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Abstract
In this paper, we consider the linear fractional differential equation

{
C
0D

ν
t u(t) + q(t)u(t) = 0, t ∈ (0, 1),ν ∈ (1, 2],

u(0) = δu(1), u′(0) = γ u′(1).

By obtaining the Green’s function we derive the Lyapunov-type inequality for such a
boundary value problem. Furthermore, we use the contraction mapping theorem to
study the existence of a unique solution for the corresponding nonlinear problem.
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1 Introduction
In 1907, Lyapunov [1] stated the following outstanding result.

Theorem 1.1 ([1]) If the boundary value problem (BVP)

⎧⎨
⎩y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,

has a nontrivial solution, then we have the following Lyapunov inequality:

∫ b

a

∣∣q(s)
∣∣ds >

4
b – a

. (1)

Inequality (1) is very useful in various problems related to differential equations. Since
the appearance of Lyapunov’s fundamental paper [1], many improvements and generaliza-
tions of inequality (1) for integer-order (second- and higher-order) BVPs have appeared
in the literature; we refer the reader to the summary reference by Tiryaki [2].

Recently, the studies on Lyapunov’s inequality for fractional boundary value problem
(FBVP) have begun, in which fractional derivatives (Riemann–Liouville derivative R

aD
v
t or
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Caputo derivative C
aD

v
t ) are used instead of the classical ordinary derivative. Such a work

was initiated by Ferreira [3] in 2013, who obtained a Lyapunov inequality for the following
differential equation with Riemann–Liouville fractional derivative:

(R
aD

v
t y

)
(t) + q(t)y(t) = 0, a < t < b, 1 < v ≤ 2, (2)

subject to the boundary value condition

y(a) = y(b) = 0. (3)

Next, in 2014, Ferreira [4] obtained a Lyapunov inequality for the following differential
equation with Caputo fractional derivative:

(C
aD

v
t y

)
(t) + q(t)y(t) = 0, a < t < b, 1 < v ≤ 2, (4)

subject to boundary value condition (3).
After [3] and [4], many results appeared in the literature; we refer the reader to [5–

10], where Lyapunov or Lyapunov-type inequalities are obtained for fractional differential
equation subject various boundary value conditions such as

y′(a) = y′(b) = y(c) = 0, a < b, c ∈ [a, b];

y(a) = y′(a) = 0, y′(b) = βy′(ξ );

y(a) = y′(a) = y′′(a) = y′′(b) = 0;

y(a) = y′(a) = y(b) = 0.

Inspired by the works mentioned, in this paper, we aim to investigate the Lyapunov-type
inequality for the following fractional differential equations:

⎧⎨
⎩

C
0D

ν
t u(t) + q(t)u(t) = 0, t ∈ (0, 1),ν ∈ (1, 2],

u(0) = δu(1), u′(0) = γ u′(1),
(5)

where δ and γ are real numbers, and q(t) ∈ L(0, 1) is not identically zero on any compact
subinterval of (0, 1). Furthermore, we obtain the existence of a solution for the correspond-
ing nonlinear problem:

⎧⎨
⎩

C
0D

ν
t u(t) + q(t)f (u(t)) = 0, t ∈ (0, 1),ν ∈ (1, 2],

u(0) = δu(1), u′(0) = γ u′(1).
(6)

BVP (6) was recently studied in [11], but we should point out that only the case of δ > 1
and 0 < γ < 1 was considered in [11]. In this paper, we give a comprehensive discussion on
parameters δ and γ .

2 Preliminaries and lemmas
For convenience, we present some definitions and lemmas from fractional calculus theory
in the sense of Riemann–Liouville and Caputo.
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Definition 2.1 ([12]) Let Γ (v) =
∫ ∞

0 tv–1e–t dt, v > 0, be the gamma function. Then the
Riemann–Liouville fractional integral of order v for y(t) is defined as

(
aI

v
t y

)
(t) :=

1
Γ (v)

∫ t

a
(t – s)v–1y(s) ds, t ∈ [a, b].

