–2–1(1 – s)α–q0–1(1 – (1 – s)q0–αn–2
)

= tα–αn–2–1K0(s), (2.22)

H0(t, s) ≤ tα–αn–2–1

Γ (α – αn–2)
(1 – s)α–q0–1 = tα–αn–2–1J0(s). (2.23)
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For 0 ≤ t ≤ s ≤ 1,

H0(t, s) ≥ 1
Γ (α – αn–2)

tα–αn–2–1(1 – s)α–q0–1(1 – (1 – s)q0–αn–2
)

= tα–αn–2–1K0(s), (2.24)

H0(t, s) =
tα–αn–2–1

Γ (α – αn–2)
(1 – s)α–q0–1 = tα–αn–2–1J0(s). (2.25)

It follows from (2.22)–(2.25) that

tα–αn–2–1K0(s) ≤ H0(t, s) ≤ tα–αn–2–1J0(s).

(3) In a similar manner, we have

tα–qi–1Ki(s) ≤ Hi(t, s) ≤ tα–qi–1Ji(s), i = 1, 2, 3.

We omit the details. �

Lemma 2.7 Let ci ≥ 0 (i = 1, 2, 3), σ > 0 (defined in Lemma 2.5), and

∫ 1

0
tα–q1–1g1(t) dA1(t) ≥ 0,

∫ θ

0
tα–q2–1g2(t) dA2(t) ≥ 0.

Then the Green’s function H(t, s) (defined in (2.13)) has the following properties:
(1) H(t, s) ∈ C([0, 1] × [0, 1], [0, +∞)), and H(t, s) > 0 for t, s ∈ (0, 1).
(2) tα–αn–2–1K(s) ≤ H(t, s) ≤ tα–αn–2–1J(s) for t, s ∈ [0, 1], where

K(s) = K0(s) + K1(s)
(∫ 1

0
τα–q1–1g1(τ ) dA1(τ )

)

+ K2(s)
(∫ θ

0
τα–q2–1g2(τ ) dA2(τ )

)

+ K3(s)
m∑

i=1

γiξ
α–q3–1
i ,

J(s) = J0(s) + J1(s)
(∫ 1

0
τα–q1–1g1(τ ) dA1(τ )

)

+ J2(s)
(∫ θ

0
τα–q2–1g2(τ ) dA2(τ )

)

+ J3(s)
m∑

i=1

γiξ
α–q3–1
i .

Proof The conclusion can be directly deduced from Lemma 2.6. So, we omit the details. �

Definition 2.3 ([8]) Let P be a cone in the Banach space E. A positive linear operator
A : E → E is called a u0-bounded linear operator if there exists u0 ∈ P \ {θ} such that for
any v ∈ P \ {θ}, there exist constants α,β > 0 and n ∈ N+ such that αu0 ≤ Anv ≤ βu0.

Lemma 2.8 ([9, 10]) Let P be a cone in the Banach space E, and let A : E → E be a com-
pletely continuous positive linear operator. If there exist z ∈ P – P \ (–P) and d > 0 such
that dAz ≥ z, then the spectral radius r(A) 	= 0, and A has a positive eigenfunction ψ that
belongs to the first eigenvalue λ1 = (r(A))–1 such that λ1Aψ = ψ .
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Lemma 2.9 ([9, 10]) Let P be a generating cone in the Banach space E, that is, E = P – P.
Let A is a completely continuous u0-bounded linear operator. If the spectral radius r(A) 	= 0,
then A has an eigenfunction ψ ∈ P\{θ} that belongs to the first eigenvalue λ1 = (r(A))–1 such
that λ1Aψ = ψ , and A has no other positive eigenvalue that has positive eigenfunctions.

In this paper, we define the Banach space E = C[0, 1] with the norm ‖v‖ = sup0≤t≤1 |v(t)|.
Let P = {v ∈ E, v(t) ≥ 0, t ∈ [0, 1]} be a cone in E. It is easy to check that P is generating in
E, that is, E = P – P. Now, we define the nonlinear operator T : E → E by

(Tv)(t) =
∫ 1

0
H(t, s)f

(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s),

. . . , Iαn–2–αn–3
0+ v(s), v(s)

)
ds, t ∈ [0, 1]. (2.26)

Observe that v is a solution of problem (2.1) if and only if v is a fixed point of the operator
T in E.

3 Existence and uniqueness of solutions
Now we make the following assumptions:

(C1) f : (0, 1) × (–∞, +∞)n–1 → (–∞, +∞) satisfies the Carathéodory conditions, that
is:

(1) f (·, x0, x1, . . . , xn–2) : (0, 1) → (–∞, +∞) is measurable for any fixed
(x0, x1, . . . , xn–2) ∈ (–∞, +∞)n–1;

(2) f (t, ·, ·, . . . , ·) : (–∞, +∞)n–1 → (–∞, +∞) is continuous for a.e. t ∈ [0, 1];
(3) for any r > 0, there exists ψr ∈ L1(0, 1) such that |f (t, x0, x1, . . . , xn–2)| ≤ ψr(t)

for all xi ∈ [–r, r] (i = 0, 1, . . . , n – 2) and a.e. t ∈ [0, 1].
(C2) For any r > 0, there exist nonnegative functions kr,i(t) ∈ L1(0, 1) (i = 0, 1, . . . , n – 2)

such that for all t ∈ (0, 1) and (x0, x1, . . . , xn–2), (y0, y1, . . . , yn–2) ∈ [–r, r]n–1,

∣
∣f (t, x0, . . . , xn–2) – f (t, y0, . . . , yn–2)

∣
∣ ≤ kr,0(t)|x0 – y0| + · · · + kr,n–2(t)|xn–2 – yn–2|.

(C3) f0(t) = |f (t, 0, 0, . . . , 0)| ∈ L1(0, 1), and f0(t) is not identical zero in any closed subin-
terval of (0, 1).

(C4) There exist nonnegative functions qi(t) ∈ L1(0, 1) (i = 0, 1, . . . , n – 2) such that for
any t ∈ (0, 1) and (x0, x1, . . . , xn–2), (y0, y1, . . . , yn–2) ∈ (–∞, +∞)n–1,

∣
∣f (t, x0, . . . , xn–2) – f (t, y0, . . . , yn–2)

∣
∣ ≤ p0(t)|x0 – y0| + · · · + pn–2(t)|xn–2 – yn–2|.

In the following, for convenience, we set

mΓ = min
t>0

Γ (t), MH = max
t,s∈[0,1]

H(t, s),

where Γ is the Euler gamma function, that is, Γ (t) =
∫ +∞

0 st–1e–s ds (t > 0). Obviously,
MH > 0. By the definition of Γ we have 0 < mΓ < 1.

Theorem 3.1 Assume the condition (C1) holds. If lim supr→+∞
‖ψr‖L

r < mΓ

MH
, then there exists

at least one solution of problem (1.1) on [0, 1], where ‖ψr‖L =
∫ 1

0 |ψr(s)|ds.
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Proof Obviously, T : E → E is well defined. By the definition of upper limit there exists
r0 > 0 such that

‖ψr‖L

r
≤ mΓ

MH
, r ≥ r0.

For any r1 ≥ r0, there exists ψr1 ∈ L1(0, 1) such that

∣
∣f (t, x0, . . . , xn–2)

∣
∣ ≤ ψr1 (t), xi ∈ [–r1, r1], i = 0, 1, . . . , n – 2, a.e. t ∈ [0, 1], (3.1)

and r1 ≥ MH‖ψr1 ‖L
mΓ

. Let Br2 = {v ∈ E : ‖v‖ ≤ r2, MH‖ψr1‖L ≤ r2 ≤ mΓ r1}. As a first step, we
show that TBr2 ⊂ Br2 .

