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1 Introduction
The well-known first Cartan domain (see [22]) is defined as

�I(m, n) =
{

Z = (zij)m×n ∈C
m×n : I – ZZT > 0

}
,

where Z denotes the conjugate of the matrix Z, ZT denotes the transpose of Z, and m, n
are positive integers. For the sake of convenience, it is denoted by �I .

Let H(�I) be the space of all holomorphic functions on �I . For α ≥ 0, the weighted-type
space H∞

α (�I) on �I consists of all f ∈ H(�I) such that

‖f ‖H∞
α (�I ) = sup

Z∈�I

[
det
(
I – ZZT)]α∣∣f (Z)

∣∣ < +∞.

The little weighted-type space H∞
α,0(�I) on �I consists of all f ∈ H(�I) such that

lim
Z→∂�I

[
det
(
I – ZZT)]α∣∣f (Z)

∣∣ = 0.

If α = 0, then H∞
α (�I) is denoted as H∞(�I) and H∞

α,0(�I) is denoted as H∞
0 (�I). The

weighted-type spaces on the unit disk or the unit ball frequently appear; see, for exam-
ple, [6, 11, 12, 16, 17, 19].

Let B = {z ∈ C
n : |z| < 1} be the open unit ball of Cn. It is obvious that B = �I(1, n),

which shows that �I(m, n) is a generalization of B. The weighted Bloch space on B, usually
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denoted by Bα(B), consists of all f ∈ H(B) such that

b(f ) := sup
z∈B

(
1 – |z|2)α∣∣∇f (z)

∣∣ < +∞,

where

∇f (z) =
(

∂f (z)
∂z1

,
∂f (z)
∂z2

, . . . ,
∂f (z)
∂zn

)
.

It is well known that the quantity b(f ) is a seminorm of Bα(B) and under the norm

‖f ‖Bα (B) =
∣∣f (0)

∣∣ + b(f ),

Bα(B) is a Banach space. The weighted Bloch spaces also frequently appear in the litera-
ture; see, for example, [2, 13–15, 27].

Similarly, the weighted Bloch space Bα(�I) on �I consists of all f ∈ H(�I) such that

s(f ) := sup
z∈�I

[
det
(
I – ZZT)]α∣∣∇f (Z)

∣∣ < +∞.

Under the norm

‖f ‖Bα (�I ) =
∣∣f (0)

∣∣ + s(f ),

Bα(�I) is a Banach space. The little Bloch space Bα
0 (�I) on �I consists of all f ∈ H(�I)

such that

lim
Z→∂�I

[
det
(
I – ZZT)]α∣∣∇f (Z)

∣∣ = 0.

Let X and Y be two function spaces on �I . If it follows that ψ f ∈ Y for all f ∈ X, then
ψ is called a multiplier from X to Y , and usually Mψ : f 	→ ψ f is called a multiplication
operator from X to Y . In general, ψ f cannot necessarily belong to Y for some f ∈ X. In
order to explain this fact, we need to introduce the Bloch space B(U2) (see [24]), where
U2 = {z = (z1, z2) : |z1| < 1, |z2| < 1} is the unit polydisk in C

2. We say a holomorphic func-
tion f belongs to B(U2) if f satisfies the condition

sup
z∈U2

[(
1 – |z1|2

)
∣∣∣∣
∂f
∂z1

(z)
∣∣∣∣ +

(
1 – |z2|2

)
∣∣∣∣
∂f
∂z2

(z)
∣∣∣∣

]
< +∞.