Definition 2.2 ([12]) Let v > 0 and n = [v] + 1, where [v] denotes the integer part of a
number v. Then the Caputo fractional derivative of order v for y(t) is defined as

(C
aD

v
t y

)
(t) :=

(
aI

n–v
t y(n))(t) =

1
Γ (n – v)

∫ t

a

y(n)(s)
(t – s)v+1–n ds, t ∈ [a, b].

By Definitions 2.1 and 2.2 we have

(
aI

ν
t
(C

aD
ν
t y

))
(t) = y(t) + C1 + C2t + · · · + Cntn–1. (7)

Lemma 2.1 A function u(t) is a solution of the boundary value problem (5) if and only if
u(t) satisfies

u(t) =
∫ 1

0
G(t, s)q(s)u(s) ds,

where

G(t, s) =
1

Γ (ν)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 – ν) δγ (1–t)+γ t
(1–γ )(1–δ) (1 – s)ν–2 – δ

1–δ
(1 – s)ν–1 – (t – s)ν–1,

0 ≤ s ≤ t ≤ 1,

(1 – ν) δγ (1–t)+γ t
(1–γ )(1–δ) (1 – s)ν–2 – δ

1–δ
(1 – s)ν–1,

0 ≤ t ≤ s ≤ 1.

(8)

Proof Let u(t) be a solution of (5). Then

(
0I

ν
t
(C

0D
ν
t u

))
(t) + 0I

ν
t
(
q(t)u(t)

)
= 0.

By (7) we obtain

u(t) = C1 + C2t –
1

Γ (ν)

∫ t

0
(t – s)ν–1q(s)u(s) ds. (9)

Considering u(0) = δu(1), we have

C1 = δC1 + δC2 –
δ

Γ (ν)

∫ 1

0
(1 – s)ν–1q(s)u(s) ds;

considering u′(0) = γ u′(1), we have

C2 =
γ (ν – 1)

Γ (ν)(γ – 1)

∫ 1

0
(1 – s)ν–2q(s)u(s) ds, (10)
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and thus we get

C1 =
δγ (ν – 1)

Γ (ν)(1 – δ)(γ – 1)

∫ 1

0
(1 – s)ν–2q(s)u(s) ds

–
δ

Γ (ν)(1 – δ)

∫ 1

0
(1 – s)ν–1q(s)u(s) ds. (11)

Substituting (10) and (11) into (9), we obtain

u(t) =
δγ (ν – 1)

Γ (ν)(1 – δ)(γ – 1)

∫ 1

0
(1 – s)ν–2q(s)u(s) ds

–
δ

Γ (ν)(1 – δ)

∫ 1

0
(1 – s)ν–1q(s)u(s) ds

+
γ (ν – 1)t

Γ (ν)(γ – 1)

∫ 1

0
(1 – s)ν–2q(s)u(s) ds –

1
Γ (ν)

∫ t

0
(t – s)ν–1q(s)u(s) ds

=
∫ 1

0
G(t, s)q(s)u(s) ds,

where G(t, s) is the Green’s function:

G(t, s) =
1

Γ (ν)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 – ν) δγ (1–t)+γ t
(1–γ )(1–δ) (1 – s)ν–2 – δ

1–δ
(1 – s)ν–1 – (t – s)ν–1,

0 ≤ s ≤ t ≤ 1,

(1 – ν) δγ (1–t)+γ t
(1–γ )(1–δ) (1 – s)ν–2 – δ

1–δ
(1 – s)ν–1,

0 ≤ t ≤ s ≤ 1. �

Lemma 2.2 When δ ∈ (0, 1) and γ ∈ (0, 1), Green’s function G(t,s) satisfies the following
properties:

(i) G(t, s) ≤ 0, (t, s) ∈ [0, 1] × [0, 1];
(ii) max0≤t≤1 |G(t, s)| = –G(1, s) = (1–s)ν–2

Γ (ν)(1–δ)(1–γ ) [γ (ν – 1) + (1 – γ )(1 – s)] for s ∈ [0, 1],
(iii)

∫ 1
0 |G(t, s)|ds ≤ γ (ν–1)+1

Γ (ν+1)(1–δ)(1–γ ) .