By calculation, for any v ∈ Br2 , t ∈ [0, 1], we have v(t) ≤ r2 ≤ r1, and

∣
∣Iαn–2

0+ v(t)
∣
∣ =

1
Γ (αn–2)

∣
∣
∣
∣

∫ t

0
(t – s)αn–2–1v(s) ds

∣
∣
∣
∣

≤ r2

Γ (αn–2)

∣
∣
∣
∣

∫ t

0
(t – s)αn–2–1 ds

∣
∣
∣
∣

≤ r2

Γ (αn–2 + 1)
≤ r1, (3.2)

∣
∣Iαn–2–αi

0+ v(t)
∣
∣ =

1
Γ (αn–2 – αi)

∣
∣
∣
∣

∫ t

0
(t – s)αn–2–αi–1v(s) ds

∣
∣
∣
∣

≤ r2

Γ (αn–2 – αi)

∣
∣
∣
∣

∫ t

0
(t – s)αn–2–αi–1 ds

∣
∣
∣
∣

≤ r2

Γ (αn–2 – αi + 1)

≤ mΓ r1

Γ (αn–2 – αi + 1)
≤ r1, i = 1, 2, . . . , n – 3, (3.3)

which, together with (3.1), means that

‖Tv‖ ≤ MH

∣
∣
∣
∣

∫ 1

0
ψr1 (s) ds

∣
∣
∣
∣ = MH‖ψr1‖L ≤ r2. (3.4)

Thus TBr2 ⊂ Br2 , so that TBr2 is uniformly bounded.
Next, we show that TBr2 is equicontinuous. For any v ∈ Br2 , t1, t2 ∈ [0, 1], we have

∣
∣Tv(t1) – Tv(t2)

∣
∣

≤
∫ 1

0

∣
∣H(t1, s) – H(t2, s)

∣
∣
∣
∣f

(
s, Iαn–2

0+ v(s), . . . , Iαn–2–αn–3
0+ v(s), v(s)

)∣
∣ds

≤
∫ 1

0

∣
∣H(t1, s) – H(t2, s)

∣
∣
∣
∣ψr1 (s)

∣
∣ds. (3.5)

Since H(t, s) is continuous on [0, 1] × [0, 1], it is uniformly continuous on [0, 1] × [0, 1].
Since ψr1 ∈ L1(0, 1), (3.5) implies that TBr2 is equicontinuous on [0, 1].

In the following, we show that T : Br2 → Br2 is continuous. Let {vm} ⊂ Br2 be a
sequence such that limm→∞ vm = v in E. For fixed s ∈ [0, 1] \ Ξ , where mes(Ξ ) = 0,
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f (s, x0, x1, . . . , xn–2) is continuous on (–∞, +∞)n–1 with respect to (x0, x1, . . . , xn–2). It fol-
lows that f (s, x0, x1, . . . , xn–2) is uniformly continuous with respect to (x0, x1, . . . , xn–2) ∈
[–r1, r1]n–1. Hence, for fixed s ∈ [0, 1] \ Ξ , for all ε > 0, there exists δ = δ(s, ε) > 0 such
that, for any xi, yi ∈ [–r1, r1] such that |xi – yi| < δ (i = 0, 1, . . . , n – 2), we have

∣
∣f (s, x0, x1, . . . , xn–2) – f (s, y0, y1, . . . , yn–2)

∣
∣ < ε. (3.6)

Since limm→∞ vm = v, for the above δ > 0, there exists N0 ∈ N+ such that, for any m ≥ N0,

‖vm – v‖ < mΓ δ < δ.

Especially, we have

∣
∣vm(s) – v(s)

∣
∣ < mΓ δ < δ. (3.7)

Furthermore, we calculate that

∣
∣Iαn–2

0+ vm(s) – Iαn–2
0+ v(s)

∣
∣

=
1

Γ (αn–2)

∣
∣
∣
∣

∫ s

0
(s – τ )αn–2–1vm(τ ) dτ –

∫ s

0
(s – τ )αn–2–1v(τ ) dτ

∣
∣
∣
∣

≤ ‖vm – v‖
Γ (αn–2)

∫ s

0
(s – τ )αn–2–1 dτ

<
mΓ δ

Γ (αn–2)

∫ s

0
(s – τ )αn–2–1 dτ

≤ mΓ δ

Γ (αn–2 + 1)
≤ δ, (3.8)

∣
∣Iαn–2–αi

0+ vm(s) – Iαn–2–αi
0+ v(s)

∣
∣

=
1

Γ (αn–2 – αi)

∣
∣
∣
∣

∫ s

0
(s – τ )αn–2–αi–1vm(τ ) dτ –

∫ s

0
(s – τ )αn–2–αi–1v(τ ) dτ

∣
∣
∣
∣

≤ ‖vm – v‖
Γ (αn–2 – αi)

∫ s

0
(s – τ )αn–2–αi–1 dτ

<
mΓ δ

Γ (αn–2 – αi)

∫ s

0
(s – τ )αn–2–αi–1 dτ

≤ mΓ δ

Γ (αn–2 – αi + 1)
≤ δ, i = 1, 2, . . . , n – 3. (3.9)

Hence by (3.6)–(3.9) we infer that for fixed s ∈ [0, 1] \ Γ , for m ≥ N0,

∣
∣f

(
s, Iαn–2

0+ vm(s), Iαn–2–α1
0+ vm(s), . . . , Iαn–2–αn–3

0+ vm(s), vm(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ < ε.

Evidently, we derive that, for a.e. s ∈ [0, 1],

∣
∣f

(
s, Iαn–2

0+ vm(s), Iαn–2–α1
0+ vm(s), . . . , Iαn–2–αn–3

0+ vm(s), vm(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ → 0, m → ∞. (3.10)
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On the other hand, condition (C1) implies that, for a.e. s ∈ [0, 1],

∣
∣f

(
s, Iαn–2

0+ vm(s), Iαn–2–α1
0+ vm(s), . . . , Iαn–2–αn–3

0+ vm(s), vm(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣

≤ 2ψr1 (s), (3.11)

where ψr1 ∈ L1(0, 1). The Lebesgue dominated convergence theorem and (3.10) guarantee
that, for any t ∈ [0, 1],

∣
∣Tvm(t) – Tv(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
H(t, s)

(
f
(
s, Iαn–2

0+ vm(s), . . . , Iαn–2–αn–3
0+ vm(s), vm(s)

)

– f
(
s, Iαn–2

0+ v(s), . . . , Iαn–2–αn–3
0+ v(s), v(s)

))
ds

∣
∣
∣
∣

≤ MH

∫ 1

0

∣
∣f

(
s, Iαn–2

0+ vm(s), Iαn–2–α1
0+ vm(s), . . . , Iαn–2–αn–3

0+ vm(s), vm(s)
)

– f
(
s, Iαn–2

0+ v(s), . . . , Iαn–2–αn–3
0+ v(s), v(s)

)∣
∣ds → 0, m → ∞, (3.12)

that is,

‖Tvm – Tv‖ = max
t∈[0,1]

∣
∣Tvm(t) – Tv(t)

∣
∣ → 0, m → ∞. (3.13)

Thus T : Br2 → Br2 is continuous. From the above proof we deduce that the operator T :
Br2 → Br2 is completely continuous. By using the Schauder fixed point theorem T has a
fixed point v in Br2 , that is, v is a solution of problem (2.1) on [0, 1]. Furthermore, in view
of Lemma 2.4 and (3.2), we derive that u = Iαn–2

0+ v is a solution of problem (1.1) that satisfies
‖u‖ ≤ r2

Γ (αn–2+1) . �

Theorem 3.2 Assume that a function f ∈ C((0, 1)×(–∞, +∞)n–1, (–∞, +∞)) satisfies (C2)
and (C3). Then problem (1.1) has a unique solution, provided that

lim inf
r→+∞

(

mΓ – MH

n–2∑

i=0

‖kr,i‖L

)

r > MH‖f0‖L > 0,

where ‖kr,i‖L =
∫ 1

0 kr,i(t) dt (i = 0, 1, . . . , n – 2) and ‖f0‖L =
∫ 1

0 |f (t, 0, 0, . . . , 0)|dt.