If we consider

f (z1, z2) = log
1

1 – z1
+ log

1
1 – z2

in B(U2), it is easy to see that ψ f does not belong to B(U2) for ψ(z) = z1. Hence, a natural
problem is to find some conditions when ψ satisfies Mψ f ∈ Y for all f ∈ X. It is well known
that the theory of the multipliers or multiplication operators on function spaces has been
studied for a long time. In 1966, Talyor started an investigation of the multipliers on Dα in
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[21]. Later on, for example, Stegenga considered the multipliers of the Dirichlet space in
[10]. Now multipliers or multiplication operators between or on various function spaces of
the classical domains have been studied by many authors (see, for example, [5, 7, 23, 26]).
But beyond that, there is a great interest in some generalizations of the multiplication op-
erators on classical domains (for example, see [1, 4, 8, 15, 18] for the weighted composition
operators). However, we do not find any result of multipliers or multiplication operators
on the holomorphic function spaces of the first Cartan domain. In this paper, we study the
multiplication operators on weighted Bloch spaces of the first Cartan domain and obtain
some necessary or sufficient conditions for the boundedness and compactness.

For Z = (zij)m×n ∈ C
m×n, let |Z|2 =

∑
1≤i≤m
1≤j≤n

|zij|2. Constants are denoted by C, they are

positive and may differ from one occurrence to the next. The notation a � b means that
there exists a positive constant C independent of the essential variables in the quantities
a and b such that a ≤ Cb.

2 Some lemmas
First, we have the following obvious result.

Lemma 1 Let Z = (zij)m×n ∈ �I , then |zij| < 1 for all i and j.

Proof Let Z = (zij)m×n ∈ �I . Then I – ZZT > 0. So, we have 1 –
∑n

j=1 |zij|2 > 0 for i =
1, 2, . . . , n, from which the desired result follows. �

By a direct calculation, we obtain the following formula.

Lemma 2 Let f ∈ H(�I). Then, for all Z ∈ �I , it follows that

∇(Mψ f )(Z) = f (Z)∇ψ(Z) + ∇f (Z)ψ(Z).

We need the following result (see [20]) to obtain the point evaluation estimate for the
Bloch functions.

Lemma 3 Let Z ∈ �I . Then there exist two unitary matrices U and V such that

Z = U

⎛

⎜⎜⎜⎜
⎝

λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · λm 0 · · · 0

⎞

⎟⎟⎟⎟
⎠

V ,

where 1 > λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and λ2
1, . . . ,λ2

m are eigenvalues of ZZT .

Lemma 4 Let α > 0. Then there exists a positive constant C independent of f ∈ Bα(�I) and
Z ∈ �I such that

∣∣f (Z)
∣∣≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C‖f ‖Bα (�I ), 0 < mα < 1,

C‖f ‖Bα (�I ) log 2
det(I–ZZT )

, mα = 1,

C‖f ‖Bα (�I )
1

[det(I–ZZT )]mα–1
, mα > 1.

(1)
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Proof If Z = 0, then the result holds obviously. Now, assume that Z = (zij)m×n �= 0. It follows
from Lemma 3 that there exist two unitary matrices U and V such that

Z = U

⎛

⎜⎜⎜⎜
⎝

λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
...

...
. . .

...
... · · · 0

0 0 · · · λm 0 · · · 0

⎞

⎟⎟⎟⎟
⎠

V , (2)

where 1 > λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and λ2
1, . . . ,λ2

m are eigenvalues of ZZT . By (2), we have

1 – t2ZZT = U

⎛

⎜⎜⎜⎜
⎝

1 – t2λ2
1 0 · · · 0

0 1 – t2λ2
2 · · · 0

...
...

. . .
...

0 0 · · · 1 – t2λ2
m

⎞

⎟⎟⎟⎟
⎠

UT . (3)

It follows from (3) that

[
det
(
I – t2ZZT)]α =

m∏

i=1

(
1 – t2λ2

i
)α .

Assume t ∈ [0, 1]. Since λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, for each i ∈ {1, 2, . . . , m}, we have

1 – t2λ2
i = (1 – tλi)(1 + tλi) ≥ (1 – tλi).

By this, we have

[
det
(
I – t2ZZT)]α =

m∏

i=1

(
1 – t2λ2

i
)α ≥ (1 – tλi)mα . (4)

From the facts

ZZT = U

⎛

⎜⎜⎜⎜
⎝

λ2
1 0 · · · 0

0 λ2
2 · · · 0

...
...

. . .
...

