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1 Introduction

In last few decades, various researchers and mathematician have paid their valuable con-
sideration to fractional integral inequalities (FIIs) and their applications. Recent research
focuses on various types of FlIs by employing various types of fractional integral opera-
tors (see, e.g., [1-11]). In [12-17] the authors have established various types of inequali-
ties and some other results by utilizing the Saigo fractional integral operator. The reverse
Minkowski FIIs are found in [18]. Anber et al. [19] have obtained some FIIs by using the
Riemann-Liouville fractional integral. The accompanying essential definitions and prop-

erties of the MSM fractional operator, which will be utilized to obtain the main results.

Definition 1.1 A real-valued function g(z), t > 0, is said tobein C,([a, b]), u € R, if there
exists o € R such that o > u and @ (1) = 17 @ (1), where @ () € C([a, b]).

Definition 1.2 Letv,v,& ,é € R,andlet > 0. Then the MSM fractional integral is defined
in [20] as
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where Fj is the Appell function defined by [21] as

F(vv, 6,85 mmy) = > (U)’”(”(;})fzm(é ) 9,;1},),!’

m,n=0

max{|x|, [/} <1,

and (), =v(v +1)--- (v + m — 1) is the Pochhammer symbol.

Lemma 1.1 Let v,V,£,& € R, n >0, and p > max{0, (v —v' - & —n),(v' - &)}. Then we
have the relation
F(p)(p+n—v—v - '(t+& -V)

ju,;/,&%/,ntp—l (x) = xp—v—v’+77—l‘ )
(o ) F(p+&)(p+n-v-v)(p+n-1 -§)

Taking p = 1 in Lemma 1.1, we get the relation

~v,V EE N _ F(l +n—-v- v — E)F(l + E/ - V/) —v—v+
Gos ™ "MW@ = e F T v A v =8 )

The details of the integral operator (1) and its properties can be found in [22, 23]. For
further applications of MSM fractional integral, we refer the interested readers to [24—
28]. For a short history of this operator, see [25, 26, 29].

2 Reverse Minkowski inequalities via MSM fractional integral operator
In this section, we use the MSM fractional integral operator to develop reverse Minkowski
integral inequalities. To prove the following reverse Minkowski FII, we first recall the fol-

lowing result.

Theorem 2.1 (see [30]) Ifv,V,&,&',n € R are such that n > max{v,V,&,&'} > 0, then we
have the inequality

Fg(v,v’,E,S’;n;l—E,l—a—c> >0, (4)
X t
provided that —1 < (1 — J—i) <0and0<(1-7%)< %.Also, iff(x) >0, then
(302 5"F) () > 0.
Theorem 2.2 Let v,v',&,&',n € R be such that n > max{v,v',&,'} >0, 0 > 1, and let @,

W be two positive functions on [0,00) such that for all x > 0, 3;:;/’5’5/’”@”(96)] < 00 and
Jom SO (x)] < 00. If 0 < m < % <M, t € [0,x)], then we have the inequality

1 1
o o

(38:;/]5'%—’,r]¢g(x)) + (jg::’,f,f/,ﬂlp“(x))

_éﬁ%%%?%@gfﬂq¢+wfu»? ?

provided that -1 <(1-£) <0and 0<(1-%) < 3.



Tassaddiq et al. Journal of Inequalities and Applications (2020) 2020:185 Page 3 of 14

Proof Using the condition % <M, te[0,x], x>0, we have

M+1)°D%(t) <M° (P +¥)°(2). (6)

Consider the function

x 7V (x -t

sy - FB(V, V6 Em1- b1 ’—;)
e L @) (L x\ 0E) (¢
R [“ ) (1'¥)+ o) (17)*'“]‘ @

In view of Theorem 2.1, the function §(x, £) is positive for all ¢ € (0,x), x > 0. Therefore
multiplying both sides of (6) by §(x,¢) and then integrating the resulting inequality with
respect to ¢ from 0 to x, we have