Proof By the definition of lower limit, for r3 > 0 large enough, there exist nonnegative
functions kr3,i(t) ∈ L1(0, 1) (i = 0, 1, . . . , n – 2) satisfying (C2) and

0 < MH‖f0‖L ≤
(

mΓ – MH

n–2∑

i=0

‖kr3,i‖L

)

r3. (3.14)

Let Br4 = {u ∈ E : ‖x‖ ≤ r4, MH (r3
∑n–2

i=0 ‖kr3,i‖L + ‖f0‖L) ≤ r4 ≤ mΓ r3}. We first prove that
TBr4 ⊂ Br4 . By the same proof as that of Theorem 3.1, for any v ∈ Br4 , t ∈ (0, 1), we have
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v(t) ≤ r4 ≤ r3,

∣
∣Iαn–2

0+ v(t)
∣
∣ ≤ r4

Γ (αn–2 + 1)
≤ mΓ r3

Γ (αn–2 + 1)
≤ r3 (3.15)

and

∣
∣Iαn–2–αi

0+ v(t)
∣
∣ ≤ r4

Γ (αn–2 – αi + 1)
≤ r3, i = 1, 2, . . . , n – 3. (3.16)

Hence we get that, for any v ∈ Br4 and t ∈ (0, 1),

∣
∣f

(
t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)
)∣
∣

≤ ∣
∣f

(
t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)
)

– f (t, 0, 0, . . . , 0)
∣
∣

+
∣
∣f (t, 0, 0, . . . , 0)

∣
∣

≤ (
kr3,0(t) + kr3,1(t) + · · · + kr3,n–2(t)

)
r3 +

∣
∣f (t, 0, 0, . . . , 0)

∣
∣, (3.17)

which implies

‖Tv‖ ≤ MH

∫ 1

0

∣
∣f

(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ds

≤ MH

∫ 1

0

((
kr3,0(s) + kr3,1(s) + · · · + kr3,n–2(s)

)
r3 +

∣
∣f (s, 0, 0, . . . , 0)

∣
∣
)

ds

= MH

(

r3

n–2∑

i=0

‖kr3,i‖L + ‖f0‖L

)

≤ r4, (3.18)

that is, TBr4 ⊂ Br4 . In the following, we prove that T is a contraction mapping. In fact, for
any u, v ∈ Br4 and t ∈ (0, 1), we have

∣
∣Iαn–2

0+ u(t) – Iαn–2
0+ v(t)

∣
∣ ≤ ‖u – v‖

Γ (αn–2 + 1)
≤ 1

mΓ

‖u – v‖, (3.19)

∣
∣Iαn–2–αi

0+ u(t) – Iαn–2–αi
0+ v(t)

∣
∣ ≤ ‖u – v‖

Γ (αn–2 – αi + 1)

≤ 1
mΓ

‖u – v‖ (i = 1, . . . , n – 3). (3.20)

Moreover, from (3.15) and (3.16) we deduce that, for any u, v ∈ Br4 and t ∈ (0, 1),

∣
∣f

(
t, Iαn–2

0+ u(t), Iαn–2–α1
0+ u(t), . . . , Iαn–2–αn–3

0+ u(t), u(t)
)

– f
(
t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)
)∣
∣

≤ kr3,0(t)
∣
∣Iαn–2

0+ u(t) – Iαn–2
0+ v(t)

∣
∣ + kr3,1(t)

∣
∣Iαn–2–α1

0+ u(t) – Iαn–2–α1
0+ v(t)

∣
∣

+ · · ·
+ kr3,n–3(t)

∣
∣Iαn–2–αn–3

0+ u(t) – Iαn–2–αn–3
0+ v(t)

∣
∣ + kr3,n–2(t)

∣
∣u(t) – v(t)

∣
∣
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= kr3,0(t)
∣
∣Iαn–2

0+
(
u(t) – v(t)

)∣
∣ + kr3,1(t)

∣
∣Iαn–2

0+
(
u(t) – v(t)

)∣
∣ + · · ·

+ kr3,n–3(t)
∣
∣Iαn–2–αn–3

0+
(
u(t) – v(t)

)∣
∣ + kr3,n–2(t)

∣
∣u(t) – v(t)

∣
∣. (3.21)

Therefore from (3.19)–(3.21) we deduce that

‖Tu – Tv‖

≤ sup
t∈[0,1]

∫ 1

0

∣
∣H(t, s)

∣
∣
∣
∣f

(
s, Iαn–2

0+ u(s), Iαn–2–α1
0+ u(s), . . . , Iαn–2–αn–3

0+ u(s), u(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ds

≤ MH

∫ 1

0

∣
∣f

(
s, Iαn–2

0+ u(s), Iαn–2–α1
0+ u(s), . . . , Iαn–2–αn–3

0+ u(s), u(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ds

≤ MH

∫ 1

0

(
kr3,0(s)

∣
∣Iαn–2

0+
(
u(s) – v(s)

)∣
∣ + kr3,1(s)

∣
∣Iαn–2

0+
(
u(s) – v(s)

)∣
∣ + · · ·

+ kr3,n–3(s)
∣
∣Iαn–2–αn–3

0+
(
u(s) – v(s)

)∣
∣ + kr3,n–2(s)

∣
∣u(s) – v(s)

∣
∣
)

ds

≤ MH

mΓ

‖u – v‖
∫ 1

0

(
kr3,0(s) + kr3,1(s) + · · · + kr3,n–2(s)

)
ds

=
MH

mΓ

n–2∑

i=0

‖kr3,i‖L‖u – v‖. (3.22)

From (3.14) we get that MH
mΓ

∑n–2
i=0 ‖kr3,i‖L < 1, which allows us to infer that T is a contrac-

tion mapping. In consequence, by the Banach contraction mapping principle we deduce
that problem (2.1) has a unique solution v on [0, 1]. In addition, according to Lemma 2.4,
we find that u = Iαn–2

0+ v is the unique solution of problem (1.1) on [0, 1], which satisfies
‖u‖ ≤ r4

Γ (αn–2+1) . �

Theorem 3.3 Let f : (0, 1) × (–∞, +∞)n–1 → (–∞, +∞) be a continuous function such
that condition (C4) holds. Then problem (1.1) has a unique solution, provided that
MH
mΓ

∑n–2
i=0 ‖pi‖L < 1, where ‖pi‖L =

∫ 1
0 pi(t) dt (i = 0, 1, . . . , n – 2).