0 0 · · · λ2
m

⎞

⎟⎟⎟⎟
⎠

UT

and |Z|2 = tr(ZZT ), we obtain

|Z|2 =
m∑

i=1

λ2
i ≤ mλ2

1. (5)

Then, from (4) and (5) we obtain

∣∣f (Z)
∣∣ =

∣∣∣∣f (0) +
∫ 1

0

〈∇f (tZ), Z
〉
dt
∣∣∣∣≤

∣∣f (0)
∣∣ +

∫ 1

0

∣∣∇f (tZ)
∣∣|Z|dt
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≤ ∣∣f (0)
∣∣ +

∫ 1

0

|Z|dt

[det(I – t2ZZT )]α
‖f ‖Bα (�I )

=
∣∣f (0)

∣∣ +
∫ 1

0

|Z|dt
∏m

j=1(1 – t2λ2
j )α

‖f ‖Bα (�I )

≤
[

1 +
∫ 1

0

√
mλ1

(1 – λ1t)mα
dt
]
‖f ‖Bα (�I )

=
[

1 +
∫ λ1

0

√
m

(1 – t)mα
dt
]
‖f ‖Bα (�I )

≤

⎧
⎪⎪⎨

⎪⎪⎩

C‖f ‖Bα (�I ), 0 < mα < 1,

C‖f ‖Bα (�I ) log 1
1–λ1

, mα = 1,

C‖f ‖Bα (�I )
1

(1–λ1)mα–1 , mα > 1

(6)

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C‖f ‖Bα (�I ), 0 < mα < 1,

C‖f ‖Bα (�I ) log 2
det(I–ZZT )

, mα = 1,

C‖f ‖Bα (�I )
1

[det(I–ZZT )]mα–1
, mα > 1,

(7)

where (7) is obtained by (6) by using the elementary fact

1 – λ1 ≥ 1 – λ2
1

2
≥ 1

2
det
(
I – ZZT).

This completes the proof. �

Remark 1 In Lemma 4, there exists a parameter m which maybe is the biggest difference
from the weighted Bloch spaces on the unit ball. Unfortunately, we do not find an effective
method to avoid it. However, this also shows that this result is a generalization of the
corresponding result on Bα(B).

In order to study the compactness of the operator Mψ on Bα(�I), we need the following
result which is similar to Proposition 3.11 in [3].

Lemma 5 Let α > 0 and ψ be a holomorphic function on �I . Then the bounded operator
Mψ is compact on Bα(�I) if and only if for every bounded sequence {fn} in Bα(�I) such that
fn → 0 uniformly on any compact subset of �I as n → ∞, it follows that

lim
n→∞‖Mψ fn‖Bα (�I ) = 0.

Proof Suppose that the bounded operator Mψ is compact onBα(�I). Let {fn} be a bounded
sequence in Bα(�I) such that fn → 0 uniformly on any compact subset of �I as n → ∞. If
‖Mψ fn‖Bα (�I ) � 0 as n → ∞, then there exists a subsequence {fnj} of {fn} such that

inf
n∈N

‖Mψ fnj‖Bα (�I ) > 0. (8)
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Since Mψ is compact on Bα(�I), there exist a function g ∈ Bα(�I) and a subsequence of
{fnj} (without loss of generality, still written by {fnj}) such that

lim
j→∞‖Mψ fnj – g‖Bα (�I ) = 0.

Let K be a compact subset of �I . From Lemma 4, it follows that Mψ fnj – g → 0 uniformly
on K as j → ∞. From this, for ε > 0, there exists a positive integer N1 such that

∣∣ψ(Z)fkj (Z) – g(Z)
∣∣ < ε (9)

for all Z ∈ K , whenever j > N1. Since fnj → 0 uniformly on K as j → ∞, also there
exists a positive integer N2 such that |fnj (Z)| < ε for all Z ∈ K , whenever j > N2. Let
N = max{N1, N2} and M = maxZ∈K |ψ(Z)|. From (9), we have

∣∣g(Z)
∣∣≤ M

∣∣fnj (Z)
∣∣ + ε < (M + 1)ε (10)

for all Z ∈ K , whenever j > N . From (10) and the arbitrariness of ε, we obtain g(Z) = 0 for
all Z ∈ K , which leads to g ≡ 0 on �I . This shows that limj→∞ ‖Mψ fnj‖Bα (�I ) = 0 which
contradicts (8).