Proof (i) G(t, s) ≤ 0 is obvious since δ ∈ (0, 1) and γ ∈ (0, 1).
(ii) For s ∈ [0, 1] and t ∈ [s, 1], we have

G′
t(t, s) =

1 – ν

Γ (ν)

[
γ

1 – γ
(1 – s)ν–2 + (t – s)ν–2

]
≤ 0,

which means

G(1, s) ≤ G(t, s) ≤ G(s, s) ≤ 0, s ≤ t ≤ 1; (12)

for t ∈ [0, s], we have

G′
t(t, s) =

γ (1 – ν)
Γ (ν)(1 – γ )

(1 – s)ν–2 ≤ 0,

which means

G(s, s) ≤ G(t, s) ≤ G(0, s) ≤ 0, 0 ≤ t ≤ s. (13)
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Inequalities (12) and (13) show that, for s ∈ [0, 1],

G(1, s) ≤ G(t, s) ≤ G(0, s) ≤ 0, 0 ≤ t ≤ 1.

Therefore, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣ = –G(1, s)

=
1

Γ (ν)

[
(ν – 1)γ

(1 – δ)(1 – γ )
(1 – s)ν–2 +

(1 – s)ν–1

1 – δ

]

=
(1 – s)ν–2

Γ (ν)(1 – δ)(1 – γ )
[
γ (ν – 1) + (1 – γ )(1 – s)

]
.

(iii) By (ii) we have

∫ 1

0

∣∣G(t, s)
∣∣ds ≤

∫ 1

0
–G(1, s) ds

=
∫ 1

0

(1 – s)ν–2

Γ (ν)(1 – δ)(1 – γ )
[
γ (ν – 1) + (1 – γ )(1 – s)

]
ds

=
γ (ν – 1) + 1

Γ (ν + 1)(1 – δ)(1 – γ )
. �

Lemma 2.3 When δ ∈ (1, +∞) and γ ∈ (0, 1), Green’s function G(t, s) satisfies the following
properties:

(i) G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1];
(ii) max0≤t≤1 |G(t, s)| = G(0, s) = δ(1–s)ν–2

Γ (ν)(δ–1)(1–γ ) [γ (ν – 1) + (1 – γ )(1 – s)] for s ∈ [0, 1],
(iii)

∫ 1
0 |G(t, s)|ds ≤ δ(γ ν+1–γ )

Γ (ν+1)(δ–1)(1–γ ) .

Proof (i) When 0 ≤ t ≤ s ≤ 1,

G(t, s) = (ν – 1)
δγ (1 – t) + γ t

Γ (ν)(δ – 1)(1 – γ )
(1 – s)ν–2 +

δ

Γ (ν)(δ – 1)
(1 – s)ν–1 ≥ 0.

When 0 ≤ s ≤ t ≤ 1,

G(t, s) = (ν – 1)
δγ (1 – t) + γ t

Γ (ν)(δ – 1)(1 – γ )
(1 – s)ν–2 +

(1 – s)ν–1

Γ (ν)

[
1

δ – 1
+ 1 –

(
t – s
1 – s

)ν–1]
≥ 0.

(ii) For s ∈ [0, 1] and t ∈ [s, 1], we have

G′
t(t, s) =

1 – ν

Γ (ν)

[
γ

1 – γ
(1 – s)ν–2 + (t – s)ν–2

]
≤ 0,

which means

0 ≤ G(1, s) ≤ G(t, s) ≤ G(s, s), s ≤ t ≤ 1. (14)
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For t ∈ [0, s], we have

G′
t(t, s) =

γ (1 – ν)(1 – s)ν–2

(1 – γ )Γ (ν)
≤ 0,

which means

G(s, s) ≤ G(t, s) ≤ G(0, s), 0 ≤ t ≤ s. (15)

Inequalities (14) and (15) show us that, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣ = G(0, s) =

δ(1 – s)ν–2

Γ (ν)(δ – 1)(1 – γ )
[
γ (ν – 1) + (1 – γ )(1 – s)

]
.