Proof For any u, v ∈ E and t ∈ (0, 1), we have

∣
∣Iαn–2

0+ u(t) – Iαn–2
0+ v(t)

∣
∣ ≤ ‖u – v‖

Γ (αn–2 + 1)
≤ 1

mΓ

‖u – v‖, (3.23)

∣
∣Iαn–2–αi

0+ u(t) – Iαn–2–αi
0+ v(t)

∣
∣ ≤ ‖u – v‖

Γ (αn–2 – αi + 1)

≤ 1
mΓ

‖u – v‖, i = 1, . . . , n – 3. (3.24)

Moreover, by (C4) we have

∣
∣f

(
t, Iαn–2

0+ u(t), Iαn–2–α1
0+ u(t), . . . , Iαn–2–αn–3

0+ u(t), u(t)
)

– f
(
t, Iαn–2

0+ v(t), Iαn–2–α1
0+ v(t), . . . , Iαn–2–αn–3

0+ v(t), v(t)
)∣
∣
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≤ p0(t)
∣
∣Iαn–2

0+ u(t) – Iαn–2
0+ v(t)

∣
∣ + p1(t)

∣
∣Iαn–2–α1

0+ u(t) – Iαn–2–α1
0+ v(t)

∣
∣ + · · ·

+ pn–3(t)
∣
∣Iαn–2–αn–3

0+ u(t) – Iαn–2–αn–3
0+ v(t)

∣
∣ + pn–2(t)

∣
∣u(t) – v(t)

∣
∣

= p0(t)
∣
∣Iαn–2

0+
(
u(t) – v(t)

)∣
∣ + p1(t)

∣
∣Iαn–2

0+
(
u(t) – v(t)

)∣
∣ + · · ·

+ pn–3(t)
∣
∣Iαn–2–αn–3

0+
(
u(t) – v(t)

)∣
∣ + pn–2(t)

∣
∣u(t) – v(t)

∣
∣. (3.25)

Hence it follows that

‖Tu – Tv‖

≤ sup
t∈[0,1]

∫ 1

0

∣
∣H(t, s)

∣
∣
∣
∣f

(
s, Iαn–2

0+ u(s), Iαn–2–α1
0+ u(s), . . . , Iαn–2–αn–3

0+ u(s), u(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ds

≤ MH

∫ 1

0

∣
∣f

(
s, Iαn–2

0+ u(s), Iαn–2–α1
0+ u(s), . . . , Iαn–2–αn–3

0+ u(s), u(s)
)

– f
(
s, Iαn–2

0+ v(s), Iαn–2–α1
0+ v(s), . . . , Iαn–2–αn–3

0+ v(s), v(s)
)∣
∣ds

≤ MH

∫ 1

0

(
p0(s)

∣
∣Iαn–2

0+
(
u(s) – v(s)

)∣
∣ + p1(s)

∣
∣Iαn–2

0+
(
u(s) – v(s)

)∣
∣ + · · ·

+ pn–3(s)
∣
∣Iαn–2–αn–3

0+
(
u(s) – v(s)

)∣
∣ + pn–2(s)

∣
∣u(s) – v(s)

∣
∣
)

ds

≤ MH

mΓ

‖u – v‖
∫ 1

0

(
p0(s) + p1(s) + · · · + pn–2(s)

)
ds

=
MH

mΓ

n–2∑

i=0

‖pi‖L‖u – v‖. (3.26)

Since MH
mΓ

∑n–2
i=0 ‖pi‖L < 1, T is a contraction mapping. By the Banach contraction mapping

principle we derive that problem (2.1) has a unique solution v on [0, 1]. Furthermore, ac-
cording to Lemma 2.4, we have that u = Iαn–2

0+ v is the unique solution of problem (1.1) on
[0, 1]. �

Remark 3.3 In Theorems 3.2 and 3.3, we get the uniqueness of solutions by using the
Banach contraction mapping principle. It should be noted that in Theorem 3.2 the range
of the solution is a ball, which is more accurate than Theorem 3.3. However, Theorem 3.3
has less restrictions on the corresponding parameters.

4 The uniqueness of positive solutions
Now, we make the following assumptions:

(C5) there exist nonnegative functions li(t) ∈ C(0, 1) ∩ L1(0, 1) (i = 0, 1, . . . , n – 2) and
a constant k1 ≥ 0 such that for any t ∈ [0, 1] and (x0, . . . , xn–2), (y0, . . . , yn–2) ∈
[0, +∞)n–1,

∣
∣f (t, x0, . . . , xn–2) – f (t, y0, . . . , yn–2)

∣
∣

≤ k1
(
l0(t)|x0 – y0| + · · · + ln–2(t)|xn–2 – yn–2|

)
.
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Define the operator L1 : E → E by

(L1v)(t) =
∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+ v(s) + l1(s)Iαn–2–α1
0+ v(s) + · · ·

+ ln–3(s)Iαn–2–αn–3
0+ v(s) + ln–2(s)v(s)

)
ds, t ∈ [0, 1]. (4.1)

Lemma 4.1 The spectral radius r(L1) 	= 0, and L1 has a positive eigenfunction ψ1 that be-
longs to the first eigenvalue λL1 = (r(L1))–1 such that λL1 L1ψ1 = ψ1.

Proof We have

(L1u)(t) =
∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+ u(s) + l1(s)Iαn–2–α1
0+ u(s)

+ · · · + ln–3(s)Iαn–2–αn–3
0+ u(s) + ln–2(s)u(s)

)
ds

=
∫ 1

0

(
1

Γ (αn–2)

∫ 1

ν

H(t, s)l0(s)(s – ν)αn–2–1 ds
)

u(ν) dν

+
∫ 1

0

(
1

Γ (αn–2 – α1)

∫ 1

ν

H(t, s)l1(s)(s – ν)αn–2–α1–1 ds
)

u(ν) dν

+ · · ·

+
∫ 1

0

(
1

Γ (αn–2 – αn–3)

∫ 1

ν

H(t, s)ln–3(s)(s – ν)αn–2–αn–3–1 ds
)

u(ν) dν

+
∫ 1

0
H(t, s)ln–2(s)u(s) ds

=
∫ 1

0

(
1

Γ (αn–2)

∫ 1

s
H(t,ν)l0(ν)(ν – s)αn–2–1 dν

)

u(s) ds

+
∫ 1

0

(
1

Γ (αn–2 – α1)

∫ 1

s
H(t,ν)l1(ν)(ν – s)αn–2–α1–1 dν

)

u(s) ds

+ · · ·

+
∫ 1

0

(
1

Γ (αn–2 – αn–3)

∫ 1

s
H(t,ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

)

u(s) ds

+
∫ 1

0
H(t, s)ln–2(s)u(s) ds

=
∫ 1

0
K(t, s)u(s) ds,

where

K(t, s) =
1

Γ (αn–2)

∫ 1

s
H(t,ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
H(t,ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·
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+
1

Γ (αn–2 – αn–3)

∫ 1

s
H(t,ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ H(t, s)ln–2(s). (4.2)

By standard arguments the operator L1 : P → P is completely continuous. By the prop-
erties of H(t, s) there exists a closed interval [t0, t1] ⊂ (0, 1) such that H(t, s) > 0 for t, s ∈
[t0, t1]. Take a function z ∈ C[0, 1] satisfying z(t) > 0 for t ∈ (t0, t1) and z(t) = 0 for t /∈ (t0, t1).
Then, for any t ∈ [t0, t1],

(L1z)(t) =
∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+ z(s) + l1(s)Iαn–2–α1
0+ z(s)

+ · · · + ln–3(s)Iαn–2–αn–3
0+ z(s) + ln–2(s)z(s)

)
ds

≥
∫ b

a
H(t, s)

(
l0(s)Iαn–2

0+ z(s) + l1(s)Iαn–2–α1
0+ z(s)

+ · · · + ln–3(s)Iαn–2–αn–3
0+ z(s) + ln–2(s)z(s)

)
ds

> 0.

On the basis of the density of (–∞, +∞), there exists d > 0 such that d(L1z)(t) ≥ z(t),
t ∈ [0, 1]. On the other hand, P is generating in C[0, 1], that is, C[0, 1] = P – P. Thus by
Lemma 2.8 we infer that r(L1) 	= 0 and L1 has a positive eigenfunction ψ1, which belongs
to the first eigenvalue λL1 = (r(L1))–1, such that λL1 L1ψ1 = ψ1. �

Lemma 4.2 The operator L1 is a u0-bounded linear operator with u0(t) = tα–αn–2–1.