Now suppose that {fn} is a bounded sequence in Bα(�I). Then it is locally uniformly
bounded on �I , which shows that there exists a subsequence {fnj} of {fn} such that fnj →
f uniformly on every compact subset of �I as j → ∞. From this, we have fnj – f → 0
uniformly on every compact subset of �I as j → ∞. Consequently, we obtain

lim
j→∞

∥∥Mψ (fnj – f )
∥∥
Bα (�I ) = lim

j→∞‖Mψ fnj – Mψ f ‖Bα (�I ) = 0,

which shows that Mψ is compact on Bα(�I). �

In the studies of the several complex variables, the mathematician Loo-Keng Hua found
the following matrix inequality in 1955.

Lemma 6 Let I – AAT and I – BBT be two Hermitian and positive definite matrices. Then

det
(
I – AAT)

det
(
I – BBT)≤ ∣∣det

(
I – ABT)∣∣2. (11)

By the way, as an easy application of Lemma 6, we see that, for each Z, S ∈ �I , the matrix
I – ZST is reversible. We also have the following result (see [20]).

Lemma 7 There exists a positive constant C independent of all Z, S ∈ �I such that

∣∣det
(
I – ZST)∣∣

{ ∑

1≤i≤m
1≤j≤n

∣∣tr
[(

I – ZST)–1IijS
T]∣∣2

} 1
2 ≤ C, (12)

where Iij is an m × n matrix whose element of the ith row and the jth column is 1, and the
other elements are 0.
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Let S be a fixed point in �I . If α = 1
2 , on �I we define the function

fS(Z) =
[
det
(
I – SST)] 1

2 log
2

det(I – ZST )
,

and if α �= 1
2 , on �I we define the function

gS(Z) =
1

1 – 2α

[det(I – SST )]α

[det(I – ZST )]2α–1
.

To prove that fS belongs to B 1
2 (�I) (or gS belongs to Ba(�I) for α �= 1

2 ), let us recall the
definition of the function matrix derivative.

Let

Y (x) =

⎛

⎜⎜⎜⎜
⎝

y11(x) y12(x) · · · y1n(x)
y21(x) y22(x) · · · y2n(x)

...
...

...
...

yn1(x) yn2(x) · · · ynn(x)

⎞

⎟⎟⎟⎟
⎠

and each yij(x) be differentiable on the interval I . Then the well-known derivative of Y (x)
is defined as

dY (x)
dx

=

⎛

⎜⎜⎜⎜
⎝

y′
11(x) y′

12(x) · · · y′
1n(x)

y′
21(x) y′

22(x) · · · y′
2n(x)

...
...

...
...

y′
n1(x) y′

n2(x) · · · y′
nn(x)

⎞

⎟⎟⎟⎟
⎠

.

If we regard det(I – ZST ) as a function of Z, we have the following result.

Lemma 8 Let S be a fixed point in �I . Then on �I it follows that

∂ det(I – ZST )
∂zij

= det
(
I – ZST)

tr
[(

I – ZST)–1IijS
T].

Proof Let A(x) be a differentiable function matrix and det A(x) �= 0 for each x ∈ I . Then by
the formula (see [9])

d det A(x)
dx

= det A(x) tr

[
A(x)–1 dA(x)

dx

]
,

we have

∂ det(I – ZST )
∂zij

= det
(
I – ZST)

tr

[(
I – ZST)–1 ∂(I – ZST )

∂zij

]
. (13)

By the definition of the function matrix derivative, it is easy to see that

∂(I – ZST )
∂zij

= IijS. (14)

From (13) and (14), the desired result follows. �
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Lemma 9 Let α > 0. For the fixed point S ∈ �I , the following statements hold.
(i) If α = 1

