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Abstract
In this paper, we introduce blending functions of Lupaş q-Bernstein operators with
shifted knots for constructing q-Bézier curves and surfaces. We study the nature of
degree elevation and degree reduction for Lupaş q-Bézier Bernstein functions with
shifted knots for t ∈ [ a

[μ]q+b
, [μ]q+a
[μ]q+b

]. For the parameters a = b = 0, we get Lupaş
q-Bézier curves defined on [0, 1]. We show that Lupaş q-Bernstein functions with
shifted knots are tangent to fore-and-aft of its polygon at end points. We present a de
Casteljau algorithm to compute Bernstein Bézier curves and surfaces with shifted
knots. The new curves have some properties similar to q-Bézier curves. Similarly, we
discuss the properties of the tensor product for Lupaş q-Bézier surfaces with shifted
knots over the rectangular domain.
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1 Introduction
Approximation theory basically deals with approximation of functions by simpler func-
tions. Broadly, it is divided into theoretical and constructive approximations. Recently,
in the field of constructive approximation, Mursaleen et al. [27] introduced Lupaş q-
Bernstein operators with shifted knots using q-calculus as follows.

Let a, b ∈ N0 (the set of all nonnegative integers), where 0 ≤ a ≤ b. Then for q ∈ (0, 1)
and any f ∈ C[0, 1], the Lupaş q-Bernstein operators with shifted knots are defined by

S(a,b)
μ,q (f ; u) =

1
( [μ]q

[μ]q+b )μq

×
μ∑

s=0

[
μ

s

]

q

(
u –

a
[μ]q + b

)s

q
(μ–s)(μ–s–1)

2

(
[μ]q + a
[μ]q + b

– u
)μ–s

f
(

[s]q

[μ]q

)
(1)
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or

S(a,b)
μ,q (f ; u) =

1
( [μ]q

[μ]q+b )μq

m∑

j=0

[
μ

s

]

q

(
u –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– u
)μ–s

q
f
(

[s]q

[μ]q

)
. (2)

The other forms of these operators are as follows:

S(a,b)
μ,q (f ; u) =

1
( [μ]q

[μ]q+b )μq

×
μ∑

s=0

[
μ

s

]

q

(
[μ]q + a
[μ]q + b

– u
)μ–s

q
s(s–1)

2

(
u –

a
[μ]q + b

)s

f
(

[s]q

[μ]q

)
(3)

or

S(a,b)
μ,q (f ; u) =

1
( [μ]q

[μ]q+b )μq

×
μ∑

s=0

[
μ

s

]

q

(
[μ]q + a
[μ]q + b

– u
)μ–s(

u –
a

[μ]q + b

)s

q
f
(

[s]q

[μ]q

)
. (4)

We can easily verify that all four forms are equivalent. Here a
[μ]q+b ≤ u ≤ [μ]q+a

[μ]q+b for 0 ≤
a ≤ b. In the case a = b = 0 the above operators reduce to the Lupaş q-Bernstein operators
[23]. Further for a = b = 0 and q = 1, they reduce to the classical Bernstein operators [4].

Computer aided geometric design is a discipline that deals with study of computational
aspects of geometric objects. Bases of Bernstein operators and its generalizations are used
in computer aided geometric design to construct curves and surfaces. For more concepts
and techniques used in CAGD, we refer to [2, 3, 9–12, 14, 15, 17, 39]. The most popular
Bézier curves are constructed with the help of Bernstein bases [5].

Recently, Khalid et al. [20] studied Bézier curves and surfaces constructed with modified
Bernstein bases of classical Bernstein operators with shifted knots.

We refer to [4, 8, 20, 21, 24, 25, 28–30, 33, 36–38] for details related to quantum calculus
and approximation theory and to [1, 6, 7, 13, 16, 18, 19, 22, 23, 25, 31, 32, 34, 35] for
computer aided geometric design.

Motivated by [20, 27], we study various properties of Lupaş q-Bernstein basis functions
or blending functions with shifted knots [27]. Popular programs, like Adobe’s illustrator
and flash, and font imaging systems such as postcript utilize Bernstein polynomials to
form Bézier curves. The novelty of this paper is that we can generate blending functions on
[0, 1] and its subintervals and the parameters q, a, and b provide flexibility in construction
of blending functions and Bézier curves and surfaces. The algorithms and other derived
results using blending functions with shifted knots will be very useful in implementation
using computers for simulation purposes.

