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Abstract
In this paper, we introduce a new extension of the double controlled metric-type
spaces, called double controlled metric-like spaces, by assuming that the
“self-distance” may not be zero On the other hand, if the value of the metric is zero,
then it has to be a “self-distance” (i.e., we replace [ς (g,h) = 0 ⇔ g = h] by
[ς (g,h) = 0⇒ g = h]). Using this new type of metric spaces, we generalize many
results in the literature. We prove fixed point results along with examples illustrating
our theorems. Also, we present double controlled metric-like spaces endowed with a
graph along with an open question.
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1 Introduction
In 1922, Banach [1] proved the existence and uniqueness of a fixed point for self-
contractive mapping in metric spaces. That was the starting point for researchers in the
field of analysis to generalize his result, whether by changing the contractions or by gener-
alizing the type of metric spaces covering a wider class of metrics, for example, extension
of metric spaces to partial metric spaces or b-metric spaces; see [2–17].

One interesting extension of metric spaces is b-metric spaces introduced by Bakhtin
[18]. Recently, several extensions of b-metric spaces were introduced, such as extended
b-metric spaces, which were initiated by Kamran et al. [19]. In 2018, Mlaiki et al. [20] gave
an extension of the extended b-metric spaces, the so-called controlled metric-type spaces.
Also, in 2018, Abdeljawad et al. [21], introduced the concept of double controlled metric-
type spaces. As an extension of all the types of metric spaces mentioned, we introduce a
new class, the so-called double controlled metric-like spaces.

2 Preliminaries
We begin our preliminaries by recalling the definition of extended b-metric spaces.

Definition 2.1 ([19]) Consider the set F �= ∅ and a function � : F ×F → [1,∞). Suppose
that a function ς : F ×F → R+ satisfies the following conditions for all g, h, w ∈F :

(1) ς (g, h) = 0 ⇐⇒ g = h;
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(2) ς (g, h) = ς (h, g);
(3) ς (g, h) ≤ �(g, h)[ς (g, w) + ς (w, h)].

Then the pair (F ,ς ) is called an extended b-metric space.

Next, we present the definition of controlled metric-type spaces.

Definition 2.2 ([20]) Given a nonempty set F and a function � : F2 → [1,∞), suppose
that a function ρ : F2 → [0,∞) satisfies the following conditions for all g, h, w ∈F :

(ρ1) ρ(g, h) = 0 ⇔ g = h;
(ρ2) ρ(g, h) = ρ(h, g);
(ρ3) ρ(g, h) ≤ � (g, w)ρ(g, w) + � (w, h)ρ(w, h).
Then the pair (F ,ρ) is called a controlled metric-type space.

The following definition is a generalization of controlled metric-type spaces to double
controlled metric-type spaces.

Definition 2.3 ([21]) (DCMTS) Consider a set F �= ∅ and noncomparable functions
� , ε : F × F → [1,∞). Suppose that a function ς : F2 → [0,∞) satisfies the following
conditions for all g, h, w ∈F :

(1) ς (g, h) = 0 if and only if g = h;
(2) ς (g, h) = ς (h, g);
(3) ς (g, h) ≤ � (g, w)ς (g, w) + ε(w, h)ς (w, h).

Then the pair (F ,ς ) is called a double controlled metric-type space.

Now we present our generalization of the double controlled metric-type spaces.

Definition 2.4 (DCMLS) Consider a set F �= ∅ and noncomparable functions � , ε : F ×
F → [1,∞). Suppose that a function ς : F ×F → [0,∞) satisfies the following conditions
for all g, h, w ∈F :

(ς1) ς (g, h) = 0 ⇒ g = h;
(ς2) ς (g, h) = ς (h, g);
(ς3) ς (g, h) ≤ � (g, w)ς (g, w) + ε(w, h)ς (w, h).

Then the pair (F ,ς ) is called a double controlled metric-like space (DCMLS).

We denote double controlled metric-type spaces by (DCMTS) and double controlled
metric-like spaces by (DCMLS).

