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Abstract
This paper is devoted to obtain generalized results related to majorization-type
inequalities by using well-known Fink’s identity and new types of Green functions,
introduced by Mehmood et al. (J. Inequal. Appl. 2017:108, 2017). We give a
generalized majorization theorem for the class of n-convex functions. We utilize the
Csiszár f -divergence and generalized majorization-type inequalities in providing the
corresponding generalizations. As an application, we present the obtained results in
terms of Shannon entropy and Kullback–Leibler distance.
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1 Introduction
Majorization is a powerful and useful mathematical tool, which arises frequently in many
different areas of research. Anyone seriously interested in majorization will eventually
need to take a good look at Marshall et al.’s classic text [29], which gives a very nearly
comprehensive coverage of both history and theory of majorization. It also contains a
wealth of additional material including many interesting applications to diverse areas of
mathematics. Alberti and Uhlmann [7] have also written a more specified monograph on
majorization, which may be of interest to many readers. Moreover, Ando has written an
excellent pair [8, 9] of survey papers on majorization, which provide a brief introduction
to the subject and cover much of the field’s development since the publication of Marshall
et al.’s book [29].

In 2018, Latif et al. [27] studied generalized results related to majorization inequality by
using Taylor’s polynomial in combination with newly introduced Green functions. In the
same year, Siddique et al. [34] gave generalized majorization results via Lidstone’s poly-
nomial and newly defined Green functions. The theory of majorization often appears in
many fields of applications. Khan et al. [20] presented significant material on majorization
along with its applications in information theory.
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In this paper, our main goal is obtaining generalized results about majorization by using
new Green functions and Fink’s identity. We further make connection of majorization
with information theory and discuss our generalized majorization inequality in terms of
divergences and entropies. The results we obtain in this paper are closely related to the
contents of [1–5]. Moreover, some results related to the present topic can also be found
in [19].

The following definition of majorization is from [33, p. 319].

Definition 1 For fixed k ≥ 2, let x = (x1, . . . , xk) and y = (y1, . . . , yk) be two nonincreasing
k-tuples of real numbers. If

j∑

i=1

yi ≤
j∑

i=1

xi, (1)

for j = 1, 2, . . . , k – 1 and

k∑

i=1

xi =
k∑

i=1

yi, (2)

then we say that x majorizes y. Symbolically, we write x � y. Hardy et al. [15] introduced
this notation and notion of majorization.

The following theorem is called the classical majorization theorem and is given in [29,
p. 11] (see also [33, p. 320]).

Theorem A Consider two nonincreasing real k-tuples x = (x1, . . . , xk) and y = (y1, . . . , yk),
where xi, yi ∈ [ϑ1,ϑ2] ⊂ R for i = 1, . . . , k. Then x majorizes y if and only if following in-
equality holds:

k∑

i=1

f (yi) ≤
k∑

i=1

f (xi), (3)

where f : [ϑ1,ϑ2] →R is a continuous convex function.

The following theorem is regarded as a generalization of the majorization theorem given
by Fuchs [14] (see also [33, p. 323] and [29, p. 580]).

Theorem B Consider two nonincreasing real k-tuples x = (x1, . . . , xk) and y = (y1, . . . , yk),
where xi, yi ∈ [ϑ1,ϑ2] ⊂R for i = 1, . . . , k. Let p = (p1, . . . , pk) be a real k-tuple such that

j∑

i=1

piyi ≤
j∑

i=1

pixi, (4)

for j = 1, 2, . . . , k – 1 and

k∑

i=1

piyi =
k∑

i=1

pixi. (5)
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Then

k∑

i=1

pif (yi) ≤
k∑

i=1

pif (xi), (6)

where f : [ϑ1,ϑ2] →R is a continuous convex function.

The following theorem represents an integral form of Theorem B and is in fact a simple
consequence of Theorem 1 given in [31] (see also [33, p. 328].