Let us recall some basic definitions and notations of quantum calculus [16]. For any fixed
real number q > 0, the q-integer [s]q for s ∈N and q-factorial [s]q! are defined as

[s]q :=

⎧
⎨

⎩

(1–qs)
(1–q) , q �= 1,

s, q = 1,
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and the q-factorial [s]q! by

[s]q! :=

⎧
⎨

⎩
[s]q[s – 1]q · · · [1]q, s ≥ 1,

1, s = 0.

The q-analogue of binomial expansion is

(u + v)μq := (u + v)(u + qv)
(
u + q2v

) · · · (u + qμ–1v
)
.

From the above we have

(u)μq = uμ. (5)

Also, from the q-analogue of binomial expansion we have

(v)μq := (v)(qv)
(
q2v
) · · · (qμ–1v

)
= q

μ(μ–1)
2 vμ. (6)

From q-binomial expansion we can also derive:

(u – α)μq = (u – α)μ–1
q
(
u – qμ–1α

)
,

(u – α)μq = (u – α)μ–1
q (u – qα)μ–1.

In fact,

(u – α)ν+μ
q �= (u – α)νq(u – α)μq ,

(u – α)ν+μ
q = (u – α)νq

(
u – qνα

)μ
q ,

and

(α – u)μq �= (–1)μ(u – α)μq ,

(α – u)μq = (–1)μq
μ(μ–1)

2
(
u – q–μ+1α

)μ
q .

When (–ν) is a negative integer, then

(u – α)–ν
q �= 1

(u – α)νq
,

(u – α)–ν
q =

1
(u – q–να)νq

.

The q-analogues of binomial coefficients are defined by

[
μ

s

]

q

:=
[μ]q!

[s]q![μ – s]q!
,

[
μ

s

]

q

=

[
μ – 1
s – 1

]

q

+ qs

[
μ – 1

s

]

q

,
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[
μ

s

]

q

= qμ–s

[
μ – 1
s – 1

]

q

+

[
μ – 1

s

]

q

,

[
μ

s

]

q

[μ – s]q =

[
μ

s + 1

]

q

[s + 1]q,

[
μ

s

]

q

[μ + 1]q =

[
μ + 1
s + 1

]

q

[s + 1]q.

A further extension of q-calculus is (p, q)-calculus. For details about (p, q)-calculus and its
applications in approximation theory, we refer to [18, 25, 26].

2 Lupaş q-Bernstein functions with shifted knots
The Lupaş basis (blending) functions with shifted knots obtained from (2) are as follows:

Bs,a,b
μ,q (t) =

1
( [μ]q

[μ]q+b )μq

[
μ

s

]

q

(
t –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s

q
. (7)

2.1 Characteristics of the Lupaş q-Bernstein functions with shifted knots
Theorem 2.1 The Lupaş q-Bernstein functions with shifted knots have the following prop-
erties:

1. Nonnegativity: Bs,a,b
μ,q (t) ≥ 0, s = 0, 1, . . . ,μ, t ∈ [ a

[μ]q+b , [μ]q+a
[μ]q+b ].

2. Partition of unity:
∑μ

s=0 Bs,a,b
μ,q (t) = 1 for every t ∈ [ a

[μ]q+b , [μ]q+a
[μ]q+b ].

3. End-point interpolation property:

Bs,a,b
μ,q

(
a

[μ]q + b

)
=

⎧
⎨

⎩
1 if s = 0,

0, s �= 0,
(8)

Bs,a,b
μ,q

(
[μ]q + a
[μ]q + b

)
=

⎧
⎨

⎩
1 if s = μ,

0, s �= μ.
(9)

Clearly, both sided end-point interpolation properties hold.
4. Reducibility: when a = b = 0 and q = 1, formula (7) reduces to the classical Bernstein

bases on [0, 1].
When a = b = 0, it reduces to Lupaş q-Bernstein bases (rational function).
When q = 1, it reduces to the shifted Bernstein function given by Khalid et al.
[20].

Proof Properties (1), (2), and (4) can be easily obtained from equation (7). Here we give a
proof of property (3) only.