Remark 2.5 Note that any (DCMTS) is a (DCMLS). However, the converse is not always
true.

Example 2.6 Let F = R
+. Take ς : F ×F →R

+ defined as

ς (g, h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ⇒ g = h,
1
2 if g = 0 and h = 0,
1
g if g ≥ 1 and h ∈ [0, 1),
1
h if h ≥ 1 and g ∈ [0, 1),

1 otherwise.
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Consider the following � , ε : F ×F → [1,∞):

� (g, h) =

⎧
⎨

⎩

g if g, h ≥ 1,

1 otherwise,
and ε(g, h) =

⎧
⎨

⎩

1 if g, h < 1,

max{g, h} otherwise.

It is not difficult to see that (ς1) and (ς2) are satisfied. Next, we show that condition (ς3) is
satisfied.

Case 1: If w = g or w = h, then (ς3) is satisfied.
Case 2: If w �= g and w �= h, note that if g = h, then we are done. So, without loss of gen-

erality, we may assume that g �= h. Thus g �= h �= w. It is not difficult to see that if (g ≥ 1
and 0 ≤ h < 1) or (h ≥ 1 and 0 ≤ g < 1), then (ς3) holds. Now we consider the following
subcases:

Subcase 1: g, h ≥ 1.
If w ≥ 1, then we are done. Also, if 0 ≤ w < 1, then we get

1 ≤ 1
g

+ h.
1
h

,

and hence (ς3) holds.
Subcase 2: g, h < 1.
If 0 ≤ w < 1, then we are done. On the other hand, if w ≥ 1, then we have

1 ≤ 1
w

+ w.
1
w

,

and thus (ς3) is satisfied. Therefore (F ,ς ) is a (DCMLS).
Moreover,

ς (0, 0) �= 0,

and thus (F ,ς ) is not a (DCMTS).

Example 2.7 Let F = {0, 1, 2}. Define ς by

ς (0, 0) = ς (1, 1) = 0, ς (2, 2) =
1

10
,

and

ς (0, 1) = ς (1, 0) = 1, ς (0, 2) = ς (2, 0) =
1
2

, ς (1, 2) = ς (2, 1) =
2
5

.

Take � , ε : F ×F → [1,∞) to be symmetric and defined by

� (0, 0) = � (1, 1) = � (2, 2) = � (0, 2) = 1, � (1, 2) =
5
8

, � (0, 1) =
11
10

,

and

ε(0, 0) = ε(1, 1) = ε(2, 2) = 1, ε(0, 2) =
3
2

, ε(1, 2) =
5
4

, ε(0, 1) =
11
10

.
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Note that (F ,ς ) is a (DCMLS). Also, we have;

ς (2, 2) =
1

10
�= 0.

Thus (F ,ς ) is not a (DCMTS).

Next, we present the topology of the controlled metric-like spaces.

Definition 2.8 Let (F ,ς ) be a (DCMLS), and let {gn}n≥0 be a sequence in F .
(1) {gn} is convergent to g in F if and only if

lim
n→∞ς (gn, g) = ς (g, g).

In this case, we write limn→∞ gn = g .
(2) {gn} is ς -Cauchy if and only if limn,m→∞ ς (gn, gm) exists and is finite.
(3) (F ,ς ) is said to be complete if for each ς -Cauchy sequence {gn}, there is g ∈ F such

that

lim
n→∞ς (gn, g) = ς (g, g) = lim

n,m→∞ς (gn, gm).

Definition 2.9 Let (F ,ς ) be a (DCMLS). For g ∈ F and τ > 0:
(i) An open ball B(g, τ ) in (F ,ς ) is

B(g, τ ) =
{

y ∈ F ,
∣
∣ς (g, h) – ς (g, g)

∣
∣ < τ

}
.

(ii) The mapping ℵ : F → F is said to be continuous at g ∈ F if for all ε > 0, there exists
δ > 0 such that ζ (B(g, δ)) ⊆ B(ℵ(g), ε). Thus if ℵ is continuous at g , then for any
sequence {gn} converging to g , we have limn→∞ ℵgn = ℵg , that is,

lim
n→∞ς (ℵgn,ℵg) = ς (ℵg,ℵg).