Theorem C Let φ,ψ : [a, b] → [ϑ1,ϑ2] be two continuous decreasing functions, and let
p : [a, b] →R be any continuous function. If

∫ λ

a
p(w)ψ(w) dw ≤

∫ λ

a
p(w)φ(w) dw for every λ ∈ [a, b] (7)

and

∫ b

a
p(w)ψ(w) dw =

∫ b

a
p(w)φ(w) dw, (8)

then

∫ b

a
p(w)f

(
ψ(w)

)
dw ≤

∫ b

a
p(w)f

(
φ(w)

)
dw, (9)

where f : [ϑ1,ϑ2] →R is a continuous convex function.

For other forms of integral version and generalization of the majorization theorem, see
[29, p. 583], [10, 21, 23–26, 28]. In this paper, we present the results for decreasing func-
tions φ and ψ that satisfy the conditions of Theorem C, but those results also hold for
increasing φ and ψ satisfying the inequality

∫ b

λ

p(w)ψ(w) dw ≤
∫ b

λ

p(w)φ(w) dw for every λ ∈ [a, b] (10)

and condition (8). For instance, see the example in [29, p. 584].
In 1991, Fink [13] proved a very important result, known as Fink’s identity, given as

follows.

Theorem D Let [ϑ1,ϑ2] ⊂ R and f : [ϑ1,ϑ2] → R, n ≥ 1, be such that f (n–1) is absolutely
continuous. Then

f (x) =
n

ϑ2 – ϑ1

∫ ϑ2

ϑ1

f (t) dt

–
n–1∑

s=1

(
n – s

s!

)(
f (s–1)(ϑ1)(x – ϑ1)s – f (s–1)(ϑ2)(x – ϑ2)s

ϑ2 – ϑ1

)

+
1

(n – 1)!(ϑ2 – ϑ1)

∫ ϑ2

ϑ1

(x – t)n–1s[ϑ1,ϑ2](t, x)f (n)(t) dt, (11)
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where

s[ϑ1,ϑ2](t, x) =

⎧
⎨

⎩
(t – ϑ1), ϑ1 ≤ t ≤ x ≤ ϑ2,

(t – ϑ2), ϑ1 ≤ x < t ≤ ϑ2.
(12)

As stated in [30], the complete reference about Abel–Gontscharoff polynomial and the-
orem for “two-point right focal problem” is given in [6].

Remark 1 The Abel–Gontscharoff polynomial, as a special choice of the “two-point right
focal” interpolating polynomial for n = 2, is

f (u) = f (ϑ1) + (u – ϑ1)f ′(ϑ2) +
∫ ϑ2

ϑ1

GΩ ,2(u, v)f ′′(v) dv, (13)

where GΩ ,2(u, v) : [ϑ1,ϑ2] × [ϑ1,ϑ2] → R is the Green function for the “two-point right
focal problem” given as

G1(u, v) = GΩ ,2(u, v) =

⎧
⎨

⎩
(ϑ1 – v), ϑ1 ≤ v ≤ u,

(ϑ1 – u), u ≤ v ≤ ϑ2.
(14)

Let us define some new types of Green functions Gl : [ϑ1,ϑ2] × [ϑ1,ϑ2] → R, where
[ϑ1,ϑ2] ⊂ R and l = 2, 3, 4, given by Mehmood et al. (see [30]), which are continuous and
convex, by keeping in view the Abel–Gontscharoff Green’s function for the “two-point
right focal problem”:

G2(u, v) =

⎧
⎨

⎩
(u – ϑ2), ϑ1 ≤ v ≤ u,

(v – ϑ2), u ≤ v ≤ ϑ2;
(15)

G3(u, v) =

⎧
⎨

⎩
(u – ϑ1), ϑ1 ≤ v ≤ u,

(v – ϑ1), u ≤ v ≤ ϑ2;
(16)

G4(u, v) =

⎧
⎨

⎩
(ϑ2 – v), ϑ1 ≤ v ≤ u,

(ϑ2 – u), u ≤ v ≤ ϑ2.
(17)

Next, we evaluate new generalizations of majorization inequality with the help of the
following lemma given by Mehmood et al. [30].