Proof By Lemma 2.7 we have

K(t, s) =
1

Γ (αn–2)

∫ 1

s
H(t,ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
H(t,ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·

+
1

Γ (αn–2 – αn–3)

∫ 1

s
H(t,ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ H(t, s)ln–2(s)

≥ tα–αn–2–1
(

1
Γ (αn–2)

∫ 1

s
K(ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
K(ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·

+
1

Γ (αn–2 – αn–3)

∫ 1

s
K(ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ K(s)ln–2(s)
)
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and

K(t, s) ≤ tα–αn–2–1
(

1
Γ (αn–2)

∫ 1

s
J(ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
J(ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·

+
1

Γ (αn–2 – αn–3)

∫ 1

s
J(ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ J(s)ln–2(s)
)

.

Thus, for any u ∈ P \ {θ}, t ∈ [0, 1],

(L1u)(t) =
∫ 1

0
K(t, s)u(s) ds

≥ tα–αn–2–1
(∫ 1

0

(
1

Γ (αn–2)

∫ 1

s
K(ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
K(ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·

+
1

Γ (αn–2 – αn–3)

∫ 1

s
K(ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ K(s)ln–2(s)
)

u(s) ds
)

,

(L1u)(t) =
∫ 1

0
K(t, s)u(s) ds

≤ tα–αn–2–1
(∫ 1

0

(
1

Γ (αn–2)

∫ 1

s
J(ν)l0(ν)(ν – s)αn–2–1 dν

+
1

Γ (αn–2 – α1)

∫ 1

s
J(ν)l1(ν)(ν – s)αn–2–α1–1 dν

+ · · ·

+
1

Γ (αn–2 – αn–3)

∫ 1

s
J(ν)ln–3(ν)(ν – s)αn–2–αn–3–1 dν

+ J(s)ln–2(s)
)

u(s) ds
)

.

This implies that L1 is a u0-bounded operator with u0(t) = tα–αn–2–1. The proof is com-
plete. �

Remark 4.2 Since L1 is a u0-bounded linear operator, we have that, for the positive eigen-
function ψ1 defined in Lemma 4.1, there exist constants α(ψ1) > 0 and β(ψ1) > 0 such
that α(ψ1)u0 ≤ L1ψ1 = λ–1

L1
ψ1 ≤ β(ψ1)u0. Accordingly, we have (β(ψ1)λL1 )–1ψ1 ≤ u0 ≤

(α(ψ1)λL1 )–1ψ1.
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Theorem 4.1 Assume that a function f ∈ C([0, 1]× [0, +∞)n–1, [0, +∞)) satisfies condition
(C5). If k1 ∈ [0,λL1 ), then problem (1.1) has a unique positive solution.

Proof For any v0 ∈ P \ {θ}, let vm = Tvm–1 (m = 1, 2, . . .). Since L1 is a u0-bounded linear
operator, by Remark 4.2 we have that there exists β(|v1 – v0|) > 0 such that

L1
(|v1 – v0|

) ≤ β
(|v1 – v0|

)
u0 ≤ β

(|v1 – v0|
)(

α(ψ1)λL1

)–1
ψ1.

Then we get

∣
∣v2(t) – v1(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
H(t, s)

(
f
(
s, Iαn–2

0+ v1(s), Iαn–2–α1
0+ v1(s), . . . , Iαn–2–αn–3

0+ v1(s), v1(s)
)

– f
(
s, Iαn–2

0+ v0(s), Iαn–2–α1
0+ v0(s), . . . , Iαn–2–αn–3

0+ v0(s), v0(s)
))

ds
∣
∣
∣
∣

≤ k1

∫ 1

0
H(t, s)

(
l0(s)

∣
∣Iαn–2

0+
(
v1(s) – v0(s)

)∣
∣ + l1(s)

∣
∣Iαn–2–α1

0+
(
v1(s) – v0(s)

)∣
∣

+ · · · + ln–3(s)
∣
∣Iαn–2–αn–3

0+
(
v1(s) – v0(s)

)∣
∣ + ln–2(s)

∣
∣v1(s) – v0(s)

∣
∣
)

ds

≤ k1

∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+
∣
∣v1(s) – v0(s)

∣
∣ + l1(s)Iαn–2–α1

0+
∣
∣v1(s) – v0(s)

∣
∣

+ · · · + ln–3(s)Iαn–2–αn–3
0+

∣
∣v1(s) – v0(s)

∣
∣ + ln–2(s)

∣
∣v1(s) – v0(s)

∣
∣
)

ds

= k1L1
(|v1 – v0|

)
(t),

∣
∣v3(t) – v2(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
H(t, s)

(
f
(
s, Iαn–2

0+ v2(s), Iαn–2–α1
0+ v2(s), . . . , Iαn–2–αn–3

0+ v2(s), v2(s)
)

– f
(
s, Iαn–2

0+ v1(s), Iαn–2–α1
0+ v1(s), . . . , Iαn–2–αn–3

0+ v1(s), v1(s)
))

ds
∣
∣
∣
∣

≤ k1

∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+
∣
∣v2(s) – v1(s)

∣
∣ + l1(s)Iαn–2–α1

0+
∣
∣v2(s) – v1(s)

∣
∣

+ · · · + ln–3(s)Iαn–2–αn–3
0+

∣
∣v2(s) – v1(s)

∣
∣ + ln–2(s)

∣
∣v2(s) – v1(s)

∣
∣
)

ds

= k1L1
(|v2 – v1|

)
(t) ≤ k2

1L2
1
(|v1 – v0|

)
(t),

· · ·
∣
∣vm+1(t) – vm(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
H(t, s)

(
f
(
s, Iαn–2

0+ vm(s), Iαn–2–α1
0+ vm(s), . . . , Iαn–2–αn–3

0+ vm(s), vm(s)
)

– f
(
s, Iαn–2

0+ vm–1(s), Iαn–2–α1
0+ vm–1(s), . . . , Iαn–2–αn–3

0+ vm–1(s), vm–1(s)
))

ds
∣
∣
∣
∣

≤ k1

∫ 1

0
H(t, s)

(
l0(s)Iαn–2

0+
∣
∣vm(s) – vm–1(s)

∣
∣ + l1(s)Iαn–2–α1

0+
∣
∣vm(s) – vm–1(s)

∣
∣

+ · · · + ln–3(s)Iαn–2–αn–3
0+

∣
∣vm(s) – vm–1(s)

∣
∣ + ln–2(s)

∣
∣vm(s) – vm–1(s)

∣
∣
)

ds



Wang et al. Journal of Inequalities and Applications        (2020) 2020:196 Page 22 of 32

= k1L1
(|vm – vm–1|

)
(t)

≤ km
1 Lm

1
(|v1 – v0|

)
(t)

≤ km
1 β

(|v1 – v0|
)(

α(ψ1)λL1

)–1Lm–1
1

(
ψ1(t)

)

≤ β(|v1 – v0|)
α(ψ1)

km
1

λ2
L1

Lm–2
1

(
ψ1(t)

)

≤ · · ·

≤
(

k1

λL1

)m
β(|v1 – v0|)

α(ψ1)
ψ1(t).

It follows from k1 ∈ [0,λL1 ) that

‖vm+1 – vm‖ → 0, m → ∞.

Hence there exists v∗ ∈ P such that

vm → v∗, m → ∞.

Since vm = Tvm–1, we get that v∗ is a fixed point of the operator T in P.
In the following, we prove that v∗ is the unique fixed point of T in P. If not, there exists

an element v∗∗ ∈ P such that v∗∗ = Tv∗∗. Similarly, there exists β(|v∗∗ – v∗|) > 0 such that

L1
(∣
∣v∗∗ – v∗∣∣) ≤ β

(∣
∣v∗∗ – v∗∣∣)u0 ≤ β

(∣
∣v∗∗ – v∗∣∣)(α(ψ1)λL1

)–1
ψ1.