3 Main results
In our first theorem, we prove the Banach contraction type theorem in (DCMLS).

Theorem 3.1 Let (F ,ς ) be a complete (DCMLS) defined by functions � , ε : F2 → [1,∞).
Let ℵ : F →F be a mapping such that

ς (ℵg,ℵh) ≤ kς (g, h) (3.1)

for all g, h ∈F , where k ∈ (0, 1). For g0 ∈F , take gn = ℵng0. Suppose that

sup
m≥1

lim
i→∞

� (gi+1, gi+2)
� (gi, gi+1)

ε(gi+1, gm) <
1
k

. (3.2)

Also, assume that for every g ∈F , we have

lim
n→∞� (g, gn) and lim

n→∞ ε(gn, g) exist and are finite. (3.3)

Then ℵ has a unique fixed point.
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Proof Let {gn = ℵng0} in F be a sequence that satisfies the conditions of our theorem. By
using (3.1) we get

ς (gn, gn+1) ≤ knς (g0, g1) for all n ≥ 0. (3.4)

Let n, m ∈N be such that n < m. Then

ς (gn, gm) ≤ � (gn, gn+1)ς (gn, gn+1) + ε(gn+1, gm)ς (gn+1, gm)

≤ � (gn, gn+1)ς (gn, gn+1) + ε(gn+1, gm)� (gn+1, gn+2)ς (gn+1, gn+2)

+ ε(gn+1, gm)ε(gn+2, gm)ς (gn+2, gm)

≤ � (gn, gn+1)ς (gn, gn+1) + ε(gn+1, gm)� (gn+1, gn+2)ς (gn+1, gn+2)

+ ε(gn+1, gm)ε(gn+2, gm)� (gn+2, gn+3)ς (gn+2, gn+3)

+ ε(gn+1, gm)ε(gn+2, gm)ε(gn+3, gm)ς (gn+3, gm)

≤ · · ·

≤ � (gn, gn+1)ς (gn, gn+1) +
m–2∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)ς (gi, gi+1)

+
m–1∏

k=n+1

ε(gk , gm)ς (gm–1, gm)

≤ � (gn, gn+1)knς (g0, g1) +
m–2∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)kiς (g0, g1)

+
m–1∏

i=n+1

ε(gi, gm)km–1ς (g0, g1)

≤ � (gn, gn+1)knς (g0, g1) +
m–2∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)kiς (g0, g1)

+

( m–1∏

i=n+1

ε(gi, gm)

)

km–1� (gm–1, gm)ς (g0, g1)

= � (gn, gn+1)knς (g0, g1) +
m–1∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)kiς (g0, g1)

≤ � (gn, gn+1)knς (g0, g1) +
m–1∑

i=n+1

( i∏

j=0

ε(gj, gm)

)

� (gi, gi+1)kiς (g0, g1).

Note that we are using the fact that � (g, h) ≥ 1. Let

Ωp =
p∑

i=0

( i∏

j=0

ε(gj, gm)

)

� (gi, gi+1)ki.
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Then we have

ς (gn, gm) ≤ ς (g0, g1)
[
kn� (gn, gn+1) + (Ωm–1 – Ωn)

]
. (3.5)

By condition (3.2), using the ratio test, we see that limn→∞ Ωn exists, and hence the real
sequence {Ωn} is ς -Cauchy. Finally, if we take the limit in inequality (3.5) as n, m → ∞,
we deduce that

lim
n,m→∞ς (gn, gm) = 0. (3.6)

Hence the sequence {gn} is ς -Cauchy in (F ,ς ), which is a complete (DCMLS), so {gn}
converges to some g ∈F , that is,

lim
n→∞ς (gn, g) = ς (g, g) = lim

n,m→∞ς (gn, gm) = 0. (3.7)

Then ς (g, g) = 0. Next, we show that ℵg = g . The triangle inequality of DCMLS implies
that

ς (g, gn+1) ≤ � (g, gn)ς (g, gn) + ε(gn, gn+1)ς (gn, gn+1).