(iii) From (ii) we have

∫ 1

0

∣∣G(t, s)
∣∣ds ≤

∫ 1

0
G(0, s) ds

=
∫ 1

0

δ(1 – s)ν–2

Γ (ν)(δ – 1)(1 – γ )
[
γ (ν – 1) + (1 – γ )(1 – s)

]
ds

=
δ(γ ν + 1 – γ )

Γ (ν + 1)(δ – 1)(1 – γ )
. �

Lemma 2.4 When δ ∈ (0, 1) and γ ∈ (1, 1 + (ν–1)δ
2–ν

], Green’s function G(t, s) satisfies the
following properties:

(i) G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1];
(ii) max0≤t≤1 |G(t, s)| = G(1, s) = (1–s)ν–2

Γ (ν)(1–δ)(γ –1) [γ (ν – 1) – (γ – 1)(1 – s)] for s ∈ [0, 1],
(iii)

∫ 1
0 |G(t, s)|ds ≤ γ (ν–1)+1

Γ (ν+1)(1–δ)(γ –1) .

Proof We first prove (i) and (ii). For s ∈ [0, 1], when t ∈ [0, s],

G′
t(t, s) =

γ (ν – 1)(1 – s)ν–2

Γ (ν)(γ – 1)
≥ 0,

which means that, for s ∈ [0, 1],

G(0, s) ≤ G(t, s) ≤ G(s, s), t ∈ [0, s]. (16)

When t ∈ [s, 1],

G′
t(t, s) =

(ν – 1)
Γ (ν)

[
γ

γ – 1
(1 – s)ν–2 – (t – s)ν–2

]
,

G′′
tt(t, s) =

1
Γ (ν)

(ν – 1)(2 – ν)(t – s)ν–3 ≥ 0.
(17)

Letting G′
t(t, s) = 0, we get t∗ = ( γ

γ –1 ) 1
ν–2 (1 – s) + s ∈ [s, 1]. Combining with (17), for s ∈

[0, 1], we have

G
(
t∗, s

) ≤ G(t, s) ≤ G(s, s), t ∈ [
s, t∗], (18)

G
(
t∗, s

) ≤ G(t, s) ≤ G(1, s), t ∈ [
t∗, 1

]
. (19)
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Inequalities (16), (18), and (19) show us that, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣ = max

{∣∣G(0, s)
∣∣, ∣∣G(s, s)

∣∣, ∣∣G(
t∗, s

)∣∣, ∣∣G(1, s)
∣∣}.

Now we prove G(0, s), G(s, s), G(t∗, s), and G(1, s) are all nonnegative.
For G(0, s), we have

G(0, s) =
1

Γ (ν)

[
δγ (ν – 1)

(1 – δ)(γ – 1)
(1 – s)ν–2 –

δ

1 – δ
(1 – s)ν–1

]
,

G′
s(0, s) =

δ(ν – 1)(1 – s)ν–3

(1 – δ)Γ (ν)

[
(1 – s) +

γ (2 – ν)
γ – 1

]
≥ 0,

which means that G(0, s) is increasing for s ∈ [0, 1]. Considering that γ < 1
2–ν

in case of
1 < γ ≤ 1 + (ν–1)δ

2–ν
and 0 < δ < 1, we have, for s ∈ [0, 1],

G(0, s) ≥ G(0, 0) =
δ

Γ (ν)(1 – δ)(γ – 1)
[
1 – γ (2 – ν)

]
> 0. (20)

Inequalities(16) and (20) show that G(s, s) > 0.
For G(t∗, s), we have

G
(
t∗, s

)
=

(1 – s)ν–2

Γ (ν)

{
δγ (ν – 1)

(γ – 1)(1 – δ)
+

[
(2 – ν)

(
γ

γ – 1

) ν–1
ν–2

+
δ

1 – δ

]
(s – 1)

+
γ (ν – 1)
γ – 1

s
}

=
(1 – s)ν–2

Γ (ν)
g(s), (21)

where

g(s) =
δγ (ν – 1)

(γ – 1)(1 – δ)
+

[
(2 – ν)

(
γ

γ – 1

) ν–1
ν–2

+
δ

1 – δ

]
(s – 1) +

γ (ν – 1)
γ – 1

s, s ∈ [0, 1].