M+1)°x" [* ’ t
ﬂ/ (x—t)" 1V Fy v,v’,g,.r;/;n;l——,1—9—c DO (t)dt
F(ﬂ) 0 X t

Mx™"
=<
Ir'(n)

x ’ t X
/ (x=t)" 7V Fy <v, V,E,6m;1——,1- E>((D +¥)%(¢) dt,
0 X
which can be written as

o M° /e gl
jVYV & :’7¢0' x) < 73‘)") &5 D +¥)%(x).
07 () < @ 0 )

Hence it follows that

1
o

(365D + W) ()7

1
o

(jg::/x%‘»%—/vn P° (x)) <

=G0 D 8)

Now using the condition m¥ (t) < @(¢), we have

(1 N i)wm < Lo+ ww),

m m

from which it follows that

m

1\° 1\° o
(1 + —) Pe(t) < (—) (@) +¥ (). 9
m
Multiplying both sides of (9) by F(x, ¢) and then integrating the resulting inequality with

respect to ¢ from 0 to x, we get

1
(m+1)

’ / 1 / / 1
(35055 (%)) 7 < (35055 (@ + W) (1)) (10)

Summing inequalities (8) and (10), we get the desired inequality. O

Theorem 2.3 Let v,v',&,&',n € R be such that n > max{v,v',&,'} >0, 0 > 1, and let @,
¥ be two positive functions on [0,00) such that for all x > 0, 33:;/’5’8/’"[45”(@] < 00 and
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I W ()] < 00. If0 < m < 28 <

@ M, t € [0,x], then we have the inequality

(jg::/:ff/vﬂ®a(x)) (jgv £8, nlpa (x))%

M+ 1)(m+1) oV EE D o 1o - 1
> (T—z)(%x SN PT (x)) 7 (Te I (1), (11)
provided that -1 <(1-£)<0and 0<(1-%)<1

Proof By multiplying inequalities (8) and (10) we have

(00 D) g

/ !’ l
= (@5 (@@ + v @)) T (12)
Now, applying the Minkowski inequality to the right-hand side of (12), we obtain
v oy L
(35255726 + w@))" [

[ 55107 @) + (33245 7w ) T

IA

/ !’ l
< (jg,: &£ v’7¢0(x))0 + ( K v EE, nlI/”(x))
1 1
+2(,~vv EE n(pg(x))g(wa £E nl]/”(x))g (13)
Thus from inequalities (12) and (13) we get the desired inequality (11). 0

3 Fractional integral inequalities via MSM fractional integral operator
This section is devoted to some FIIs involving MSM operator.

Theorem 3.1 Letr>1, l + =1,and let @, ¥ be two positive functions on [0, 00) such that

38:;/’E'E,’"[q§(x)] < 00 and 35” EEN Y ()] < 0. IfOo<m< % <M<oo,tel0,x], x>0,

then we have

1 1 M\ * Vel 1 1
O3 o)t @i ) < (B)" o ow el s
where v,V',&,&",1 € R are such that n > max{v,v,&,&'} > 0.
Proof Smce <M<o0o,te0,x], x>0, we have
[v <t>]% M o] (15)
It follows that
[e@] [¢®)] =M [00)] [00)]°
> M5 [Cb(t)]%Jr%
> M= [®(1)]. (16)

Page 4 of 14
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Multiplying by (7) both sides of (16) and then integrating the resulting inequality with
respect to ¢ from 0 to x, we get

If;:z) /ox(x_ t)ﬂ_lt_wFS("’ Vv, 6,851 - ,Ec 1- 9_;) [cP(t)]%[lI/(t)]% dt
- F_<n)_v/ e F3<” - §)¢(t)dt. 17)
It follows that
@) [ O] ]2 M7 [ 0 0], (18)

Consequently, we have

@ @] [v @] 1) = M? 35 e0)] 19)
On the other hand, mW (¢) < @ (t), t € [0,x], x > 0, and therefore we have
[0(0)]" = m*[# ()" 0)
It follows that
[e@] [v©) =m? [w@)] [¢©)]
> m [ ()]
mr [W(2)]. (21)