Using (3.3) and (3.6), we deduce that

lim
n→∞ς (g, gn+1) = 0. (3.8)

By the triangle inequality and (3.1) we have

ς (g,ℵg) ≤ � (g, gn+1)ς (g, gn+1) + ε(gn+1,ℵg)ς (gn+1,ℵg)

≤ � (g, gn+1)ς (g, gn+1) + kε(gn+1,ℵg)ς (gn, g).

Taking the limit as n → ∞, by (3.3) and (3.8) we deduce that ς (g,ℵg) = 0, that is, ℵg = g .
Finally, assume that ℵ has two fixed points, say α and β . Then

ς (α,β) = ς (ℵα,ℵβ) ≤ kς (α,β) < ς (α,β),

which leads us to a contradiction. Therefore ς (α,β) = 0, so α = β . Hence ℵ has a unique
fixed point. �

Remark 3.2 Note that condition (3.3) in Theorem 3.1 can be changed by the assumption
that ℵ and the (DCMLS) ς are continuous. To see this, the continuity gives us that if gn →
u, then ℵgn → ℵu, and hence we have

lim
n→∞ς (ℵgn,ℵu) = 0 = lim

n→∞ς (ℵgn+1,ℵu) = ς (u,ℵu),

and thus ℵu = u.

Now we illustrate Theorem 3.1 by the following example.
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Example 3.3 Consider F = {0, 1, 2}. Let ς be symmetric and defined by

ς (g, g) = 0 for g ∈ {0, 1},

ς (2, 2) =
1

100
,

and

ς (0, 1) = 1, ς (0, 2) =
2
5

, ς (1, 2) =
6

25
.

Take � , ε : F ×F → [1,∞) to be symmetric and defined by

� (0, 0) = � (1, 1) = � (2, 2) = 1, � (0, 2) =
151
100

,

� (1, 2) =
8
5

, � (0, 1) =
6
5

,

and

ε(0, 0) = ε(1, 1) = ε(2, 2) = 1, ε(0, 2) =
8
5

, ε(1, 2) =
33
20

, ε(0, 1) =
6
5

,

Now define the self-mapping ℵ on F as follows:

ℵ0 = 2 and ℵ1 = ℵ2 = 1.

Choose k = 3
5 . Clearly, (3.1) holds. For any g0 ∈ F , (3.2) holds, along with conditions of

Theorem 3.1. Therefore the mapping ℵ admits a unique fixed point, which is g = 1.

Definition 3.4 Let ℵ : F −→F . For some g0 ∈F , consider O(g0) = {g0,ℵg0,ℵ2g0, . . .} to be
the orbit of g0. We say that a function G : F −→ R is ℵ-orbitally lower semicontinuous at
w ∈F if for {gn} ⊂ O(g0) such that gn −→ w, we have G(w) ≤ limn→∞ inf G(gn).

Inspired by [19], we are going to use Definition 3.4 to present a nice consequence of
Theorem 3.1, which is a generalization of Theorem 1 in [22].

Corollary 3.5 Let (F ,ς ) be the complete (DCMLS) defined by functions � , ε : F2 →
[1,∞). Let ℵ : F →F , Let g0 ∈F and 0 < k < 1 be uch that

ς
(ℵw,ℵ2w

) ≤ kς (w,ℵw) for each w ∈ O(g0). (3.9)

Take gn = ℵng0. Suppose that

sup
m≥1

lim
i→∞

� (gi+1, gi+2)
� (gi, gi+1)

ε(gi+1, gm) <
1
k

. (3.10)

Then limn→∞ gn = w ∈ F . Also, ℵw = w ⇔ g �→ ς (g,ℵg) is ℵ-orbitally lower semicontinu-
ous at w.