2 , then the function fS belongs to B 1
2 (�I). Moreover,

sup
S∈�I

‖fS‖B 1
2 (�I )

� 1. (15)

(ii) If α �= 1
2 , then the function gS belongs to Bα(�I). Moreover,

sup
S∈�I

‖gS‖Bα (�I ) � 1. (16)

Proof We first prove (i). By Lemma 8, we have

∂fS(Z)
∂zij

=
[
det
(
I – SST)] 1

2
det(I – ZST ) tr[(I – ZST )–1IijS

T ]

det(I – ZST )
.

Then we obtain

∣∣∇fS(Z)
∣∣ =

[
det
(
I – SST)] 1

2

|det(I – ZST )|{∑1≤i≤m
1≤j≤n

| tr[(I – ZST )–1IijS
T ]|2} 1

2

|det(I – ZST )|
. (17)

By Lemmas 6–8 and (17), we obtain

‖fS‖B 1
2 (�I )

=
∣∣fS(0)

∣∣ +
[
det
(
I – ZZT)] 1

2
∣∣∇fS(Z)

∣∣≤ C. (18)

From (18), it follows that fS ∈ B 1
2 (�I) and (15) holds.

Next, we prove (ii). Obviously, we have

∂gS(Z)
∂zij

=
[
det
(
I – SST)]α det(I – ZST ) tr[(I – ZST )–1IijS

T ]

[det(I – ZST )]2α
.

Then

∣∣∇gS(Z)
∣∣ =

[
det
(
I – SST)]α

|det(I – ZST )|{∑1≤i≤m
1≤j≤n

| tr[(I – ZST )–1IijS
T ]|2} 1

2

|det(I – ZST )|2α
. (19)

Also by Lemmas 6–8 and (19), we have

‖gS‖Bα (�I ) =
∣∣gS(0)

∣∣ +
[
det
(
I – ZZT)]α∣∣∇gS(Z)

∣∣≤ C. (20)

From (20), it follows that gS ∈ Bα(�I) and (16) holds. �

Remark 2 It is easy to see that fS and gS uniformly converge to zero on any compact subset
of �I as S → ∂�I .
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3 Boundedness and compactness of Mψ on Bα(�I)
First, we have the following result of the operator Mψ on Bα(�I).

Theorem 1 Let α > 0 and ψ ∈ H(�I). Then the following statements hold.
(i) For 0 < mα < 1, if ψ ∈ H∞(�I) ∩Bα(�I), then the operator Mψ is bounded on

Bα(�I).
(ii) For mα = 1, if ψ ∈ H∞(�I) and

M1 := sup
Z∈�I

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ log
2

det(I – ZZT )
< +∞, (21)

then the operator Mψ is bounded on Bα(�I).
(iii) For mα > 1, if ψ ∈ H∞(�I) and

M2 := sup
Z∈�I

|∇ψ(Z)|
[det(I – ZZT )]mα–α–1

< +∞, (22)

then the operator Mψ is bounded on Bα(�I).
(iv) If the operator Mψ is bounded on Bα(�I), then ψ ∈ H∞

α (�I) ∩Bα(�I).

Proof We first prove (i). For f ∈ Bα(�I), by Lemma 4, we have

[
det
(
I – ZZT)]α∣∣∇(Mψ f )(Z)

∣∣ =
[
det
(
I – ZZT)]α∣∣∇ψ(Z)f (Z) + ψ(Z)∇f (Z)

∣∣

≤ [
det
(
I – ZZT)]α(∣∣∇ψ(Z)f (Z)

∣∣ +
∣∣ψ(Z)∇f (Z)

∣∣)

≤ C‖f ‖Bα (�I )‖ψ‖Bα (�I ) + ‖f ‖Bα (�I )‖ψ‖H∞(�I )

=
(
C‖ψ‖Bα (�I ) + ‖ψ‖H∞(�I )

)‖f ‖Bα (�I ). (23)