Obviously, g(s) is increasing on [0, 1], and thus

g(s) ≥ g(0) =
δγ (ν – 1)

(γ – 1)(1 – δ)
– (2 – ν)

(
γ

γ – 1

) ν–1
ν–2

–
δ

1 – δ
, s ∈ [0, 1]. (22)

Let k(t) = δ(ν–1)
1–δ

t – (2 – ν)t ν–1
ν–2 – δ

1–δ
, t ∈ [1, +∞). Then

k′(t) =
δ(ν – 1)

1 – δ
+ (ν – 1)t

1
ν–2 ≥ 0, (23)

which mean that k(t) is increasing in [1, +∞). Letting k(t0) = 0, we get t0 = (1–δ)(2–ν)t
ν–1
ν–2

0 +δ

δ(ν–1)
and

t0 – 1 =
(1 – δ)(2 – ν)t

ν–1
ν–2
0 + δ(2 – ν)

δ(ν – 1)
> 0.



Ma and Yang Journal of Inequalities and Applications        (2020) 2020:181 Page 8 of 15

Then

t0

t0 – 1
= 1 +

1
t0 – 1

= 1 +
(ν – 1)δ

δ(2 – ν) + (1 – δ)(2 – ν)t
ν–1
ν–2
0

> 1 +
(ν – 1)δ

2 – ν
≥ γ ,

that is, t0 < γ

γ –1 . By (23) we obtain g(0) = k( γ

γ –1 ) ≥ k(t0) = 0, and thus

g(s) ≥ g(0) ≥ 0. (24)

From (21) and (24) it follows that G(t∗, s) ≥ 0.
Since G(t∗, s) ≥ 0, by (19) it follows that G(1, s) ≥ 0
Above all, we conclude that

G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1]

and

max
0≤t≤1

∣∣G(t, s)
∣∣ = max

{
G(s, s), G(1, s)

}
.

Since γ < 1
2–ν

in the case of 1 < γ ≤ 1 + (ν–1)δ
2–ν

and 0 < δ < 1, we get

G(s, s) – G(1, s) =
(1 – ν)(1 – s)ν–2

Γ (ν)

[
δγ (1 – s) + γ s
(1 – γ )(1 – δ)

–
γ

(1 – γ )(1 – δ)
+ (1 – s)ν–1

]

=
(1 – s)ν–1

Γ (ν)(γ – 1)
[
(2 – ν)γ – 1

] ≤ 0,

so

max
0≤t≤1

∣∣G(t, s)
∣∣ = G(1, s) =

(1 – s)ν–2

Γ (ν)(1 – δ)(γ – 1)
[
γ (ν – 1) – (γ – 1)(1 – s)

]
.

(iii) By (ii) we have

∫ 1

0

∣∣G(t, s)
∣∣ds ≤

∫ 1

0
G(1, s) ds

=
∫ 1

0

(1 – s)ν–2

Γ (ν)(1 – δ)(γ – 1)
[
γ (ν – 1) – (γ – 1)(1 – s)

]
ds

=
γ (ν – 1) + 1

Γ (ν + 1)(1 – δ)(γ – 1)
. �

Lemma 2.5 When δ ∈ (1, +∞) and γ ∈ (1, 1
2–ν

], Green’s function G(t, s) satisfies the follow-
ing properties:

(i) G(t, s) ≤ 0, (t, s) ∈ [0, 1] × [0, 1];
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(ii) For s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣

≤ (1 – s)ν–2

Γ (ν)(δ – 1)(γ – 1)

×
{
δγ (ν – 1) –

[
δ(γ – 1) – γ (2 – ν)(δ – 1)

(
γ – 1

γ

) 1
2–ν

]
(1 – s)

}
;

(iii)
∫ 1

0 |G(t, s)|ds ≤ 1
Γ (ν+1)(δ–1)(γ –1) {δ[1 + γ (ν – 1)] + (δ – 1)γ (2 – ν)( γ –1

γ
) 1

2–ν }.