Multiplying both sides of (21) by (7) and integrating the resulting inequality with respect
to ¢ from O to x, we get

ll /x(x—t)"-lt-“’F vV, € s"m-f 1-2 [CD(t)]%[lI/(t)]%
F(T]) o 3 » V16,851, x: t
1
m;x*\) X
> — )"V, ,1——1—— W (t)dt. 22
) ( ) 3(VVE€77 t)() (22)
Hence we can write
v EE, 1 1.1 lrevy 1
@[] [w @] )7 = mn [350 5 ()] (23)
Multiplying (19) and (23), we get the desired inequality. O

Theorem 3.2 Letr > 1, l + l =1, and let @, ¥ be two positive functions on [0, 00) such

that 305 (@7(5)) < 00 and Ty 55 WAW) < 0. [0 < m < L < M < 00, £ € [0,%],

x> 0, then we have

1 1
r r

1
v EE 1 M\ o EE
(T W) < (;) (35 o] [¥ @]

i

(307 w) )o@y

where v,V',&,&',n € R are such that n > max{v,V,&,&'} > 0.

Page 5 of 14
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Proof Replacing ®@(¢) and ¥ (¢) by @(¢t)" and ¥ (¢)°, t € [0,x], x > 0, in Theorem 3.1, we get
the desired inequality (24). O

Theorem 3.3 Let @ and ¥ be two positive functions on [0, 00) such that ® is nondecreas-

ing and W is nonincreasing. Then

e ] A00) il () R

To @7 @) ()] < SEEF 0
0,x

where 35,’;/’5’5/’"[1] is defined by (3), 0,0 > 0, and v,v',£,&',n € R are such that n >
max{v,v,&,&'} > 0.

Proof Lett, p € [0,x], x> 0. Then for any o > 0 and 6 > 0, we have

(@7(8) = @7 (0)) (¥* (1) - ¥’ (p)) = 0. (26)
It follows that
@7 (1) (8) + 27 (p)¥’ (p) < @7 (P)¥ (1) + D7 ()W (p). (27)

Multiplying both sides of (27) by (7) and integrating the resulting inequality with respect
to ¢ from O to x, we get

x

v x , t X
— )"V Fs v,V €81 - <1 =2 |0 ()W () dt
F(n)/(;(x ) 3<vv$$n x t) O (1)

+®% (p)¥’ (p)

xV [ / t X
AV B P / fomel — = 12
F(ﬁ)/o (x=—0)""¢ F3<v,v,$,§,n,1 x,l t)[l]dt

x’” * ’ ’ ’ t X .
sw‘)(p)r(n)/ (x—t)ﬂ-lt-”Pg(v,v,s,s;n;l—;,l—;)cb (o) dt
0

+®%(p)

v * ’ t
ad / (x—t) e F3(V,V/;§,5/;Tl;1— -1- Q—C)‘I/a(t)dt. (28)
rm) Jo X t
It follows that

3507 @ ()] + 07 (o) (0) Ty 4]

< @7 () 3oy W0 )] + 0 (0)Tgy @7 (). (29)

Again, multiplying both sides of (29) by F(x, p), which is obtained by replacing ¢ by p in
(7), and then integrating with respect to p from 0 to x, we obtain

To @7 W )]y T 1] + 00 @0 ) @)]35 ]

< jg:;’f:f/:ﬂ [(po (x)]j(l;:;/f:f/vﬂ [11/5 (x)] " jg:;’:ffl:ﬂ [11,9 (x)]j(l;:;/fflw [(DO' (x)], (30)

which completes the proof. O
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Theorem 3.4 Let @ and ¥ be two positive functions on [0, 00) such that ® is nondecreas-
ing and W is nonincreasing. Then
jgf@’(,:)» [@”(x)llfe(x)]fjg’;/’é’é/'" (1] + 301 B8 A[@“(x)l[/ (x )],.a B¢t }»[1]

<j”” EE n[(pg(x)]~aﬁ{( A[lpe(x)] ~vu &5 rl[ (x)]”aﬂ“ )‘[(p (x)] (31)

forall x>0, 5,0 >0, where 38,’;,’5’5/’”[1] is defined by (3), and o, B,¢, ¢, b, v, 0,6, ,n € R

are such that n > max{v,v,&,&'} >0 and A > max{v,V,&,&} > 0.