Then from (23) we obtain

‖Mψ f ‖Bα (�I ) =
∣∣ψ(0)f (0)

∣∣ +
[
det
(
I – ZZT)]α∣∣∇Mψ f (Z)

∣∣

≤ (∣∣ψ(0)
∣∣ + C‖ψ‖Bα (�I ) + ‖ψ‖H∞(�I )

)‖f ‖Bα (�I ). (24)

From the assumption and (24), it follows that the operator Mψ is bounded on Bα(�I).
We prove statement (ii). For each f ∈ Bα(�I), by Lemmas 2 and 4, we have

[
det
(
I – ZZT)]α∣∣∇(Mψ f )(Z)

∣∣ =
[
det
(
I – ZZT)]α∣∣∇ψ(Z)f (Z) + ψ(Z)∇f (Z)

∣∣

≤ [
det
(
I – ZZT)]α(∣∣∇ψ(Z)

∣∣∣∣f (Z)
∣∣ +

∣∣ψ(Z)
∣∣∣∣∇f (Z)

∣∣)

≤ (
M1 + ‖ψ‖H∞(�I )

)‖f ‖Bα (�I ). (25)

By (25), we obtain

‖Mψ f ‖Bα (�I ) =
∣∣ψ(0)f (0)

∣∣ + sup
Z∈�I

[
det
(
I – ZZT)]α∣∣∇(Mψ f )(Z)

∣∣≤ C‖f ‖Bα (�I ),

which shows that the operator Mψ is bounded on Bα(�I).
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Statement (iii) can be obtained similarly. Here we omit.
Now, we begin to prove (iv). Choose f (Z) ≡ 1 on �I . Then by the boundedness of the

operator Mψ on Bα(�I), we have

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ =
[
det
(
I – ZZT)]α∣∣∇(Mψ f )(Z)

∣∣≤ C‖f ‖Bα (�I ), (26)

which shows

sup
Z∈�I

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ < +∞, (27)

that is, ψ ∈ Bα(�I). Again applying the boundedness of the operator Mψ on Bα(�I) to the
function g(Z) = z11, by Lemma 1 and (27) we obtain

[
det
(
I – ZZT)]α∣∣ψ(Z)

∣∣ =
[
det
(
I – ZZT)]α∣∣∇ψ(Z)z11 + ψ(Z) – ∇ψ(Z)z11

∣∣

≤ [
det
(
I – ZZT)]α(∣∣∇ψ(Z)z11 + ψ(Z)

∣∣ +
∣∣∇ψ(Z)z11

∣∣)

≤ ‖Mψg‖Bα (�I ) + ‖ψ‖Bα (�I ). (28)

By (28), we have

sup
Z∈�I

[
det
(
I – ZZT)]α∣∣ψ(Z)

∣∣ < +∞, (29)

that is, ψ ∈ H∞
α (�I). Combining (27) and (29), we obtain ψ ∈ H∞

α (�I) ∩Bα(�I). �

Next, we discuss the compactness of the operator Mψ on Bα(�I).

Theorem 2 Let α > 0 and ψ be the holomorphic function on �I . Then the following state-
ments hold.

(i) For 0 < mα < 1, if ψ ∈ H∞
0 (�I) ∩Bα

0 (�I), then the operator Mψ is compact on
Bα(�I).

(ii) For mα = 1, if ψ ∈ H∞
0 (�I) ∩Bα(�I) and

lim
Z→∂�I

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ log
2

det(I – ZZT )
= 0, (30)

then the operator Mψ is compact on Bα(�I).
(iii) For mα > 1, if ψ ∈ H∞

0 (�I) ∩Bα(�I) and

lim
Z→∂�I

|∇ψ(Z)|
[det(I – ZZT )]mα–α–1

= 0, (31)

then the operator Mψ is compact on Bα(�I).