Proof We first prove (i) and (ii). For s ∈ [0, 1] and t ∈ [0, s],

G′
t(t, s) =

γ (ν – 1)(1 – s)ν–2

(γ – 1)Γ (ν)
≥ 0,

which means

G(0, s) ≤ G(t, s) ≤ G(s, s), t ∈ [0, s]. (25)

When t ∈ [s, 1],

G′
t(t, s) =

(ν – 1)
Γ (ν)

[
γ

γ – 1
(1 – s)ν–2 – (t – s)ν–2

]
,

G′′
tt(t, s) =

1
Γ (ν)

(ν – 1)(2 – ν)(t – s)ν–3 ≥ 0.
(26)

Letting G′
t(t, s) = 0, we get t∗ = ( γ

γ –1 ) 1
ν–2 (1 – s) + s ∈ [s, 1]. Combining (26), for s ∈ [0, 1], we

have

G
(
t∗, s

) ≤ G(t, s) ≤ G(s, s), t ∈ [
s, t∗], (27)

G
(
t∗, s

) ≤ G(t, s) ≤ G(1, s), t ∈ [
t∗, 1

]
. (28)

Inequalities (25), (27), and (28) show that, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣ = max

{∣∣G(0, s)
∣∣, ∣∣G(s, s)

∣∣, ∣∣G(
t∗, s

)∣∣, ∣∣G(1, s)
∣∣}.

We now prove that G(0, s), G(s, s), G(t∗, s), G(1, s) are all nonpositive.
For G(s, s), we have

G(s, s) =
(1 – s)ν–2

Γ (ν)(δ – 1)(γ – 1)
{[

(2 – ν)γ – 1
]
δ +

[
(ν – 1)δγ – (γ – 1)δ – (ν – 1)γ

]
s
}

=
(1 – s)ν–2

Γ (ν)(δ – 1)(γ – 1)
L(s),

where

L(s) =
[
(2 – ν)γ – 1

]
δ +

[
(ν – 1)δγ – (γ – 1)δ – (ν – 1)γ

]
s, s ∈ [0, 1].
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We have

L(0) = δ
[
(2 – ν)γ – 1

] ≤ 0, L(1) = –(ν – 1)γ < 0,

which means that L(s) ≤ 0, s ∈ [0, 1], and therefore

G(s, s) ≤ 0, s ∈ [0, 1].

Inequalities G(0, s) ≤ 0 and G(t∗, s) ≤ 0 follow from (25), (27), and G(s, s) ≤ 0.
For G(1, s), we have

G(1, s) =
1

Γ (ν)

[
γ (ν – 1)

(1 – δ)(γ – 1)
(1 – s)ν–2 –

1
1 – δ

(1 – s)ν–1
]

,

G′
s(1, s) =

–(ν – 1)(1 – s)ν–3

Γ (ν)(δ – 1)(γ – 1)
[
(2 – ν)γ + (γ – 1)(1 – s)

] ≤ 0,

and thus, for s ∈ [0, 1],

G(1, s) ≤ G(1, 0) =
1

Γ (ν)(δ – 1)(γ – 1)
[
γ (2 – ν) – 1

] ≤ 0.

Above all, we get that G(t, s) ≤ 0 and, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣ = max

{
–G(0, s), –G

(
t∗, s

)}
.

We can easily compute that

–G
(
t∗, s

)
=

(1 – s)ν–2

Γ (ν)
h1(s),

where

h1(s) =
{

δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

+ (2 – ν)
(

γ

γ – 1

) ν–1
ν–2

}

–
{

δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

+ (2 – ν)
(

γ

γ – 1

) ν–1
ν–2

–
γ (ν – 1)

(δ – 1)(γ – 1)

}
s,

and

–G(0, s) =
(1 – s)ν–2

Γ (ν)
h2(s),

where

h2(s) =
δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

+
δ

δ – 1
s.
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Obviously,

h1(0) =
δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

+ (2 – ν)
(

γ

γ – 1

) ν–1
ν–2

>
δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

= h2(0) > 0,

h2(1) =
δγ (ν – 1)

(δ – 1)(γ – 1)
>

γ (ν – 1)
(δ – 1)(γ – 1)

= h1(1) > 0.