Proof Multiplying both sides of (29) by

S, p) =

A1 -8 11 P X
1—,()\') ) 0 Fs(“»ﬂ,é',{,)n,l x;l ,0)

and integrating the resulting identity with respect to p over (0,x), we have

vV EE T 5o 0 x
D '4
jo,x [ (x) (x)] r ( k)

X * A-1 —ﬂF / P X
- 7 7 ) ;)\’;1_ _11_ -

x [@7 (0)9" ()] dpTgy <" 11]

x @ x 0 x
E (x—,o))‘lp5F3<Ol;,3yf¢§/;)\;l—_71——)
F()»)/o x P

x @ (p)dpTyy <" [w0 ()]

I ,p _B _x
F(A)/(x ) Fs(OlﬂC§ Al-=,1 p)

x W0 (p)dpTy * @7 (x)], (32)

f (x - p)“p’ng(a,ﬁ,i,{’;k; 1-21- f)[l]dp
0 x 0

which yields the desired inequality (31). O
Remark 1 Inequalities (25) and (31) may be reversed if

(@7(8) = @7 (0)) (¥* () - ¥ (p)) = 0
Remark?2 Applying Theorem3.4toa =v,B8=V,¢ =§,¢{ =&, » =n, we get Theorem 3.3.

Theorem 3.5 Let @ > 0 and ¥ > 0 be two functions on [0, 00) such that ¥ is nondecreas-
ing. If

Ton D (x) = Tod W (x), x>0, (33)
then forall x> 0,0 >0,0 >0, and o — 0 >0, we have
jg::,’s'él”]@l’ 9( ) j Vg8, ?7450( )'1/_6(96), (34)

where v,V',&,&',n € R are such that n > max{v,V,&,&'} > 0.
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Proof Using the arithmetic—geometric inequality, for ¢ > 0 and 6 > 0, we have

— ) - Lw”(t) <®° (O ), te(0,x),x>0. (35)
o-0 o-0

Multiplying both sides of (35) by (7) and then integrating with respect to ¢ from 0 to x, we
have

xv x , £
7 / (x—)" 1V Fy (v, vV, EE 1-=,1— ;)qﬁ"‘@(t) dt
0 X

o—-0T(n)
0 /(x o By (v, s 1 —51—- W (g dt
o - 9F(n) ’ X
<X /(x-t)n1t“’Fg(u,u/,g,g;nﬂ-il-’f)qw(t)w9(t)d:.
F(T)) 0 X t
Consequently,

0 /
jgv 38 Mo G(x) 0_938:; £E Mgy o= Q(x) <jvv 38 nq;o(x)w—G(x),

which can be written as
o / %
jg:: &€, "(D” G(x) < jVV £ ?Y(D(r(x)lp G(x) + »jVV ' EE, U’J’"_g(x).
o—-60 -0
It follows that
v ’ o —6 ' / _ v
30'; &€ ;ﬂdjo'—()(x) < 30'; 3 »ﬂ@ﬂ(x)q/ Q(x) + = j(l; §§ 71.1/0 G(x) (36)
, o \
By inequality (33) we have
-0 0
T () < T2 SN0 ()0 () + — 3 0 (), (37)
o o
which gives the required result. 0

Theorem 3.6 Let @, ¥, and h be positive continuous functions on [0, 00) such that

P(p) @)
(lp(t)—lp(p))(Tp) - W) >0, t,p € [0,x),x>0. (38)

Then for all x > 0, we have

P o) I (0 2:21C))

v,V EE — v v EE! (39)
T )] I W) @)
where v,V',€,&',n € R are such that n > max{v,V,&,&'} > 0.