Lemma 1 Let f : [ϑ1,ϑ2] → R be a twice differentiable function, and let Gl (l = 1, 2, 3, 4)
be Green functions given in (14)–(17). Then along with identity (13), we have the following
identities:

f (u) = f (ϑ2) + (u – ϑ2)f ′(ϑ1) +
∫ ϑ2

ϑ1

G2(u, v)f ′′(v) dv, (18)

f (u) = f (ϑ2) – (ϑ2 – ϑ1)f ′(ϑ2) + (u – ϑ1)f ′(ϑ1) +
∫ ϑ2

ϑ1

G3(u, v)f ′′(v) dv, (19)

f (u) = f (ϑ1) + (ϑ2 – ϑ1)f ′(ϑ1) – (ϑ2 – u)f ′(ϑ2) +
∫ ϑ2

ϑ1

G4(u, v)f ′′(v) dv. (20)
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This paper is arranged as follows. Section 2.1 contains some important results obtained
by generalizing majorization-type identities by using Fink’s identity and new Green func-
tions. We also obtain a generalized majorization theorem for the class of n-convex func-
tions. In Sect. 2.2, we use the Csiszár f -divergence and generalized majorization-type in-
equalities to obtain new generalized results. Further, we discuss our generalized results in
terms of Shannon entropy and Kullback–Leibler distance.

2 Main results
This section contains results about the generalization of majorization inequality. For sim-
plicity, we define some notations used in this paper. Let x = (x1, . . . , xk), y = (y1, . . . , yk), and
p = (p1, . . . , pk) be such that xi, yi ∈ [ϑ1,ϑ2] ⊂R and pi ∈R for i = 1, 2, . . . , k. We denote the
majorization difference for a function f as

D
(
p, x, y, f (·)) :=

k∑

i=1

pif (xi) –
k∑

i=1

pif (yi). (21)

Let p : [a, b] →R and φ,ψ : [a, b] → [ϑ1,ϑ2] be continuous functions. We define the inte-
gral majorization difference for a function f as

D̃
(
p,φ,ψ , f (·)) :=

∫ b

a
p(w)

(
f
(
φ(w)

)
– f

(
ψ(w)

))
dw. (22)

2.1 Majorized results using Fink’s identity
First, we present two equivalent statements of majorization inequality between newly de-
fined Green functions and continuous convex functions.

Theorem 1 Let f : [ϑ1,ϑ2] → R be a continuous convex function, and let x = (x1, . . . , xk),
y = (y1, . . . , yk), and p = (p1, . . . , pk) be k-tuples such that xi, yi ∈ [ϑ1,ϑ2] and pi ∈ R for i =
1, 2, . . . , k and condition (5) is satisfied. Let Gl (l = 1, 2, 3, 4) be the Green functions given in
(14)–(17). Then

k∑

i=1

pif (yi) ≤
k∑

i=1

pif (xi) (23)

if and only if

k∑

i=1

piGl(yi, v) ≤
k∑

i=1

piGl(xi, v) (24)

for all v ∈ [ϑ1,ϑ2].

Proof Here we only give the proof for l = 4, as the idea of the proof is the same for each
l = 1, 2, 3, 4.