Next, we present the nonlinear case.
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Theorem 3.6 Let (F ,ς ) be a complete (DCMLS) defined by functions � , ε : F2 → [1,∞).
Consider a map ℵ : F → F and assume that there exists a nondecreasing and continuous
function φ : R+ →R

+ such that

φi(g) → 0 as n → ∞, g > 0,

ς (ℵg,ℵh) ≤ φ
(

(g, h)

)
, 
(g, h) = max

{
ς (g, h),ς (g,ℵg),ς (h,ℵh)

}
(3.11)

for all g, h ∈F . Moreover, assume that for each g0 ∈F , we have

sup
m≥1

lim
i→∞

� (gi+1, gi+2)
� (gi, gi+1)

ε(gi+1, gm)
φi+1(ς (g1, g0))
φi(ς (g1, g0))

< 1, (3.12)

where gn = ℵng0, n ∈ N. If the (DCMLS) ς and ℵ are continuous, then ℵ admits a unique
fixed point w ∈F with ℵns → w for each g ∈F .

Proof Let {gn} and g0 be as in the hypothesis of the theorem. Assume that there exists
m ∈N such that gm = gm+1 = ℵgm, which implies that gm is a fixed point. So we may assume
that gn+1 �= gn for each n. From condition (3.11) we have

ς (gn, gn+1) = ς (ℵgn,ℵgn–1) ≤ φ
(

(gn–1, gn)

)
, (3.13)

where 
(gn–1, gn) = max{ς (gn–1, gn),ς (gn, gn+1)}. If for some n, we accept that 
(gn–1, gn) =
ς (gn, gn+1), then by (3.13) and the fact that we have φ(t) < t for all t > 0, we deduce that

0 < ς (gn, gn+1) ≤ φ
(
ς (gn, gn+1)

)
< ς (gn, gn+1), (3.14)

which is a contradiction. Thus, for all n ∈ N, we obtain 
(gn–1, gn) = ς (gn–1, gn). It follows
that 0 < ς (gn, gn+1) ≤ φ(ς (gn–1, gn)). By using induction we easily see that for all n ≥ 0,

0 < ς (gn, gn+1) ≤ φn(ς (g0, g1)
)
.

By the properties of φ we can easily deduce that

ς (gn, gn+1) → 0 as n → ∞.

Using the argument in the proof of Theorem 3.1, for n, m ∈ N such that n < m, we can
easily deduce that

ς (gn, gm) ≤ � (gn, gn+1)φn(ς (g0, g1)
)

+
m–1∑

i=n+1

( i∏

j=0

ε(gj, gm)

)

� (gi, gi+1)φi(ς (g0, g1)
)
. (3.15)

By condition (3.12), using the ratio test, we can easily deduce that the sequence {gn}
is ς -Cauchy. Since (F ,ς ) is a complete (DCMLS), if gn → w ∈ F as n → ∞, then
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limn→∞ ς (gn, w) = 0. Hence by Remark 3.2 we conclude that ℵw = w. Finally, assume that
w and u are two fixed points of ℵ such that w �= u. From assumption (3.11) we have

ς (w, u) = ς (ℵw,ℵu) ≤ φ
(

(w, u)

)
= φ

(
ς (w, u)

)
< ς (w, u),

which leads to a contradiction. Therefore w = u, as desired. �

Remark 3.7 Note that if φ(g) = kg , 0 < k < 1, then condition (3.11) in Theorem 3.6 becomes

ς (ℵg,ℵh) ≤ k max
{
ς (g, h),ς (g,ℵg),ς (h,ℵh)

}
. (3.16)

Next, we prove the following result for mappings satisfying Kannan-type contraction.

Theorem 3.8 Let (F ,ς ) be the complete (DCMLS) defined by functions � , ε : F2 →
[1,∞). Let ℵ : F →F be a Kannan mapping defined as follows:

ς (ℵg,ℵh) ≤ a
[
ς (g,ℵg) + ς (h,ℵh)

]
(3.17)

for g, h ∈F , where a ∈ (0, 1
2 ). For g0 ∈F , take gn = ℵng0. Suppose that

sup
m≥1

lim
i→∞

� (gi+1, gi+2)
� (gi, gi+1)

ε(gi+1, gm) <
1 – a

a
. (3.18)

Also, assume that for every g ∈F , we have

lim
n→∞� (g, gn) exists and is finite, and lim

n→∞ ε(gn, g) <
1
a

. (3.19)

Then ℵ has a fixed point. Moreover, if for every fixed point w, we have ς (w, w) = 0, then the
fixed point is unique.