Thus we get that, for any t ∈ [0, 1],

∣
∣v∗∗(t) – v∗(t)

∣
∣ =

∣
∣Tv∗∗(t) – Tv∗(t)

∣
∣

=
∣
∣Tmv∗∗(t) – Tmv∗(t)

∣
∣

=
∣
∣T

(
Tm–1v∗∗(t)

)
– T

(
Tm–1v∗(t)

)∣
∣

≤ k1L1
∣
∣Tm–1v∗∗(t) – Tm–1v∗(t)

∣
∣

≤ · · ·
≤ km

1 Lm
1
∣
∣v∗∗(t) – v∗(t)

∣
∣

≤ β(|v∗∗ – v∗|)
α(ψ1)

km
1

λm
L1

ψ1(t).

Since

km
1

λm
L1

→ 0, m → ∞,

we get that v∗∗ = v∗. Hence v∗ is the unique fixed point of the operator T in P. By Lemma 2.4
we deduce that u∗ = Iαn–2

0+ v∗ is the unique positive solution of problem (2.1) on [0, 1]. �
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5 Nonexistence of positive solutions
Now we make the following assumptions:

(C6) there exist nonnegative functions ρi(t) ∈ C(0, 1) ∩ L1(0, 1) (i = 0, 1, . . . , n – 2) and a
constant k2 ≥ 0 such that for any t ∈ [0, 1] and (x0, x1, . . . , xn–2) ∈ [0, +∞)n–1,

∣
∣f (t, x0, x1, . . . , xn–2)

∣
∣ ≤ k2

(
ρ0(t)x0 + · · · + ρn–2(t)xn–2

)
.

(C7) there exist nonnegative functions qi(t) ∈ C(0, 1) ∩ L1(0, 1) (i = 0, 1, . . . , n – 2) and a
constant k3 ≥ 0 such that for any t ∈ [0, 1] and (x0, x1, . . . , xn–2) ∈ [0, +∞)n–1,

∣
∣f (t, x0, x1, . . . , xn–2)

∣
∣ ≥ k3

(
q0(t)x0 + · · · + qn–2(t)xn–2

)
.

Define the operator L2 : E → E by

(L2v)(t) =
∫ 1

0
H(t, s)

(
ρ0(s)Iαn–2

0+ v(s) + ρ1(s)Iαn–2–α1
0+ v(s) + · · ·

+ ρn–3(s)Iαn–2–αn–3
0+ v(s) + ρn–2(s)v(s)

)
ds. (5.1)

Lemma 5.1 The spectral radius r(L2) 	= 0, and L2 has a positive eigenfunction ψ2, which
belongs to the first eigenvalue λL2 = (r(L2))–1, such that λL2 L2ψ2 = ψ2.

Proof The proof is similar to that of Lemma 4.1. So, we omit the details. �

Lemma 5.2 The operator L2 is a u0-bounded linear operator with u0(t) = tα–αn–2–1.

Proof The proof is similar to that of Lemma 4.2. So, we omit the details. �

Remark 5.2 For the positive eigenfunction ψ2 defined in Lemma 5.1, there exist α(ψ2) >
0 and β(ψ2) > 0 such that α(ψ2)u0 ≤ L2ψ2 = λ–1

L2
ψ2 ≤ β(ψ2)u0. Accordingly, we have

(β(ψ2)λL2 )–1ψ2 ≤ u0 ≤ (α(ψ2)λL2 )–1ψ2.

Theorem 5.1 Assume that a function f ∈ C([0, 1]× [0, +∞)n–1, [0, +∞)) satisfies condition
(C6). If k2 ∈ [0,λL2 ), then problem (1.1) has no positive nontrivial solution.

Proof Suppose the statement is false. Then there exists v̄ ∈ P such that Tv̄ = v̄. Since L2 is
a u0-bounded linear operator, there exists β(v̄) > 0 satisfying

L2v̄ ≤ β(v̄)u0 ≤ β(v̄)
(
α(ψ2)λL2

)–1
ψ2.

Hence we have

v̄(t) = (Tv̄)(t)

=
(
Tmv̄

)
(t)

≤k2
(
L2

(
Tm–1v̄

))
(t)

≤ km
2

(
Lm

2 v̄
)
(t)



Wang et al. Journal of Inequalities and Applications        (2020) 2020:196 Page 24 of 32

≤ km
2 β(v̄)

(
α(ψ2)λL2

)–1Lm–1
2

(
ψ2(t)

)

≤ β(v̄)
α(ψ2)

km
2

λ2
L2

Lm–2
2

(
ψ2(t)

)

≤ · · ·

≤
(

k2

λL2

)m
β(v̄)
α(ψ2)

ψ2(t).

It follows from k2 ∈ [0,λL2 ) that

(
k2

λL2

)m

→ 0, m → ∞.

Thus we can conclude that v̄ = θ . Therefore we deduce that problem (1.1) has no positive
nontrivial solution. �

Theorem 5.2 Assume that a function f ∈ C([0, 1]× [0, +∞)n–1, [0, +∞)) satisfies condition
(C6). If k3 ∈ (λL3 , +∞), then problem (1.1) has no positive nontrivial solution.

Proof The proof is similar to that of Theorem 5.1. So, we omit the details. �

6 Examples
Now, we give five explicit examples illustrating the main results.

Example 6.1 Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
13
4

0+ u(t) + u
1
2 (t)(D

1
2
0+u(t))

1
3

80t
1
2 (1–t)

1
2

+ (ln 1
t ) u(t) sin(D

1
2
0+u(t))

200(|D
1
2
0+u(t)|+1)

+ 3D
7
4
0+u(t) ln t

32(t–1)(u2(t)+1) = 0, 0 < t < 1,

u(0) = D
3
4
0+u(0) = D

15
8

0+ u(0) = 0,

D
9
4
0+u(1) = 1

5Γ ( 2
5 )

∫ 1
0

1

s
2
5 (4s2+1)

D
37
20
0+ u(s) dA1(s)

+ 3
20Γ ( 3

10 )
∫ 2

3
0

1

s
3

10 (4s2+3)
D

39
20
0+ u(s) dA2(s)

+ 1
8Γ ( 1

5 )( 1
2 D

41
20
0+ u( 1

32 ) + 3
4 D

41
20
0+ u( 1

243 ) + 1
5 D

41
20
0+ u( 1

1024 )),

(6.1)

where

A1(t) =

{
1
3 , t ∈ [0, 1

2 ),
4
3 , t ∈ [ 1

2 , 1],
A2(t) =

{
5
2 , t ∈ [0, 1

2 ),
7
2 , t ∈ [ 1

2 , 1].

Let

f (t, x, y, z) =
x 1

2 y 1
3

80t 1
2 (1 – t) 1

2
+

(

ln
1
t

)
x sin y

200(|y| + 1)
+

3z ln t
32(t – 1)(x2 + 1)

,

α = 13
4 , α1 = 1

2 , α2 = 7
4 , β1 = 3

4 , β2 = 15
8 , q0 = 9

4 , q1 = 37
20 , q2 = 39

20 , q3 = 41
20 , c1 = 1

5Γ ( 2
5 ),

c2 = 3
20Γ ( 3

10 ), c3 = 1
8Γ ( 1

5 ), θ = 2
3 , γ1 = 1

2 , γ2 = 3
4 , γ3 = 1

5 , ξ1 = 1
32 , ξ2 = 1

243 , ξ3 = 1
1024 , g1(t) =
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1

t
2
5 (4t2+1)

, g2(t) = 1

t
3

10 (4t2+3)
. Then problem (6.1) can be transformed into problem (1.1).