Let inequality (23) hold. Then G4(·, v) (v ∈ [ϑ1,ϑ2]), being continuous and convex, satis-
fies inequality (23), that is, inequality (24) holds for l = 4.
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Conversely, let f be a convex function such that f ∈ C2([ϑ1,ϑ2]) and (24) holds. Then by
(20) we can write

f (xi) = f (ϑ1) + (ϑ2 – ϑ1)f ′(ϑ1) – (ϑ2 – xi)f ′(ϑ2) +
∫ ϑ2

ϑ1

G4(xi, v)f ′′(v) dv, (25)

f (yi) = f (ϑ1) + (ϑ2 – ϑ1)f ′(ϑ1) – (ϑ2 – yi)f ′(ϑ2) +
∫ ϑ2

ϑ1

G4(yi, v)f ′′(v) dv. (26)

Using (25) and (26) along with (5), we have

k∑

i=1

pif (xi) –
k∑

i=1

pif (yi) =
∫ ϑ2

ϑ1

[ k∑

i=1

piG4(xi, v) –
k∑

i=1

piG4(yi, v)

]
f ′′(v) dv. (27)

Now the convexity of f implies that f ′′(v) ≥ 0 for all v ∈ [ϑ1,ϑ2]. Hence using (24) in (27),
for l = 4, we get (23).

Note that in this proof the requirement of the existence of the second derivative of f is
not necessary ([33], p. 172). We can directly eliminate this condition because it is possible
to approximate uniformly continuous convex functions by convex polynomials. �

Now we present some useful results obtained by generalizing majorization-type identi-
ties by using Fink’s identity.

Theorem 2 Let f : [ϑ1,ϑ2] → R be such that f (n–1) is absolutely continuous for n ≥ 3. Let
x = (x1, . . . , xk), y = (y1, . . . , yk), and p = (p1, . . . , pk) with xi, yi ∈ [ϑ1,ϑ2] ⊂ R and pi ∈ R for
i = 1, 2, . . . , k. Also, let s[ϑ1,ϑ2](t, x) be as defined in (12), and let Gl (l = 1, 2, 3, 4) be the Green
functions given in (14)–(17). Then

D
(
p, x, y, f (·))

= f ′(ξl)
k∑

i=1

pi(xi – yi) +
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

D
(
p, x, y, Gl(·, v)

)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv +

1
(n – 3)!(ϑ2 – ϑ1)

×
∫ ϑ2

ϑ1

f (n)(t)
(∫ ϑ2

ϑ1

(
D

(
p, x, y, Gl(·, v)

))
(v – t)n–3s[ϑ1,ϑ2](t, v) dv

)
dt, (28)

where ξ1, ξ4 = ϑ2 and ξ2, ξ3 = ϑ1.

Proof Here we only give the proof for l = 4, as the idea of the proof is the same for each
l = 1, 2, 3, 4.

Using (20) in the majorization difference (21), we get

D
(
p, x, y, f (·)) =

k∑

i=1

pi(xi – yi)f ′(ϑ2) +
∫ ϑ2

ϑ1

D
(
p, x, y, G4(·, v)

)
f ′′(v) dv. (29)
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From Fink’s identity (11) we have

f ′′(x) =
n–1∑

s=2

(
n – s

(s – 2)!

)(
f (s–1)(ϑ2)(x – ϑ2)s–2 – f (s–1)(ϑ1)(x – ϑ1)s–2

ϑ2 – ϑ1

)

+
1

(n – 3)!(ϑ2 – ϑ1)

∫ ϑ2

ϑ1

(x – t)n–3s[ϑ1,ϑ2](t, x)f (n)(t) dt. (30)

Using (30) in (29), we get

D
(
p, x, y, f (·))

=
k∑

i=1

pi(xi – yi)f ′(ϑ2) +
∫ ϑ2

ϑ1

D
(
p, x, y, G4(·, v)

) n–1∑

s=2

(
n – s

(s – 2)!

)

×
(

f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2

ϑ2 – ϑ1

)
dv +

1
(n – 3)!(ϑ2 – ϑ1)

×
∫ ϑ2

ϑ1

D
(
p, x, y, G4(·, v)

)(∫ ϑ2

ϑ1

(v – t)n–3s[ϑ1,ϑ2](t, v)f (n)(t) dt
)

dv. (31)

Rearranging (31) and applying Fubini’s theorem in the last term, we obtain (28) for
l = 4. �

An integral version of Theorem 2 is as follows.