Proof Here we only prove statement (ii). Statements (i) and (iii) can be similarly proved.
By Lemma 5 we only need to prove that, if {fi} is a sequence in Bα(�I) such that
supi∈N ‖fi‖Bα (�I ) ≤ M and fi → 0 uniformly on any compact subset of �I as i → ∞, then
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limi→∞ ‖Mψ fi‖Bα (�I ) = 0. We observe that ψ ∈ H∞
0 (�I) and condition (30) imply that, for

every ε > 0, there exists σ > 0 such that on K = {Z ∈ �I : dist(Z, ∂�I) < σ } it follows that

∣∣ψ(Z)
∣∣ < ε and

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ log
2

det(I – ZZT )
< ε. (32)

For such ε and σ , by using (32) and Lemma 4, we have

‖Mψ fi‖Bα (�I ) =
∣∣ψ(0)fi(0)

∣∣ + sup
Z∈�I

[
det
(
I – ZZT)]α∣∣∇Mψ fi(Z)

∣∣

=
∣∣ψ(0)fi(0)

∣∣ + sup
Z∈�I

[
det
(
I – ZZT)]α∣∣∇ψ(Z)fi(Z) + ψ(Z)∇fi(Z)

∣∣

≤ ∣∣ψ(0)fi(0)
∣∣

+
(

sup
Z∈K

+ sup
Z∈�I\K

)[
det
(
I – ZZT)]α∣∣∇ψ(Z)fi(Z) + ψ(Z)∇fi(Z)

∣∣

≤ ∣∣ψ(0)fi(0)
∣∣ + M sup

Z∈K

[
det
(
I – ZZT)]α∣∣∇ψ(Z)

∣∣ log
2

det(I – ZZT )

+ ‖ψ‖Bα (�I ) sup
Z∈�I\K

∣∣fi(Z)
∣∣

+ M sup
Z∈K

∣∣ψ(Z)
∣∣ + ‖ψ‖H∞

α (�I ) sup
Z∈�I\K

∣∣∇fi(Z)
∣∣. (33)

It is obvious to see that if fi → 0 uniformly on a compact subset of �I as i → ∞, then
|∇fi(Z)| does as i → ∞. Since �I \ K is a compact subset of �I , fi → 0 uniformly on �I \ K
as i → ∞. From this and (33), we get

lim
i→∞‖Mψ fi‖Bα (�I ) = 0,

which shows that Mψ is compact on Bα(�I). �

Theorem 3 Let α > 0 and ψ ∈ H(�I). Then the following statements hold.
(i) For α = 1

2 , if the operator Mψ is compact on Bα(�I), then

lim
Z→∂�I

det
(
I – ZZT)

{ ∑

1≤i≤m
1≤j≤n

∣∣∣∣
∂ψ(Z)
∂zij

log
2

det(I – ZZT )

+ ψ(Z) tr
[(

I – ZZT)–1IijZ
T]
∣∣∣∣

2} 1
2

= 0.

(ii) For α �= 1
2 , if the operator Mψ is compact on Bα(�I), then

lim
Z→∂�I

det
(
I – ZZT)

{ ∑

1≤i≤m
1≤j≤n

∣∣∣∣
1

2α – 1
∂ψ(Z)
∂zij

+ ψ(Z) tr
[(

I – ZZT)–1IijZ
T]
∣∣∣∣

2} 1
2

= 0.

Proof We first prove statement (i). Suppose that the operator Mψ is compact on Bα(�I).
Consider a sequence {Sn} in �I such that Sn → ∂�I as n → ∞. Using this sequence, we
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define the functions

fn(Z) =
[
det
(
I – SST)] 1

2 log
2

det(I – ZSn
T )

. (34)

Then, by Lemma 9, we know that the sequence {fn} is uniformly bounded in Bα(�I) and
uniformly converges to zero on any compact subset of �I as n → ∞. Hence, by Lemma 5,

lim
n→∞‖Mψ fn‖Bα (�I ) = 0. (35)

Using (35), it follows from a direct computation that (i) holds.
Consider

gn(Z) =
1

1 – 2α

[det(I – SnSn
T )]α

[det(I – ZSn
T )]2α–1

.

We can similarly prove statement (ii) and the details are omitted. �
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