Proof Consider the sequence {gn = ℵgn–1} in F satisfying hypotheses (3.18) and (3.19).
From (3.17) we obtain

ς (gn, gn+1) = ς (ℵgn–1,ℵgn)

≤ a
[
ς (gn–1,ℵgn–1) + ς (gn,ℵgn)

]

= a
[
ς (gn–1, gn) + ς (gn, gn+1)

]
.

Then ς (gn, gn+1) ≤ a
1–aς (gn–1, gn). By induction we get

ς (gn, gn+1) ≤
(

a
1 – a

)n

ς (g1, g0), ∀n ≥ 0. (3.20)

Next, we show that {gn} is a ς -Cauchy sequence. For two natural numbers n < m, we have

ς (gn, gm) ≤ � (gn, gn+1)ς (gn, gn+1) + ε(gn+1, gm)ς (gn+1, gm).
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Similarly to the proof of Theorem 3.1, we get

ς (gn, gm) ≤ � (gn, gn+1)ς (gn, gn+1) +
m–2∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)ς (gi, gi+1)

+
m–1∏

k=n+1

ε(gk , gm)ς (gm–1, gm)

≤ � (gn, gn+1)
(

a
1 – a

)n

ς (g0, g1)

+
m–2∑

i=n+1

( i∏

j=n+1

ε(gj, gm)

)

� (gi, gi+1)
(

a
1 – a

)i

ς (g0, g1)

+
m–1∏

i=n+1

ε(gi, gm)
(

a
1 – a

)m–1

ς (g0, g1).

Since 0 ≤ a < 1
2 , we have 0 < a

1–a < 1, and similarly to the argument in the proof of The-
orem 3.1, we obtain that {gn} is a ς -Cauchy sequence in the complete (DCMLS) (F ,ς ).
Thus {gn} converges to some w ∈F . Suppose that ℵw �= w. Then

0 < ς (w,ℵw) ≤ � (w, gn+1)ς (w, gn+1) + ε(gn+1,ℵw)ς (gn+1,ℵw)

≤ � (w, gn+1)ς (w, gn+1) + ε(gn+1,ℵw)
[
aς (gn, gn+1) + aς (w,ℵw)

]
.

Taking the limit in both sides of these inequalities and using (3.19), we deduce that 0 <
ς (w,ℵw) < ς (w,ℵw), which is a contradiction. Hence ℵw = w. Now assume that for every
fixed point w, we have ς (w, w) = 0 and suppose that ℵ has more than one fixed point, say
w and λ. Then

ς (w,λ) = ς (ℵw,ℵλ) ≤ a
[
ς (w,ℵw) + ς (λ,ℵλ)

]

= a
[
ς (w, w) + ς (λ,λ)

]
= 0.

Thereby w = λ, as required. �

4 Conclusion
In this section, we present an open question on (DCMLS) endowed with a graph. First,
Fig. 1 is an example of a (DCMLS) endowed with a graph.

Let ς be a (DCMLS) on a set F �= ∅. Let 
 be the diagonal of F2. A graph G is defined by
the pair (V , E), where V is a set of vertices coinciding with F , and E is the set of its edges
with 
 ⊂ E. From now on, assume that G has no parallel edges.

Definition 4.1 Let t and g be two vertices in a graph G. A path in G from t to g of length
q (q ∈ N ∪ {0}) is a sequence (ki)

q
i=0 of q + 1 distinct vertices such that k0 = t, kn = g , and

(ki, ki+1) ∈ E(G) for i = 1, 2, . . . , q.