Property 3: From equation (7) we have

Bs,a,b
μ,q (t) =

1
( [μ]q

[μ]q+b )μq

[
μ

s

]

q

(
t –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s

q
.
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(i) When s = 0,

Bs,a,b
μ,q (t) =

1
( [μ]q

[μ]q+b )μq

[
μ

0

]

q

(
[μ]q + a
[μ]q + b

– t
)μ

q
,

Bs,a,b
μ,q

(
a

[μ]q + b

)
=

1
( [μ]q

[μ]q+b )μq

[
μ

0

]

q

(
[μ]q

[μ]q + b

)μ

q
.

Hence

Bs,a,b
μ,q

(
a

[μ]q + b

)
= 1. (10)

(ii) When s �= 0,

Bs,a,b
μ,q

(
a

[μ]q + b

)
=

1
( [μ]q

[μ]q+b )μq

[
μ

s

]

q

(
a

[μ]q + b
–

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ

q
.

Thus

Bs,a,b
μ,q

(
a

[μ]q + b

)
= 0. (11)

(iii) When s = μ,

Bs,a,b
μ,q (t) =

1
( [μ]q

[μ]q+b )μq

[
μ

μ

]

q

(
t –

a
[μ]q + b

)μ

,

Bs,a,b
μ,q

(
[μ]q + a
[μ]q + b

)
=

1
( [μ]q

[μ]q+b )μq

(
[μ]q

[μ]q + b

)μ

,

and from equation (5) we get

Bs,a,b
μ,q

(
[μ]q + a
[μ]q + b

)
=

1
( [μ]q

[μ]q+b )μq

(
[μ]q

[μ]q + b

)μ

q

= 1.

Similarly,
(iv) when s �= μ, then

Bs,a,b
μ,q

(
[μ]q + a
[μ]q + b

)
= 0.

�

3 Degree elevation and reduction for Lupaş q-Bernstein functions with shifted
knots

This algorithm has been used to change the bases of Bézier curves. We can elevate the
degree of curve to obtain more local control in designing the curve. With the help of this
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algorithm, we can construct a new control polygon by taking a convex combination of the
old control points that retains the previous points. For this application, identities (12) and
(13) and Theorem 3.1 are useful.

3.1 Identities

(
[μ]q + a
[μ]q + b

– t
)

Bs,a,b
μ,q (t)

=
[μ + 1 – s]q

[μ + 1]q

[(
[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]
Bs,a,b

μ+1,q(t) (12)

and

qμ

(
t –

a
[μ]q + b

)
Bs,a,b

μ,q (t)

= qμ–s
[(

[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)](
[s + 1]q

[μ + 1]q

)
Bs+1,a,b

μ+1,q (t). (13)

Proof Consider

Bs,a,b
μ,q (t) =

1
( [μ]q

[μ]q+b )μq

[
μ

s

]

q

q
s(s–1)

2

(
t –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s

.

Similarly, from (3) we can also obtain its other forms:

(
[μ]q + a
[μ]q + b

– t
)

q
Bs,a,b

μ,q (t)

=
1

[( [μ]q+a
[μ]q+b – t) + (t – a

[μ]q+b )]μq

×
⎧
⎨

⎩

[
μ

s

]

q

q
s(s–1)

2

(
t –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ+1–s

⎫
⎬

⎭ ,

(
[μ]q + a
[μ]q + b

– t
)

q
Bs,a,b

μ,q (t)

=

[μ

s
]

q[
μ+1

s

]
q

[(
[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]

×
⎧
⎨

⎩
1

[( [μ]q+a
[μ]q+b – t) + (t – a

[μ]q+b )]μ+1
q

[
μ + 1

s

]

q

×
(

t –
a

[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s+1

⎫
⎬

⎭

=
[(

[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)] [μ

s
]

q[
μ+1

s

]
q

Bs,a,b
μ+1,q(t),



Nisar et al. Journal of Inequalities and Applications        (2020) 2020:184 Page 7 of 14

(
[μ]q + a
[μ]q + b

– t
)

q
Bs,a,b

μ,q (t)

=
(

[μ + 1 – j]q

[μ + 1]q

)[(
[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]
Bs,a,b

μ+1,q(t).