So, if we make a line H(s) through (0, h1(0)) and (1, h2(1)), that is,

H(s) =
δ[1 – γ (2 – ν)]
(δ – 1)(γ – 1)

+ (2 – ν)
(

γ

γ – 1

) ν–1
ν–2

+
[

δ

δ – 1
– (2 – ν)

(
γ

γ – 1

) ν–1
ν–2

]
s,

then we have

0 ≤ h1(s), h2(s) ≤ H(s), s ∈ [0, 1].

Therefore, for s ∈ [0, 1],

max
0≤t≤1

∣∣G(t, s)
∣∣

= max
{

–G(0, s), –G
(
t∗, s

)}
=

(1 – s)ν–2

Γ (ν)
max

{
h1(s), h2(s))

}

≤ (1 – s)ν–2

Γ (ν)
H(s)

=
(1 – s)ν–2

Γ (ν)(δ – 1)(γ – 1)

{
δγ (ν – 1) –

[
δ(γ – 1) – γ (2 – ν)(δ – 1)

(
γ – 1

γ

) 1
2–ν

]
(1 – s)

}
.

(iii) easily s follows by (ii):

∫ 1

0

∣∣G(t, s)
∣∣ds

≤
∫ 1

0
max
0≤t≤1

∣∣G(t, s)
∣∣ds

≤
∫ 1

0

(1 – s)ν–2

Γ (ν)(δ – 1)(γ – 1)

×
{
δγ (ν – 1) –

[
δ(γ – 1) – γ (2 – ν)(δ – 1)

(
γ – 1

γ

) 1
2–ν

]
(1 – s)

}
ds

=
1

Γ (ν + 1)(δ – 1)(γ – 1)

{
δ
[
1 + γ (ν – 1)

]
+ (2 – ν)(δ – 1)γ

(
γ – 1

γ

) 1
2–ν

}
. �

3 Main result
Theorem 3.1 Suppose the boundary value problem (5) has a nonzero solution u(t).

(i) If δ ∈ (0, 1) and γ ∈ (0, 1), then

∫ 1

0
(1 – s)ν–2[γ (ν – 1) + (1 – γ )(1 – s)

]∣∣q(s)
∣∣ds > Γ (ν)(1 – δ)(1 – γ );
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(ii) If δ ∈ (1, +∞) and γ ∈ (0, 1), then

∫ 1

0
(1 – s)ν–2[γ (ν – 1) + (1 – γ )(1 – s)

]∣∣q(s)
∣∣ds >

Γ (ν)(δ – 1)(1 – γ )
δ

;

(iii) If δ ∈ (0, 1) and γ ∈ (1, 1 + (ν–1)δ
2–ν

], then

∫ 1

0
(1 – s)ν–2[γ (ν – 1) – (γ – 1)(1 – s)

]∣∣q(s)
∣∣ds > Γ (ν)(1 – δ)(γ – 1);

(iv) if δ ∈ (1, +∞) and γ ∈ (1, 1
2–ν

], then

∫ 1

0
(1 – s)ν–2

{
δγ (ν – 1) –

[
δ(γ – 1) – γ (2 – ν)(δ – 1)

(
γ – 1

γ

) 1
2–ν

]
(1 – s)

}

× ∣∣q(s)
∣∣ds

> Γ (ν)(δ – 1)(γ – 1).

Proof Let u(t) be a nonzero solution of the boundary value problem (5). By Lemma 2.1 we
have

u(t) =
∫ 1

0
G(t, s)q(s)u(s) ds.

Let m = maxt∈[0,1] |u(t)|. Then

∣∣u(t)
∣∣ ≤

∫ 1

0

∣∣G(t, s)
∣∣∣∣q(s)

∣∣∣∣u(s)
∣∣ds ≤ m

∫ 1

0

∣∣G(t, s)
∣∣∣∣q(s)

∣∣ds.