Proof Since @, ¥, and / are positive continuous functions on [0, c0), by (38) we have

v (t) +¥(p) —-¥(p) —U(t) >0, t,pel0,x),x>0. (40)

(o) h(t) h(p) h(t) —

2(p) (1) 2(p) (1)
h
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Multiplying (40) by h(£)h(p), we get

()@ (p)h(t) + ¥ (p)P(D)h(p) — ¥ ()P (p)h(t) — ¥ (£)@(£)h(p) = 0. (41)

Multiplying both sides of (41) by (7) and then integrating with respect to ¢ from 0 to x, we
get

F( )/ (k=)L F3<v Vv, E,E n,l—— 1——)‘1/(t)h(t)dt

—V

w<p)h(p)1’f(n)/o (— e FS(V Vo681 J—’—j)@(t)dt

~®(p)¥( If(n) i (x - t)""lt’”/F3<V, V6,851~ ;C 1- %)h(t) dt
— I If;;) /ox(x— OV F, <v, Vv, E,E5m1 - ;c 1- ;)qﬁ(t)w(t) dt.

It follows that

@ (0)T5y 5 M [(Wh) )] + ¥ (0)(p)Tgy =5 [0 ()]

~ W (p)@(p) Ty <5 ()] - h(p) Ty (W D) ()] = . (42)

Again, multiplying both sides of (42) by §(x, p) and then integrating with respect to p, we
have

Jon @ @) | (W @)] + Tpn W @) T S [eW)]

-3 5 )y ] - 30 ) [ @) w] = o

It follows that
Tox e @]ag Mm@ = 35 W )@ @), (43)
which gives the desired result. g

Theorem 3.7 Let @, ¥, and h be positive continuous functions on [0, 00) such that

Q(p) @)
() - tI/(p))(W'f) - W) >0, t,pel0,x),x>0. (44)

Then for all x > 0, we have

I () [T (W) ()] + TP [ ()] T8 (W ) ()] o us)
33‘,;?” AU D) @IT0 M ()] + T (@ @) )] T

where o, B, ¢, M, v, 0,8,&,1m € R are such that n > max{v,v,&,&'} > 0 and X > max{v,v’,
£,8)>0.
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Proof Multiplying both sides of (29) by
x

S, p) = 0

X
(x_p))\‘_lp_ﬂp?;(a’ﬂré-;;,;)";l_ B 1__)
1%

x )
and integrating the resulting identity with respect to p over (0,x), we get
T o ]+ L (W] o)
=300 @ @) 0)]3G T[] - 352 @) 36 [ @) )] = 0.
It follows that
T Dl S ]+ T (@) o )]
o (IO e U R e VO e (IO
which completes the proof. O
Remark3 Applying Theorem3.7toa =v,8=V,{ =§,¢{ =&, 2 =n, we get Theorem 3.6.

Theorem 3.8 Let @ and h be two positive continuous functions on [0, 00) such that ® < h.
If% is decreasing and @ is increasing on [0,00), then for all x > 0 and o > 1, we have

TP o) B i C )

/ / — / ! ’ (46)
] 3y e o)

where v,V',&,&",11 € R are such that n > max{v,V,&,&'} > 0.
Proof By taking ¥ = ®°~! in Theorem 3.6 we have

S -169) I (C-T-Lae TE%)

— > = . (47)
W 16%) IR (UF-Lasb 169)

Since @ < h, we can write
hdo (%) < W (x). (48)

Multiplying both sides of (48) by (7) and integrating the resulting inequality with respect
to t from O to x, we have

* /x(x )L (v, 6,851 Li-% @ h(t) dt
F(T]) 0 3 V56,851, xy P
<X / e B (e i1 - L1 - e @ de
X — vV, Vv, 1L ——1—— )
—IrmJo ’ T t
which implies that

R (S DI P (GO (19)
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From (49) we can write

1 1
> ?
o (@)W T Ty e @)

and so we have

P (i [G) I el G4 ©)
3o 1) )] T ap e ()

(50)

Hence from (47) and (50) we get the desired result. O

Theorem 3.9 Let @ and h be two positive continuous functions on [0, 00) such that ® < h.