Similarly, from

qμ

(
t –

a
[μ]q + b

)

q
Bs,a,b

μ,q (t) =
(

[μ]q

[μ]q + b

)

q

(
[s + 1]q

[μ + 1]q

)
Bs+1,a,b

μ+1,q (t)

we have

qμ

(
t –

a
[μ]q + b

)

q
Bs,a,b

μ,q (t)

=
qμ

[( [μ]q+a
[μ]q+b – t) + (t – a

[μ]q+b )]μq

×
⎧
⎨

⎩

[
μ

s

]

q

q
s(s–1)

2

(
t –

a
[μ]q + b

)s+1( [μ]q + a
[μ]q + b

– t
)μ–s

⎫
⎬

⎭

=

[μ

s
]

q[
μ+1
s+1

]
q

[(
[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]

×
⎧
⎨

⎩
qμ

[( [μ]q+a
[μ]q+b – t) + (t – a

[μ]q+b )]μ+1
q

[
μ + 1
s + 1

]

q

× q
s(s–1)

2

(
t –

a
[μ]q + b

)s+1( [μ]q + a
[μ]q + b

– t
)μ–s

}

=

[μ

s
]

q[
μ+1
s+1

]
q

qμ–s
[(

[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]
Bs+1,a,b

μ+1,q (t)

=
[(

[μ]q + a
[μ]q + b

– t
)

+ qμ

(
t –

a
[μ]q + b

)]
[s + 1]q

[μ + 1]q
Bs+1,a,b

μ+1,q (t). �

Theorem 3.1 Each Lupaş q-Bernstein function with shifted knots of degree μ is a linear
combination of two Lupaş q-Bernstein functions with shifted knots of degree μ + 1:

Bs,a,b
μ,q (t) =

(
[μ + 1 – j]q

[μ + 1]q

)
Bs,a,b

μ+1,q(t) + qμ–s
(

[s + 1]q

[μ + 1]q

)
Bs+1,a,b

μ+1,q (t), (14)

where a
[μ]q+b ≤ t ≤ [μ]q+a

[μ]q+b for nonnegative integers a, b satisfying 0 ≤ a ≤ b.

Proof We obtain this result by adding identities (12) and (13). �
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Theorem 3.2 Each Lupaş q-Bernstein function with shifted knots of degree μ is a linear
combination of two Lupaş q-Bernstein functions with shifted knots of degree μ – 1:

Bs,a,b
μ,q (t) =

1
[( [μ]q+a

[μ]q+b – t) + qμ(t – a
[μ]q+b )]

×
[

qs–1
(

t –
a

[μ]q + b

)
Bs–1,a,b

μ–1,q (t) + qs
(

[μ]q + a
[μ]q + b

– t
)

Bs,a,b
μ–1,q(t)

]
, (15)

where a
[μ]q+b ≤ t ≤ [μ]q+a

[μ]q+b for nonnegative integers a, b satisfying 0 ≤ a ≤ b.

Proof Using a Pascal-type relation, we have

Bs,a,b
μ,q (t) =

[
μ

s

]

q

1
[( [μ]q+a

[μ]q+b – t) + qμ(t – a
[μ]q+b )]

× q
s(s–1)

2

(
t –

a
[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s

=

⎛

⎝
[
μ – 1
s – 1

]

q

+ qs

[
μ – 1

s

]

q

⎞

⎠ 1
[( [μ]q+a

[μ]q+b – t) + qμ(t – a
[μ]q+b )]

×
(

t –
a

[μ]q + b

)s

q

(
[μ]q + a
[μ]q + b

– t
)μ–s

q

=
1

[( [μ]q+a
[μ]q+b – t) + qμ(t – a

[μ]q+b )]

×
[

qs–1
(

t –
a

[μ]q + b

)
Bs–1,a,b

μ–1,q (t) + qs
(

[μ]q + a
[μ]q + b

– t
)

Bs,a,b
μ–1,q(t)

]
. �

4 Lupaş q-Bernstein Bézier curves with shifted knots
The Lupaş q-Bernstein Bézier curves with shifted knots of degree μ can be represented
in the form of linear combination of control points and Lupaş q-Bernstein functions with
shifted knots:

P(t) =
μ∑

s=0

PsBs,a,b
μ,q (t), (16)

where Ps are the control points. After joining these points, we get a polygon called a control
polygon.Now after defining the properties of Lupaş q-Bernstein functions with shifted
knots, we examine the properties of the above curves.