The graph G may be converted to a weighted graph by assigning to each edge the dis-
tance given by the (DCMLS) between its vertices.



Mlaiki Journal of Inequalities and Applications        (2020) 2020:189 Page 11 of 12

Figure 1 (DCMLS) as in Example 2.7

Notation Let Fℵ = {x ∈F/(x,ℵx) ∈ E(G) or (ℵx, x) ∈ E(G)}.

Definition 4.2 Let (F ,ς ) be a complete (DCMLS) endowed with a graph G. The mapping
ℵ : F →F is said to be a Gφ-contraction if

•

for all t, g ∈F , (t, g) ∈ E(G) �⇒ (ℵt,ℵg) ∈ E(G); (4.1)

• there is a function φ : R+ −→R
+ such that

ξ
(ℵt,ℵ2t

) ≤ φ
(
ξ (t,ℵt)

)
, ∀t ∈Fℵ, (4.2)

where φ is a nondecreasing function, and {φn(t)}n∈N converges to 0 for each t > 0.

Definition 4.3 The mapping ℵ : F −→F is called orbitally G-continuous if for all a, b ∈ X
and any positive sequence {gn}n∈N,

ℵgn a −→ b,
(ℵgn a,ℵgn+1 a

) ∈ E(G) �⇒ ℵ(ℵgn a
) −→ ℵb as n → ∞.

Conjecture 4.4 Let (F ,ς , G) be a complete (DCMLS) with a graph G. Let ℵ : F → F be
a Gφ-contraction that is orbitally G-continuous. Suppose the following property holds:

(P) for any {tn}n∈N in F , if tn −→ t and (tn, tn+1) ∈ E(G), then there is a subsequence
{tkn}n∈N with (tkn , t) ∈ E(G).

Moreover, suppose that, for each g ∈F ,

sup
m≥1

lim
i→∞

� (gi+1, gi+2)
� (gi, gi+1)

ε(gi+1, gm) < M; M > 1.

Also, assume that for every g ∈F , we have that

lim
n→∞� (g, gn) and lim

n→∞ ε(gn, g) exist and are finite.

Then the restriction of ℵ|[g]G̃
to [g]G̃ possesses a fixed point.

Acknowledgements
The author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis
Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.



Mlaiki Journal of Inequalities and Applications        (2020) 2020:189 Page 12 of 12

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The author declares no conflict of interest.

Authors’ contributions
The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 April 2020 Accepted: 8 July 2020

References
1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur applications aux équations intègrales. Fundam.

Math. 3(1), 133–181 (1922)
2. Abdeljawad, T., Abodayeh, K., Mlaiki, N.: On fixed point generalizations to partial b-metric spaces. J. Comput. Anal.

Appl. 19(5), 883–891 (2015)
3. Rashwan, R.A., Mahmoud, M.G.: Common fixed point theorems for weakly compatible self-mappings under

contraction conditions in complex valued b-metric spaces. Palest. J. Math. 9(2), 749–760 (2020)
4. Qawaqneh, H., Noorani, M.S.M., Shatanawi, W., Aydi, H., Alsamir, H.: Fixed point results for multi-valued contractions in

b-metric spaces and an application. Mathematics 7(2), Article ID 132 (2019)
5. Shatanawi, W., Abodayeh, K., Mukhemer, A.: Some fixed point theorems in extended b-metric spaces. UPB Sci. Bull.,

Ser. A, Appl. Math. Phys. 80(4), 71–78 (2018)
6. Shatanawi, W., Pitea, A., Lazovic, R.: Contraction conditions using comparison functions on b-metric spaces. Fixed

Point Theory Appl. 2014(1), Article ID 135 (2014)
7. Afshari, H., Atapour, M., Aydi, H.: Generalized α –ψ -Geraghty multivalued mappings on b-metric spaces endowed

with a graph. TWMS J. Appl. Eng. Math. 7(2), 248–260 (2017)
8. Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S.: α-Contractive mappings on rectangular b-metric spaces and an

application to integral equations. J. Math. Anal. 9(3), 47–60 (2018)
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