Theorem 3 Let [ϑ1,ϑ2] ⊂ R, and let f : [ϑ1,ϑ2] → R be such that f (n–1) is absolutely con-
tinuous for n ≥ 3. Let p : [a, b] → R and φ,ψ : [a, b] → [ϑ1,ϑ2] be continuous functions.
Also, let s[ϑ1,ϑ2](t, x) be as defined in (12), and let Gl (l = 1, 2, 3, 4) be the Green functions
given in (14)–(17). Then

D̃
(
p,φ,ψ , f (·))

= f ′(ξl)
∫ b

a
p(w)

(
φ(w) – ψ(w)

)
dw +

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)

×
∫ ϑ2

ϑ1

D̃
(
p,φ,ψ , Gl(·, v)

)(
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv

+
1

(n – 3)!(ϑ2 – ϑ1)

×
∫ ϑ2

ϑ1

f (n)(t)
(∫ ϑ2

ϑ1

D̃
(
p,φ,ψ , Gl(·, v)

)
(v – t)n–3s[ϑ1,ϑ2](t, v) dv

)
dt, (32)

where ξ1, ξ4 = ϑ2 and ξ2, ξ3 = ϑ1.

Proof Using (20) in the integral majorization difference (22) and performing similar steps
as in the proof of Theorem 2, we get the desired result for l = 4. Similarly, the result can
be proved for l = 1, 2, 3. �
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Theorem 4 Let all the assumptions of Theorem 2 hold, and let f be an n-convex function.
If

∫ ϑ2

ϑ1

D
(
p, x, y, Gl(·, v)

)
(v – t)n–3s[ϑ1,ϑ2](t, v) dv ≥ 0, (33)

then

D
(
p, x, y, f (·)) ≥ f ′(ξl)

k∑

i=1

pi(xi – yi) +
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

D
(
p, x, y, Gl(·, v)

)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv, (34)

where ξ1, ξ4 = ϑ2 and ξ2, ξ3 = ϑ1.
Moreover, (34) holds in the reverse direction if inequality (33) is reversed.

Proof Since f is an n-convex function, we have f (n)(x) ≥ 0 for all x ∈ [ϑ1,ϑ2]. Therefore
using (33) in (28), we have (34). Moreover, if inequality (33) is reversed, then using (28),
we obtain (34) in the reverse direction. �

Theorem 5 Let all the assumptions of Theorem 3 be satisfied with n-convex f . If

∫ ϑ2

ϑ1

D̃
(
p,φ,ψ , Gl(·, v)

)
(v – t)n–3s[ϑ1,ϑ2](t, v) dv ≥ 0, (35)

then

D̃
(
p,φ,ψ , f (·))

≥ f ′(ξl)
∫ b

a
p(w)

(
φ(w) – ψ(w)

)
dw +

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)

×
∫ ϑ2

ϑ1

D̃
(
p,φ,ψ , Gl(·, v)

)(
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv, (36)

where ξ1, ξ4 = ϑ2 and ξ2, ξ3 = ϑ1.
Moreover, (36) holds in the reverse direction if inequality (35) is reversed.

Proof Using (35) in (32) and performing similar steps as in the proof of Theorem 4, we get
required result. �

A refinement of the weighted majorization-type inequality for two nonincreasing real
k-tuples is given in the following corollary.

Corollary 1 Let all the assumptions of Theorem 2 be satisfied. Let x = (x1, . . . , xk) and y =
(y1, . . . , yk) be two nonincreasing real k-tuples such that (4) and (5) hold.
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(i) Let f : [ϑ1,ϑ2] →R is an n-convex function with even n > 3. Then

D
(
p, x, y, f (·)) ≥

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

D
(
p, x, y, Gl(·, v)

)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv. (37)

(ii) If inequality (37) holds and the function ϕ : [ϑ1,ϑ2] →R defined by

ϕ(·) =
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

Gl(·, v)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv (38)

is convex, then the right-hand side of (37) is nonnegative, that is, (6) is satisfied.