If% is decreasing and @ is increasing on [0,00), then for all x > 0 and o > 1, we have

~y/,'/, Y,y/,)“ ~,',/,)L N",;,x
Tow BN D ()] T The ()] + TGP (@ ()] Tk T (x)]

, (51)
~0LB,8,C A ~V,VLEE ~V,VLEE ~0LB,8, -
FEPE o ()] Tow T )] + Ton M @0 ()] Tl k()]

where o, B,¢,¢', A, v, 0,E,&,n € R are such that n > max{v,v,&,&'} > 0 and A > max{v,V/,

§,§'}>0.

Proof Taking ¥ = @°~! in Theorem (3.7), we have

Tow @ @I (7)) + Tp [ @) Ty (e @)

- — e . > 1. (52)
Toe D7 ()T ) + gy T (@0 NI (h(0)
Now since @ < i, we have
ho (x) < h° (x). (53)
Multiplying both sides of (53) by
S, p) = F;i) @-p)'p PR (a,ﬂ&,{’;k; 1- g, 1- %)
and integrating the resulting identity with respect to p over (0,x), we get
Tl (h7 ) ()] < Tl [ () (54)
Now multiplying both sides of (54) by 38:;,’5’5/’” [@(x)], we have
Ton S @@]TL [(ho0 ) )] < 953 @ @] e (4], (55)

Similarly, we have

Tl D) [ (he ) )] < TP e )] ags S [ ()], (56)
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Hence by (55) and (56) we have

SR 0] i (e () R LI Ml (g [
VEE I e )] + TR @ )T [ ) (57)
By (52) and (57) we get the desired result. a

Theorem 3.10 Let @, W, and h be positive continuous functions on [0, 00) such that
(@)~ ®(0)) (¥(0) - ¥ (o)) ((e) + h(p)) 20, £, € (0,%),> 0. (58)
Then for all x > 0, we have
o @ w3 + 3 (@) @]9 ()
= 9w o @n @]+ 35 eI [wh@] (69

where ﬁgjil’s’gl’"[l] is defined by (3), and v,v',&,,n € R are such that n > max{v,v’,
£,€1>0.

Proof By the assumption stated in Theorem 3.10, for any ¢ and p, we have

D)W ()h(t) + P(O)¥ (p)h(p) — @ ()W (p)h(2) — () (p)h(p) — P ()W ()h(t)

— D (p)¥ ()h(p) + P(p)¥ (0)h(t) + P (0)¥ (p)h(p) = 0. (60)

Multiplying both sides of (60) by (7) and integrating the resulting inequality with respect
to ¢ from O to x, we get

I @wh) O] + W (p)h(e)T5s @ O] - wip)Ig (@]
~ W ((P)Igy @ O] - ()T WO - B (pIh(p)Tgs W ()]

+ ® (o)W (0) T2 5 [h(e)] + B ()W (p)h(p)Ty << [1] = 0. (61)

Again, multiplying both sides of (59) by
x*()l

S, p) = ey

X
(x—p)1pPFs (a,ﬁ,z,c’;k; 1-21- —)
" p

and integrating the resulting identity with respect to p over (0,x), we get
3o @w @G+ T (@ @] [0 0]
+ 305 @) @35 O] + 355 (@ @35 )
> T @) @)] T [@@)] + Ton W @) 30 T (@) 0)]

+ I @I (@] + 30 [P e @] 6)

which completes the proof. d
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Theorem 3.11 Let @, ¥, and h be positive continuous functions on [0, 00) such that
(@)~ @ () (¥(0) + V() (WD) + h(p) 20, 1,0 € (0,2),>0. (63)
Then for all x > 0, we have

SR LI A (2000 R Rl (CI0) el )

> 3o W) [T S [ @] + T h)]3gs (@) @], (64)

X
where v,V',€,&',n € R are such that n > max{v,V,&,&'} > 0.