Theorem 4.1 Property of derivative at the end points:

P′
(

a
[μ]q + b

)
=
(
[μ]q + b

)
(P1 – P0), (17)

P′
(

[μ]q + a
[μ]q + b

)
=
(
[μ]q + b

)
(Pμ – Pμ–1), (18)



Nisar et al. Journal of Inequalities and Applications        (2020) 2020:184 Page 9 of 14

that is, Lupaş q-Bernstein curves with shifted knots are tangential at the end points of its
control polygon.

Proof

P(t) =
μ∑

s=0

PsBs,a,b
μ,q (t)

=
μ∑

s=0

Ps

[
μ

s

]

q

1
( [μ]q

[μ]q+b )μq

(
t –

a
[μ]q + b

)s

q

(
[μ]q + a
[μ]q + b

– t
)μ–s

.

Let

P(t) = V(t).

Taking the derivatives of both sides with respect to t, we have

P′(t) = V′(t).

Let

Aμ
s (t) =

[
μ

s

]

q

1
( [μ]q

[μ]q+b )μq

(
t –

a
[μ]q + b

)s

q

(
[μ]q + a
[μ]q + b

– t
)μ–s

.

Then

V(t) =
μ∑

s=0

PsAμ
s (t),

(Aμ
s (t)′ =

[
μ

s

]

q

1
( [μ]q

[μ]q+b )μq

{
s
(

t –
a

[μ]q + b

)s–1( [μ]q + a
[μ]q + b

– t
)μ–s

– (μ – s)
(

t –
a

[μ]q + b

)s( [μ]q + a
[μ]q + b

– t
)μ–s–1}

.

After some calculation, we get

V′
(

a
[μ]q + b

)
= P′

(
a

[μ]q + b

)
=
(
[μ]q + b

)
(P1 – P0).

Similarly, we have

V′
(

[μ]q + a
[μ]q + b

)
= P′

(
[μ]q + a
[μ]q + b

)
=
(
[μ]q + b

)
(Pμ – Pμ–1),

which completes the proof. �
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4.1 Degree elevation for Lupaş q-Bernstein Bézier curves with shifted knots
Lupaş q- Bernstein Bézier curves with shifted knots have a degree elevation formula,
which is the same as that for the classical Bézier curves. With the help of this technique,
we can attain more control over the shape of a given curve:

P(t) =
μ∑

s=0

PsBs,a,b
μ,q (t) (19)

after using degree elevation

P(t) =
μ+1∑

s=0

P∗
s Bs,a,b

μ+1,q(t), (20)

where

P∗
s =
(

[μ + 1 – s]q

[μ + 1]q

)
Ps + qμ+1–s

(
[s]q

[μ + 1]q

)
Ps–1. (21)

This statement can be obtained from Theorem 3.1. If we put a = b = 0 and q = 1,
then formula (21) changes to the Bézier curves degree elevation formula. Denoting by
P = (P0, P1, . . . , Pμ)T the vector of control points of the initial Bézier curve of degree μ and
by P(1) = (P∗

0 , P∗
1 , . . . , P∗

μ+1) the vector of control points of the degree elevated Bézier curve
of degree μ + 1, we can define the degree elevation procedure as

P(1) = Tμ+1P,

where Tμ+1 is given by

Mhs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[μ+1–s]q
[μ+1]q

when h = s,

qμ+1–s [s]q
[μ+1]q

when h = s + 1,

0, when h �= s, s + 1.

After degree elevation, the vector of new control points of Bézier curves of degree μ + l
is P(l) = Tμ+lTμ+2 · · ·Tμ+1P for l ∈N.

As l −→ ∞, the control polygon P(l) converges to the Bézier curve.
In next section, we study a de Casteljau-type algorithm. The de Casteljau algorithm is an

elementary technique of shape designs. This algorithm can be used to split a single curve
into two curves at an arbitrary parameter value.