Proof (i): Since Gl is continuous and convex for l = 1, 2, 3, 4, by Theorem B we can write

D
(
p, x, y, Gl(·, v)

) ≥ 0. (39)

Note that for ϑ1 ≤ v ≤ t, if n > 3 is even, then we have

∫ t

ϑ1

D
(
p, x, y, Gl(·, v)

)
(v – t)n–3s[ϑ1,ϑ2](t, v) dv ≥ 0, (40)

and for t ≤ v ≤ ϑ2 and even n > 3, we have

∫ ϑ2

t
D

(
p, x, y, Gl(·, v)

)
(v – t)n–3s[ϑ1,ϑ2](t, v) dv ≥ 0. (41)

Combining (40) and (41), we get (33) for even n > 3. Also, f is n-convex for even n > 3, so
using Theorem 4 and (5), we have (37).

(ii): Clearly, we can write (37) in the following form:

D
(
p, x, y, f (·)) ≥ D

(
p, x, y,ϕ(·)). (42)

Now the use of the convex function ϕ in (6) leads us to the nonnegativity of the right-hand
side of (42), which gives the required result. �

A refinement of the integral majorization-type inequality for two decreasing funtions φ

and ψ is given in the following corollary, which is in fact the integral version of Corollary 1.

Corollary 2 Let all the assumptions of Theorem 3 hold. Let φ and ψ be two decreasing
functions such that (7) and (8) are satisfied.

(i) If f : [ϑ1,ϑ2] →R is an n-convex function, where n > 3 is even, then

D̃
(
p,φ,ψ , f (·)) ≥

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

D̃
(
p,φ,ψ , Gl(·, v)

)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv. (43)
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(ii) If inequality (43) holds and the function ϕ̃ defined by

ϕ̃(·) =
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

Gl(·, v)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv (44)

is convex, then the right-hand side of (43) is nonnegative, that is, (9) is satisfied.

Proof Similar to the proof of Corollary 1. �

Remarks 1
(i) We can give upper bounds like Grüss- and Ostrowski-type inequalities for our

generalized identities. We can also obtain Lagrange- and Cauchy-type mean value
theorems by using linear functionals deduced from our generalized results (see, e.g.,
[27, 32, 34]).

(ii) We can use an elegant method introduced by Jakšetić and Pečarć [17, 18] (see also
[22, 30]) to obtain n-exponential convexity, exponential convexity, and
log-convexity with the help of linear functionals deduced from our generalized
results on a given family with the same property for both discrete and integral cases.
For more detail, see [32].

2.2 Csiszár f-divergence for majorization
In this section, we investigate generalized majorization-type inequality (37) in terms of di-
vergences and entropies. We use Csiszár f -divergence and generalized majorization-type
inequalities to obtain new generalized results. Moreover, we also discuss results related to
Shannon entropy and Kullback–Leibler (K-L) distance.

The notion of f -divergence is introduced by Csiszár in [11]. For details, see [12].

Definition 2 Let f : R+ → R+ be a convex function. If r = (r1, . . . , rk) and w = (w1, . . . , wk)
are two positive probability distributions, then the f -divergence functional is

If (r, w) :=
k∑

i=1

wif
(

ri

wi

)
.

Note that in the f -divergence functional, nonnegative probability distributions can also
be used by defining

f (0) := lim
t→0+

f (t); 0f
(

0
0

)
:= 0; 0f

(
a
t

)
:= 0, a > 0.

Horváth et al. [16] considered the following functionality based on the previous definition.

Definition 3 Let J ⊂ R be an interval, and let f : J → R be an n-convex function. Let
r = (r1, . . . , rk) be a real k-tuple, and let w = (w1, . . . , wk) be a positive real k-tuple such that
ri
wi

∈ J , i = 1, 2, . . . , k. Then

Ĩf (r, w) :=
k∑

i=1

wif
(

ri

wi

)
.
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Let r = (r1, . . . , rk) and w = (w1, . . . , wk) be two k-tuples. We use the following notation:

r
w

:=
(

r1

w1
,

r2

w2
, . . . ,

rk

wk

)
and ĨGl (r, w, v) :=

k∑

i=1

wiGl

(
ri

wi
, v

)
.