With the given data, we get that
∫ 1

0 tα–q1–1g1(t) dA1(t) = 0.5,
∫ θ

0 tα–q2–1g2(t) dA2(t) = 0.25,
∑3

i=1 γiξ
α–q3–1
i = 0.55,

σ =
1

Γ (α – q0)
–

c1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) –

c3

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

= 0.28125,

MH ≤ 1
Γ (α – α2)

+
c1

σΓ (α – α2)Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

+
c2

σΓ (α – α2)Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s)

+
c3

σΓ (α – α2)Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

=
2

π
1
2

(

1 +
1

0.28125
(0.25 + 0.125 + 0.34375)

)

≈ 4.012.

Then, for any (x, y, z) ∈ [–r, r]3 and a.e. t ∈ [0, 1],

∣
∣f (t, x, y, z)

∣
∣ ≤ r

5
6

80t 1
2 (1 – t) 1

2
+

r
200

ln

(
1
t

)

+
3r ln t

32(t – 1)
.

We set ψr(t) = r
5
6

80t
1
2 (1–t)

1
2

+ r
200 ln 1

t + 3r ln t
32(t–1) . Obviously, ψr ∈ L1(0, 1), and

‖ψr‖L =
∫ 1

0

(
r

5
6

80t 1
2 (1 – t) 1

2
+

r
200

ln
1
t

+
3r ln t

32(t – 1)

)

dt

=
πr

5
6

80
+

r
200

+
π2r
64

.

Accordingly, we have

lim
r→+∞

‖ψr‖L

r
=

1
200

+
π2

64
≈ 0.159 <

mΓ

MH
≈ 0.219.

Thus the assumptions of Theorem 3.1 are satisfied. So, by Theorem 3.1, problem (6.1) has
at least one solution.
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Example 6.2 Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
25
8

0+ u(t) + t

10(1–t4)
1
2

+ u(t)

100t
5
6 (1–t)

1
6

+
√

2D
1
3
0+u(t)

200((D
1
3
0+u(t))2+

√
2)

ln 1
t

+ ln t
40(t–1) sin(D

1
3
0+u(t)) cos(D

13
8

0+ u(t)) = 0, 0 < t < 1,

u(0) = D
5
8
0+u(0) = D

7
4
0+u(0) = 0,

D
17
8

0+ u(1) = 1
5Γ ( 19

16 )
∫ 1

0
2

s
3

16 (4s2+1)
D

31
16
0+ u(s) dA1(s)

+ 1
10Γ ( 21

16 )
∫ 2

3
0

1

s
5

16 (8s2+3)
D

29
16
0+ u(s) dA2(s)

+ 1
2Γ ( 5

4 )( 1
4 D

15
8

0+ u( 1
16 ) + 3

4 D
15
8

0+ u( 1
81 ) + 4

5 D
15
8

0+ u( 1
256 )),

(6.2)

where

A1(t) =

{
2
7 , t ∈ [0, 1

2 ),
9
7 , t ∈ [ 1

2 , 1],
A2(t) =

{
3
7 , t ∈ [0, 1

2 ),
10
7 , t ∈ [ 1

2 , 1].

Let

f (t, x, y, z) =
t

10(1 – t4) 1
2

+
x

100t
5
6 (1 – t)

1
6

+
√

2y
200(y2 +

√
2)

ln
1
t

+
ln t

40(t – 1)
sin y cos z,

α = 25
8 , α1 = 1

3 , α2 = 13
8 , β1 = 5

8 , β2 = 7
4 , q0 = 17

8 , q1 = 31
16 , q2 = 29

16 , q3 = 15
8 , c1 = 1

5Γ ( 19
16 ),

c2 = 1
10Γ ( 21

16 ), c3 = 1
2Γ ( 5

4 ), θ = 2
3 , γ1 = 1

4 , γ2 = 3
4 , γ3 = 4

5 , ξ1 = 1
16 , ξ2 = 1

81 , ξ3 = 1
256 ,

g1(t) = 2

t
3

16 (4t2+1)
, g2(t) = 1

t
5

16 (8t2+3)
. Then problem (6.2) can be transformed into prob-

lem (1.1). By simple computation we get
∑3

i=1 γiξ
α–q3–1
i = 0.575,

∫ 1
0 tα–q1–1g1(t) dA1(t) = 1,

∫ θ

0 tα–q2–1g2(t) dA2(t) = 0.2,

σ =
1

Γ (α – q0)
–

c1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) –

c3

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

= 0.4925,

MH ≤ 1
Γ (α – α2)

+
c1

σΓ (α – α2)Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

+
c2

σΓ (α – α2)Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s)

+
c3

σΓ (α – α2)Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

=
2

0.4925
√

π
.
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Let

kr,0(t) =
1

100t
5
6 (1 – t)

1
6

, kr,1(t) =
1

200
ln

1
t

+
ln t

40(t – 1)
, kr,2(t) =

ln t
40(t – 1)

.

Then

‖kr,0‖L =
∫ 1

0

1

100t
5
6 (1 – t)

1
6

dt =
π

50
,

‖kr,1‖L =
∫ 1

0

1
200

ln
1
t

dt +
∫ 1

0

ln t
40(t – 1)

dt =
1

200
+ 0.0411 = 0.04612,

‖kr,2‖L =
∫ 1

0

ln t
40(t – 1)

dt =
π2

240
,

‖f0‖L =
∫ 1

0

∣
∣f (t, 0, 0, 0)

∣
∣dt =

∫ 1

0

t
10(1 – t4) 1

2
dt =

π

40
,

and for any t ∈ (0, 1) and (x0, y0, y0), (x1, y1, z1) ∈ [–r, r] × [–r, r] × [–r, r],

∣
∣f (t, x0, y0, z0) – f (t, x1, y1, z1)

∣
∣

≤ kr3,0(t)|x0 – x1| + kr,1(t)|y0 – y1| + kr,2(t)|z0 – z1|,

which implies that assumptions (C2) and (C3) hold. Moreover, we have

0 < MH‖f0‖L < lim inf
r→+∞

(

mΓ – MH

n–2∑

i=0

‖kr,i‖L

)

r = +∞.

Thus, by Theorem 3.2, problem (6.2) has a unique solution.

Example 6.3 Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
7
2
0+u(t) + u(t)

100t
1
2 (1–t)

1
2

+ cos(t2 + D
1
3
0+u(t)) π2

10(16+π2t2)

+ ln t
10(t–1) arctan( D

3
2
0+u(t)

2 ) = 0, 0 < t < 1,

u(0) = D
1
4
0+u(0) = D

5
4
0+u(0) = 0,

D
5
2
0+u(1) = 1

8Γ ( 1
8 )

∫ 1
0

1

20s
1
8 (1–s)

D
19
8

0+ u(s) dA1(s)

+ 3
8Γ ( 3

8 )
∫ 3

4
0

1

8s
3
8 (1+s2)

D
17
8

0+ u(s) dA2(s)

+ 1
8Γ ( 1

4 )( 1
4 D

9
4
0+u( 1

16 ) + 3
4 D

9
4
0+u( 1

81 ) + 4
5 D

9
4
0+u( 1

256 )),

(6.3)

where

A1(t) =

{
1
9 , t ∈ [0, 1

2 ),
11
9 , t ∈ [ 1

2 , 1],
A2(t) =

{
4
7 , t ∈ [0, 1

2 ),
11
7 , t ∈ [ 1

2 , 1].

Let

f (t, x, y, z) =
x

100t 1
2 (1 – t) 1

2
+ cos

(
t2 + y

) π2

10(16 + π2t2)
+

ln t
10(t – 1)

arctan
z
2

,
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α = 7
2 , α1 = 1

3 , α2 = 3
2 , β1 = 1

4 , β2 = 5
4 , q0 = 5

2 , q1 = 19
8 , q2 = 17

8 , q3 = 9
4 , c1 = 1

8Γ ( 1
8 ), c2 = 3

8Γ ( 3
8 ),

c3 = 1
8Γ ( 1

4 ), θ = 3
4 , γ1 = 1

4 , γ2 = 3
4 , γ3 = 4

5 , ξ1 = 1
16 , ξ2 = 1

81 , ξ3 = 1
256 , g1(t) = 1

20t
1
8 (1–t)

, g2(t) =
1

8t
3
8 (1+t2)

. Then problem (6.3) can be transformed into problem (1.1). By simple computa-

tion we get
∫ 1

0 tα–q1–1g1(t) dA1(t) = 0.1,
∫ θ

0 tα–q2–1g2(t) dA2(t) = 0.1,
∑3

i=1 γiξ
α–q3–1
i = 0.575.