Proof By the assumption stated in Theorem 3.11, for any ¢ and p, we have

D)W (D)h(2) + P(O)¥ (p)h(p) + ()W (p)h(t) + P ()W (p)h(p)

= P (p)¥ ()h(t) + D (p)¥ (D)h(p) + P(p)¥ (p)A(E) + P(0)¥ (p)h(p) = 0. (65)
Applying a procedure similar to that of Theorem 3.10, we get the proof of Theorem 3.11. [J

4 Concluding remarks

In this present paper, we introduced certain inequalities by employing the (MSM) frac-
tional integral operator. The inequalities obtained are more general than the existing clas-
sical inequalities. The MSM operator (1) turns to the Saigo fractional integral operator

[22] due to the relation 3512’2’5/‘"(@ = Jg,’;_"'_g (x) (y € C). Thus the inequalities obtained in

this paper reduce to the integral inequalities involving the Saigo fractional integral oper-
ators, recently defined by Chinchane and Pachpatte [31].

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work
under Project Number (RGP-2019-28). The authors are also very thankful to the editors and reviewers for their valuable
suggestions for improving this manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally. All authors read and approved the final manuscript.

Author details

"Department of Basic Sciences and Humanities, College of Computer and Information Sciences, Majmaah University,
11952, Al-Majmaah, Saudi Arabia. ?Department of Mathematics, Shaheed Benazir Bhutto University, Sheringal, 18000,
Upper Dir, Pakistan. >Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University,
11991, Wadi Al-dawasir, Saudi Arabia. “Department of Mathematics, Faculty of Science, Kafrelshiekh University,
Kafrelshiekh, Egypt. °Department of Mathematics, College of Science Al-Zulfi, Majmaah University, 11952, Al-Majmaah,
Saudi Arabia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 October 2019 Accepted: 23 June 2020 Published online: 08 July 2020



Tassaddiq et al. Journal of Inequalities and Applications (2020) 2020:185

References

1.

2.
3.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Dahmani, Z, Tabharit, L.: On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2,
31-38(2010)

Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493-497 (2010)

Huang, CJ, Rahman, G, Nisar, K.S,, Ghaffar, A, Qi, F.: Some inequalities of Hermite—Hadamard type for k-fractional
conformable integrals. Aust. J. Math. Anal. Appl. 16(1), 1-9 (2019)

. Chinchane, V.L: New approach to Minkowski fractional inequalities using generalized K-fractional integral operator.

J. Indian Math. Soc. 85(1-2), 32-41 (2018)

. Nisar, KS, Qi, F, Rahman, G, Mubeen, S., Arshad, M.: Some inequalities involving the extended gamma function and

the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 135 (2018)

. Nisar, KS,, Rahman, G,, Choi, J,, Mubeen, S., Arshad, M.: Certain Gronwall type inequalities associated with

Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications. East Asian Math. J. 34(3), 249-263
(2018)

. Qi,F, Rahman, G, Hussain, S.M,, Du, W.S,, Nisar, K.S.: Some inequalities of Cebyéev type for conformable k-fractional

integral operators. Symmetry 10, 614 (2018). https://doi.org/10.3390/sym10110614

. Rahman, G, Nisar, K.S,, Qi, F: Some new inequalities of the Griss type for conformable fractional integrals. AIMS Math.

3(4),575-583 (2018)

. Rahman, G, Nisar, KS,, Mubeen, S., Choi, J.: Certain inequalities involving the (k, p)-fractional integral operator. Far East

J. Math. Sci.: FJMS 103(11), 1879-1888 (2018)

. Sarikaya, M.Z, Dahmani, Z,, Kiris, M.E,, Ahmad, F: (k, s)-Riemann-Liouville fractional integral and applications. Hacet.

J. Math. Stat. 45(1), 77-89 (2016)

. Set, E, Tomar, M, Sarikaya, M.Z.: On generalized Griss type inequalities for k-fractional integrals. Appl. Math. Comput.