The following theorem connects the generalized majorization-type inequality given in
Corollary 1 and the Csiszár f -divergence.

Theorem 6 Let f : [ϑ1,ϑ2] →R be such that f (n–1) is absolutely continuous for n > 3. Also,
let s[ϑ1,ϑ2](t, x) be as defined in (12), and let Gl (l = 1, 2, 3, 4) be the Green functions defined
in (14)–(17). Also, let q = (q1, . . . , qk), r = (r1, . . . , rk), and w = (w1, . . . , wk) with qi, ri ∈R and
wi ∈R+ for i = 1, 2, . . . , k. Let

j∑

i=1

ri ≤
j∑

i=1

qi, (45)

for j = 1, 2, . . . , k – 1 and

k∑

i=1

ri =
k∑

i=1

qi, (46)

with qi
wi

, ri
wi

∈ [ϑ1,ϑ2] (i = 1, 2, . . . , k). If q
w and r

w are decreasing and f is an n-convex function
for even n > 3, then

Ĩf (q, w) ≥ Ĩf (r, w) +
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)

× (
f (s–1)(ϑ2)(v – ϑ2)s–2 – f (s–1)(ϑ1)(v – ϑ1)s–2)dv. (47)

Proof Take xi = qi
wi

, yi = ri
wi

, and pi = wi > 0(i = 1, 2, . . . , k). Then conditions (45) and (46)
imply conditions (4) and (5). So using these substitutions in (37), we get (47). �

Theorem 7 Let g : [ϑ1,ϑ2] →R be a function. If for f (x) := xg(x), x ∈ [ϑ1,ϑ2], all conditions
of Theorem 6 hold, then

Îg(q, w) :=
k∑

i=1

qig
(

qi

wi

)
≥ Îg(r, w) +

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)

×
∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)( (xg)(s–1)(ϑ2)
(v – ϑ2)2–s –

(xg)(s–1)(ϑ1)
(v – ϑ1)2–s

)
dv. (48)

Proof Following the proof of Theorem 6 for f (x) := xg(x), we get (48). �

The notion of entropic measure of disorder and the theory of majorization are closely
related. Next, we present two special cases for majorization relations with connection to
entropic inequalities.

In the first case, we discuss generalized majorization-type inequality with the entropy
of a discrete probability distribution.
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Definition 4 Let r = (r1, . . . , rk) be a positive probability distribution. Then the Shannon
entropy of r is defined as

H(r) := –
k∑

i=1

ri log ri.

Note that the definition does not provide any problem for zero probability case, because
limx→0 x log x = 0.

Corollary 3 Let q = (q1, . . . , qk) and r = (r1, . . . , rk) be positive real k-tuples, and w =
(w1, . . . , wk) be a positive probability distribution such that conditions (45) and (46) hold
with qi

wi
, ri

wi
∈ [ϑ1,ϑ2](i = 1, 2, . . . , k). If log has base b greater than 1 and q

w and r
w are de-

creasing, then for the Shannon entropy of w, we have the following estimate:

H(w) ≤
k∑

i=1

wi log

(
ri

wi

)
–

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)

×
(

(–1)s–1(s – 2)!
ϑ s–1

2 ln b
(v – ϑ2)s–2 –

(–1)s–1(s – 2)!
ϑ s–1

1 ln b
(v – ϑ1)s–2

)
dv. (49)

If log has base b between 0 and 1, then inequality (49) is reversed.