4.2 De Casteljau algorithm
Bźier curves with shifted knots of degree μ can be represented in the form of a linear
combination of two Bézier curves with shifted knots of degree μ – 1, and we can obtain
two algorithms to assess Bézier curves with shifted knots.
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Algorithm 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P0
i (t) ≡ P0

i ≡ Pi, i = 0, 1, 2, . . . ,μ,

Pr
i (t) = 1

[( [μ]q+a
[μ]q+b –t)+qr(t– a

[μ]q+b )]

× [qr–1(t – a
[μ]q+b )Pr–1

i+1 (t) + qr( [μ]q+a
[μ]q+b – t)Pr–1

i (t)],

r = 1, . . . ,μ, i = 0, 1, . . . ,μ – r, a
[μ]q+b ≤ t ≤ [μ]q+a

[μ]q+b , 0 ≤ a ≤ b.

(22)

Then

P(t) =
μ–1∑

i=0

P1
i (t) = · · · =

∑
Pr

i (t)bi,μ–r
q (t) = · · · = Pμ

0 (t). (23)

It is clear that the results can be obtained from Theorem 3.2. Let P0 = (P0, P1, . . . , Pμ)T

and Pr = (Pr
0, Pr

1, . . . , Pr
μ–r)T . Then the algorithm of de Casteljau type can be expressed as

follows.

Algorithm 2

Pr(t) = Mr(t) · · ·M2(t)M1(t)P0, (24)

where Mr(t) is a (μ – r + 1) × (μ – r + 2) matrix:

Mr(t) =
1

[( [μ]q+a
[μ]q+b – t) + qμ(t – a

[μ]q+b )]
[D]

with

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

qr( [μ]q+a
[μ]q+b – t)q qr–1(t – a

[μ]q+b )q . . . 0 0
0 qr( [μ]q+a

[μ]q+b – t)q . . . 0 0
...

...
. . .

...
...

0 . . . . . . qr–1(t – a
[μ]q+b )q 0

0 0 . . . qr( [μ]q+a
[μ]q+b – t)q qr–1(t – a

[μ]q+b )q

⎤

⎥⎥⎥⎥⎥⎥⎦

(μ+2)×(μ+1)

.

5 Tensor product of Lupaş q-Bernstein Bézier surfaces with shifted knots on
[ a

[μ]q+b , [μ]q+a
[μ]q+b ] × [ a

[μ]q+b , [μ]q+a
[μ]q+b ]

We define a two-parameter family P(u, v) of tensor product surfaces of degree ν × μ as
follows:

P(u, v) =
ν∑

i=0

μ∑

j=0

Pi,jBi,a,b
ν,q (u)Bj,a,b

μ,q (v),

(u, v) ∈
[

a
[μ]q + b

,
[μ]q + a
[μ]q + b

]
×
[

a
[μ]q + b

,
[μ]q + a
[μ]q + b

]
, (25)

where Pi,j ∈R
3 (i = 0, 1, . . . ,ν , s = 0, 1, . . . ,μ), and Bi,a,b

ν,q (u) and Bj,a,b
μ,q (v) are Lupaş and Bern-

stein functions, respectively. Here Pi,j denotes the control points. By joining adjacent
points of same rows/columns we can get a control net of the tensor product Bézier surface.
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5.1 Properties
1. Affine invariance property: Since

ν∑

i=0

μ∑

j=0

Bi,a,b
ν,q (u)Bj,a,b

μ,q (v) = 1, (26)

P(u, v) denotes is combination of its control points.
2. Convex hull property: Convex combination of Pi,j is denoted by P(u, v) and lies in

the convex hull of its control net.
3. Isoparametric property for curves: The isoparametric curves v = v∗ and u = u∗ of a

tensor product Bézier surface are respectively the Lupaş Bézier curves with shifted
knots of degrees ν and μ, namely,

P
(
u, v∗) =

ν∑

i=0

(
μ∑

j=0

Pi,jBs,a,b
μ,q
(
v∗)
)

Bi,a,b
ν,q (u), u ∈

[
a

[μ]q + b
,

[μ]q + a
[μ]q + b

]
;

P
(
u∗, v

)
=

μ∑

j=0

(
ν∑

i=0

Pi,sBs,a,b
μ,q
(
u∗)
)

Bi,a,b
ν,q (v), v ∈

[
a

[μ]q + b
,

[μ]q + a
[μ]q + b

]
.