269, 29-34 (2015)

. Houas, M.: Some integral inequalities involving Saigo fractional integral operators. J. Interdiscip. Math. 21(3), 681-694

(2018). https://doi.org/10.1080/09720502.2016.1160573

. Prabhakaran, AR, Srinivasa Rao, K.: Saigo operator of fractional integration of hypergeometric functions. Int. J. Pure

Appl. Math. 81(5), 755-763 (2012)

. Raina, RK: Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transforms

Spec. Funct. 21(7), 515-522 (2010)

. Purohit, S.D, Raina, RK.: Chebyshev type inequalities for the Saigo fractional integral and their g-analogues. J. Math.

Inequal. 7(2), 239-249 (2013)

. Purohit, S.D,, Yadav, RK.: On generalized fractional g-integral operators involving the g-Gauss hypergeometric

function. Bull. Math. Anal. Appl. 2(4), 35-44 (2010)

. Virchenko, N,, Lisetska, O.: On some fractional integral operators involving generalized Gauss hypergeometric

functions. Appl. Appl. Math. 5(10), 1418-1427 (2010)

. Dahmani, Z.: On Minkowski and Hermite-Hadamard integral inequalities via fractional integral. Ann. Funct. Anal. 1,

51-58(2010)

. Anber, A, Dahmani, Z, Bendoukha, B.: New integral inequalities of Feng Qi type via Riemann-Liouville fractional

integration. Facta Univ,, Ser. Math. Inform. 27(2), 13-22 (2012)

Marichev, O.l: Volterra equation of Mellin convolution type with a horn function in the kernel. Vesci Akad. Navuk
BSSR, Ser. Fiz-Mat. Navuk 1, 128-129 (1974)

Srivastava, H.M., Karlson, PW.: Multiple Gaussian Hypergeometric Series. Ellis Horwood, New York (1985)

Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11,
135-143 (1978)

Saigo, M., Maeda, N.: More generalization of fractional calculus. In: Rusev, P, Dimovski, I, Kiryakova, V. (eds.) Transform
Methods and Special Functions, Varna, 1996 (Proc. 2nd Intern. Workshop), pp. 386-400. IMI-BAS, Sofia (1998)
Baleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput.
Math. Appl. 59, 1835-1841 (2010). https://doi.org/10.1016/j.camwa.2009.08.028

Kiryakova, V.: On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal.
9(2), 159-176 (2006) https://eudml.org/doc/11266

Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11(2),
203-220 (2008) https://eudml.org/doc/11340

Purohit, S.D, Sutar, D.L,, Kalla, S.L: Marichev-Saigo—Maeda fractional integration operators of the Bessel functions.
Mathematics LXVII, 21-32 (2012)

Serken, A, Rahman, G, Ghaffar, A, Azeema, Nisar, K.S.: Fractional calculus of extended Mittag-Leffler function and its
application to statistical distribution. Mathematics 7, 248 (2019). https://doi.org/10.3390/math7030248

Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Res. Notes Math. Ser,, vol. 301. Longman, New
York (1994)

Joshi, S., Mittal, E.,, Panddey, R.M,, Purohit, S.D.: Some Griss type inequalities involving generalized fractional integral
operator. Bulletin of the Transilvania University of Brasov 12(61), 41-52 (2019)

Chinchane, V.L,, Pachpatte, D.B.: New fractional inequalities involving Saigo fractional integral operator. Math. Sci. Lett.
3(3), 133-139(2014)

Page 14 of 14


https://doi.org/10.3390/sym10110614
https://doi.org/10.1080/09720502.2016.1160573
https://doi.org/10.1016/j.camwa.2009.08.028
https://eudml.org/doc/11266
https://eudml.org/doc/11340
https://doi.org/10.3390/math7030248

	Fractional integral inequalities involving Marichev-Saigo-Maeda fractional integral operator
	Abstract
	MSC
	Keywords

	Introduction
	Reverse Minkowski inequalities via MSM fractional integral operator
	Fractional integral inequalities via MSM fractional integral operator
	Concluding remarks
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