Proof Take f (x) := – log x, which is an n-convex function for even n > 3 and qi = 1 (i =
1, 2, . . . , k). Then using Theorem 6, we get (49). Moreover, for odd n > 3, inequality (49) is
reversed. �

Corollary 4 Let q = (q1, . . . , qk) and r = (r1, . . . , rk) be positive probability distributions such
that conditions (45) and (46) hold with qi, ri ∈ [ϑ1,ϑ2] (i = 1, 2, . . . , k). If log has base b
greater than 1 and q and r are decreasing, then the relation between the Shannon entropies
of q and r is given by the following estimate:

H(q) ≤ H(r) –
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)

× (
(x log x)(s–1)(ϑ2)(v – ϑ2)s–2 – (x log x)(s–1)(ϑ1)(v – ϑ1)s–2)dv, (50)

where for d = 1, 2, (x log x)′(ϑd) = 1
ln b (1 + lnϑd) and (x log x)(s–1)(ϑd) = (–1)s–1(s–3)!

ϑs–2
d ln b

, s ≥ 3. If
log has base b between 0 and 1, then inequality (50) is reversed.

Proof Take g(x) := log x, so that xg(x) := x log x is an n-convex function for even n > 3 and
wi = 1 (i = 1, 2, . . . , k). Then by Theorem 7 we get (50). Moreover, for odd n > 3, inequality
(50) is reversed. �

In the second case, we study generalized majorization-type inequality in terms of the K-L
distance or relative entropy between two probability distributions.
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Definition 5 Let r = (r1, . . . , rk) and w = (w1, . . . , wk) be two positive probability distribu-
tions. Then the K-L distance between them is defined by

L(r, w) :=
k∑

i=1

ri log

(
ri

wi

)
.

Corollary 5 Let q = (q1, . . . , qk), r = (r1, . . . , rk), and w = (w1, . . . , wk) be positive real k-tuples
such that conditions (45) and (46) hold with qi

wi
, ri

wi
∈ [ϑ1,ϑ2](i = 1, 2, . . . , k). If log has base

b greater than 1 and q
w and r

w are decreasing, then

k∑

i=1

wi log

(
qi

wi

)
≤

k∑

i=1

wi log

(
ri

wi

)
–

n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)

×
∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)

×
(

(–1)s–1(s – 2)!
ln b(v – ϑ2)2–sϑ s–1

2
–

(–1)s–1(s – 2)!
ln b(v – ϑ1)2–sϑ s–1

1

)
dv. (51)

If log has base b between 0 and 1, then inequality (51) is reversed.

Proof Take f (x) := – log x, which is an n-convex function for n > 3. Then by Theorem 6 we
get (51). Moreover, for odd n > 3, inequality (51) is reversed. �

Corollary 6 Let q = (q1, . . . , qk), r = (r1, . . . , rk), and w = (w1, . . . , wk) be positive probability
distributions such that conditions (45) and (46) hold with qi

wi
, ri

wi
∈ [ϑ1,ϑ2](i = 1, 2, . . . , k). If

log has base b greater than 1 and q
w and r

w are decreasing, then the relation between the
K-L distance of (r, w) and (q, w) is given by the following estimate:

L(q, w) ≥ L(r, w) +
n–1∑

s=2

(
n – s

(s – 2)!(ϑ2 – ϑ1)

)∫ ϑ2

ϑ1

(̃
IGl (q, w, v) – ĨGl (r, w, v)

)

× (
(x log x)(s–1)(ϑ2)(v – ϑ2)s–2 – (x log x)(s–1)(ϑ1)(v – ϑ1)s–2)dv, (52)

where for d = 1, 2, (x log x)′(ϑd) = 1
ln b (1 + lnϑd) and (x log x)(s–1)(ϑd) = (–1)s–1(s–3)!

ϑs–2
d ln b

, s ≥ 3. If
log has base b between 0 and 1, then inequality (52) is reversed.

Proof Take g(x) := log x, so that xg(x) := x log x is an n-convex function for even n > 3. Then
by Theorem 7 we get (52). Moreover, for odd n > 3, inequality (52) is reversed. �
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