The boundaries of the curves of P(u, v) are evaluated by P(u, a
[μ]q+b ), P(u, [μ]q+a

[μ]q+b ),

P( a
[μ]q+b , v), and P( [μ]q+a

[μ]q+b , v).
4. Interpolation property at corner points: The corner control net coincides with the

four corners of the surface:

P
(

a
[μ]q + b

,
a

[μ]q + b

)
= P0,0, P

(
a

[μ]q + b
,

[μ]q + a
[μ]q + b

)
= P0,μ,

P
(

[ν]q + a
[ν]q + b

,
a

[μ]q + b

)
= Pν,0, P

(
[ν]q + a
[ν]q + b

,
[μ]q + a
[μ]q + b

)
= Pν,μ.

5. Reducibility: When a = b = 0 and q = 1, formula (25) reduces to the classical tensor
product Bézier patch.

5.2 Degree elevation and de Casteljau algorithm
A tensor product Lupaş q-Bernstein surface with shifted knots of degree ν × μ is P(u, v).
As an example, for getting the same surface as a surface of degree (ν + 1) × (μ + 1), we
need to find new control points P∗

i,j such that

P(u, v) =
ν∑

i=0

μ∑

j=0

Pi,jBi,a,b
ν,q (u)Bj,a,b

μ,q (v) =
ν+1∑

i=0

μ+1∑

j=0

P∗
i,jBi,a,b

ν+1,q(u)Bs,a,b
μ+1,q(v). (27)

Let ai = 1 – [ν+1–i]q
[ν+1]q

, bj = 1 – [μ+1–j]q
[μ+1]q

. Then

P∗
i,j = aibjPi–1,j–1 + ai(1 – bj)Pi–1,j + (1 – ai)(1 – bj)Pi,j, (28)

which can be written in matrix form as

[
1 – [ν+1–i]q

[ν+1]q

[ν+1–i]q
[ν+1]q

][Pi–1,j–1 Pi–1,j

Pi,j–1 Pi,j

][
1 – [μ+1–s]q

[μ+1]q
[μ+1–s]q

[μ+1]q

]
.
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Similarly, the de Casteljau algorithms can be extended to evaluate points on a Bézier sur-
face.Given the control points Pi,j ∈R

3, i = 0, 1, . . . ,ν , s = 0, 1, . . . ,μ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0,0
i,j (u, v) ≡ P0,0

i,j ≡ Pi,j i = 0, 1, . . . ,ν; j = 0, 1, . . . ,μ,

Pr,r
i,j (u, v) = [E]

[
Pr–1,r–1

i,j Pr–1,r–1
i,j+1

Pr–1,r–1
i+1,j Pr–1,r–1

i+1,j+1

]
[F],

where

E =
[ 1

[(
[ν]q+a
[ν]q+b –u)+qν (u– a

[ν]q+b )]
( [ν]q+a

[ν]q+b –u) 1
[(

[ν]q+a
[ν]q+b –u)+qν (u– a

[ν]q+b )]
(u– a

[ν]q+b )]

and

F =

⎡

⎢⎣

1
[(

[μ]q+a
[μ]q+b –v)+qμ(v– a

[μ]q+b )]
( [μ]q+a

[μ]q+b –v)

1
[(

[μ]q+a
[μ]q+b –v)+qμ(v– a

[μ]q+b )]
(v– a

[μ]q+b )

⎤

⎥⎦ ,

r = 1, . . . , s, s = min(ν,μ),

i = 0, 1, 2, . . . ,ν – r; s = 0, 1, 2, . . . ,μ – r.

(29)

When ν = μ, to get a point on the surface, we can directly use the above algorithms.
When ν �= μ, to get a point on the surface after s applications of formula (29), we perform
formula (24) for the intermediate point Ps,s

i,j .
Note that we get Lupaş q-Bézier curves and surfaces for (u, v) ∈ [ a

[μ]q+b , [μ]q+a
[μ]q+b ] ×

[ a
[μ]q+b , [μ]q+a

[μ]q+b ] when we set the parameters a = b = 0.

Further, we have classical Bézier curves and surfaces for (u, v) ∈ [ a
[μ]q+b , [μ]q+a

[μ]q+b ] ×
[ a

[μ]q+b , [μ]q+a
[μ]q+b ] when we set the parameters a = b = 0 and q = 1.
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