So, we have

σ =
1

Γ (α – q0)
–

c1

Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

–
c2

Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s) –

c3

Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

= 0.6065,

MH ≤ 1
Γ (α – α2)

+
c1

σΓ (α – α2)Γ (α – q1)

∫ 1

0
sα–q1–1g1(s) dA1(s)

+
c2

σΓ (α – α2)Γ (α – q2)

∫ θ

0
sα–q2–1g2(s) dA2(s)

+
c3

σΓ (α – α2)Γ (α – q3)

m∑

i=1

γiξ
α–q3–1
i

< 1.7.

Let

p0(t) =
1

100t 1
2 (1 – t) 1

2
, p1(t) =

π2

10(16 + π2t2)
, p2(t) =

ln t
20(t – 1)

.

Then

‖p0‖L =
∫ 1

0

1
100t 1

2 (1 – t) 1
2

dt =
π

100
,

‖p1‖L =
∫ 1

0

π2

10(16 + π2t2)
dt =

π

40
,

‖p2‖L =
∫ 1

0

ln t
20(t – 1)

dt =
π2

120
,

and for any t ∈ (0, 1) and (x0, y0, y0), (x1, y1, z1) ∈ [0, +∞) × [0, +∞) × [0, +∞),

∣
∣f (t, x0, y0, z0) – f (t, x1, y1, z1)

∣
∣ ≤ p0(t)|x0 – x1| + p1(t)|y0 – y1| + p2(t)|z0 – z1|,

which implies that assumption (C4) holds. Moreover, we have

MH

mΓ

n–2∑

i=0

‖pi‖L < 1.

Thus, in view of Theorem 3.3, problem (6.3) has a unique solution.
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Example 6.4 Consider the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D
7
2
0+u(t) + 1

4
√

tu3(t) – 1
4
√

t|u3(t)| + 1
3 (arctan D

1
3
0+u(t))

– 1
3 arctan(|D 1

3
0+u(t)|) + 20D

3
2
0+u(t) = 0, 0 < t < 1,

u(0) = D
2
3
0+u(0) = D

3
2
0+u(0) = 0,

D
3
2
0+u(1) = 0,

(6.4)

where f (t, x, y, z) = 1
4
√

tx3 – 1
4
√

t|x3| + 1
3 arctan y – 1

3 arctan |y| + 20z, α = 7
2 , α1 = 1

3 , α2 = 3
2 ,

β1 = 2
3 , β2 = 3

2 , q0 = 3
2 , q1 = 3

2 , q2 = 3
2 , q3 = 3

2 , c1 = 1
5 , c2 = 3, c3 = 0, θ = 0, γ1 = 1

2 , γ2 = 3
4 ,

γ3 = 1
5 , ξ1 = 1

32 , ξ2 = 1
243 , ξ3 = 1

1024 , g1(t) = 0, g2(t) = t
4t2+3 , and

A1(t) =

{
1
2 , t ∈ [0, 1

2 ),
4
3 , t ∈ [ 1

2 , 1],
A2(t) =

{
5
3 , t ∈ [0, 1

2 ),
7
2 , t ∈ [ 1

2 , 1].

Let v = I
3
2

0+u. By Lemma 2.4 we reduce problem (6.4) to the problem

{

v′′(t) + f (t, I
3
2

0+v(t), I
7
6

0+v(t), v(t)) = 0, 0 < t < 1,
v(0) = v(1) = 0.

(6.5)

By calculating we can obtain the relevant Green’s function of problem (6.5)

H(t, s) =

{
s(1 – t), 0 ≤ s ≤ t ≤ 1,
t(1 – s), 0 ≤ t ≤ s ≤ 1.

Obviously, for any xi, yi, zi ∈ [0, +∞) (i = 0, 1) and t ∈ [0, 1],

∣
∣f (t, x0, y0, z0) – f (t, x1, y1, x1)

∣
∣ ≤ 20|z0 – z1|.

Let l0(t) = l1(t) = 0, l2(t) = 20, and k1 = 1. Then the corresponding Green’s function of L1 is
K(t, s) = 20H(t, s). Obviously, L1 is a u0-bounded operator, where u0(t) = t(1 – t). The fact
that

∫ 1

0
K(t, s) sin(πs) ds =

20
π2 sin(π t), t ∈ [0, 1],

means that sin(π t) is a positive eigenfunction of the operator L1, which belongs to its first
eigenvalue λL1 = (r(L))–1 = 20

π2 . Obviously, k1 = 1 < 20
π2 . Then, by Theorem 4.1, we get that

problem (6.4) has a unique positive solution.

Example 6.5 Consider the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D
15
4

0+ u(t) + 2
√

t
1+u(t) – 2

√
t

1+|u(t)| + 1
2 (D

1
4
0+u(t))

1
5

– 1
2 |D 1

4
0+u(t)| 1

5 + 1
10 D

7
4
0+u(t) = 0, 0 < t < 1,

u(0) = D
2
3
0+u(0) = D

7
4
0+u(0) = 0,

D
7
4
0+u(1) = 0,

(6.6)
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where f (t, x, y, z) = 2
√

t
1+x – 2

√
t

1+|x| + 1
2 y

1
5 – 1

2 |y| 1
5 + 1

10 z, α = 15
4 , α1 = 1

4 , α2 = 7
4 , β1 = 2

3 , β2 = 7
4 ,

q0 = 7
4 , q1 = 7

4 , q2 = 7
4 , q3 = 7

4 , c1 = 1, c2 = 1, c3 = 0, θ = 0, γ1 = 1
2 , γ2 = 3

4 , γ3 = 1
5 , ξ1 = 1

32 ,
ξ2 = 1

243 , ξ3 = 1
1024 , g1(t) = 0, g2(t) = t

4t2+3 , and

A1(t) =

{
1
9 , t ∈ [0, 1

2 ),
2
7 , t ∈ [ 1

2 , 1],
A2(t) =

{
4
3 , t ∈ [0, 1

2 ),
7
2 , t ∈ [ 1

2 , 1].

Let v = I
7
4

0+u. By Lemma 2.4 we reduce problem (6.6) to the problem

{

v′′(t) + f (t, I
7
4

0+v(t), I
3
2

0+v(t), v(t)) = 0, 0 < t < 1,
v(0) = v(1) = 0.

(6.7)

By calculating we can obtain the relevant Green’s function

H(t, s) =

{
s(1 – t), 0 ≤ s ≤ t ≤ 1,
t(1 – s), 0 ≤ t ≤ s ≤ 1.

Obviously, for any xi, yi, zi ∈ [0, +∞) (i = 0, 1) and t ∈ [0, 1],

∣
∣f (t, x0, y0, z0) – f (t, x1, y1, x1)

∣
∣ ≤ 1

10
|z0 – z1|.

Let l0(t) = l1(t) = 0, l2(t) = 1, and k2 = 1
10 . Then the Green’s function of L1 is K(t, s) = H(t, s).

Obviously, L1 is a u0-bounded operator, where u0(t) = t(1 – t). By the proof similar to
that in Example 6.4 we get that λL2 = (r(L2))–1 = 1

π2 . The fact k2 = 1
10 < 1

π2 , together with
Theorem 5.1, means that problem (6.6) has no positive solution.
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