Next, since |G(t, s)||q(s)| ≤ max0≤t≤1 |G(t, s)||q(s)|, but |G(t, s)||q(s)| �≡ max0≤t≤1 |G(t, s)| ×
|q(s)|, we have

∫ 1

0

∣∣G(t, s)
∣∣∣∣q(s)

∣∣ds <
∫ 1

0
max
0≤t≤1

∣∣G(t, s)
∣∣∣∣q(s)

∣∣ds,

which means

∣∣u(t)
∣∣ < m

∫ 1

0
max
0≤t≤1

∣∣G(t, s)
∣∣∣∣q(s)

∣∣ds,

that is,

1 <
∫ 1

0
max
0≤t≤1

∣∣G(t, s)
∣∣∣∣q(s)

∣∣ds. (29)

Substituting Lemma 2.2(ii), Lemma 2.3(ii), Lemma 2.4(ii), and Lemma 2.5(ii) into (29),
we easily get statements (i), (ii), (iii), and (iv) of Theorem 3.1. �

By Theorem 3.1 we have the following conclusions.
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Theorem 3.2
(i) when δ ∈ (0, 1) and γ ∈ (0, 1), if

∫ 1

0
(1 – s)ν–2[γ (ν – 1) + (1 – γ )(1 – s)

]∣∣q(s)
∣∣ds ≤ Γ (ν)(1 – δ)(1 – γ ),

then the boundary value problem (5) has no nonzero solution.
(ii) when δ ∈ (1, +∞) and γ ∈ (0, 1), if

∫ 1

0
(1 – s)ν–2[γ (ν – 1) + (1 – γ )(1 – s)

]∣∣q(s)
∣∣ds ≤ Γ (ν)(δ – 1)(1 – γ )

δ
,

then the boundary value problem (5) has no nonzero solution.
(iii) when δ ∈ (0, 1) and γ ∈ (1, 1 + (ν–1)δ

2–ν
], if

∫ 1

0
(1 – s)ν–2[γ (ν – 1) – (γ – 1)(1 – s)

]∣∣q(s)
∣∣ds ≤ Γ (ν)(1 – δ)(γ – 1),

then the boundary value problem (5) has no nonzero solution.
(iv) when δ ∈ (1, +∞) and γ ∈ (1, 1

2–ν
], if

∫ 1

0
(1 – s)ν–2

{
δγ (ν – 1)

–
[
δ(γ – 1) – γ (2 – ν)(δ – 1)

(
γ – 1

γ

) 1
2–ν

]
(1 – s)

}∣∣q(s)
∣∣ds

≤ Γ (ν)(δ – 1)(γ – 1),

then the boundary value problem (5) has no nonzero solution.

Now we consider the existence of solutions to the following nonlinear boundary value
problem:

⎧⎨
⎩

C
0D

ν
t u(t) + f (t, u(t)) = 0,

u(0) = δu(1), u′(0) = γ u′(1).
(30)

Theorem 3.3 Let f : [0, 1] × R → R be continuous and satisfy the following Lipschitz con-
dition with Lipschitz constant L:

∣∣f (t, u1) – f (t, u2)
∣∣ ≤ L|u1 – u2| (31)

for all (t, u1), (t, u2) ∈ [0, 1] × R. If

L <

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ (ν+1)(1–δ)(1–γ )
γ (ν–1)+1 , δ ∈ (0, 1),γ ∈ (0, 1),

Γ (ν+1)(δ–1)(1–γ )
δ(γ ν+1–γ ) , δ ∈ (1, +∞),γ ∈ (0, 1),

Γ (ν+1)(1–δ)(γ –1)
γ (ν–1)+1 , δ ∈ (0, 1),γ ∈ (1, 1 + δ(ν–1)

2–ν
],

Γ (ν+1)(δ–1)(γ –1)

δ[1+γ (ν–1)]+(δ–1)γ (2–ν)( γ –1
γ )

1
2–ν

, δ ∈ (1, +∞],γ ∈ (1, 1
2–ν

],

(32)

then (30) has a unique solution.
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Proof Let E be the Banach space C[0, 1] with norm ‖u‖ = maxt∈[0,1] |u(t)|.
By Lemma 2.1, u ∈ E is a solution of (30) if and only if it satisfies the integral equation

u(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds.

Define the operator T : E → E by

Tu(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds.

Then T is completely continuous. We claim that T has a unique fixed point in E. In fact,
for any u1, u2 ∈ E, we have

∣∣Tu1(t) – Tu2(t)
∣∣ ≤

∫ 1

0

∣∣G(t, s)
∣∣∣∣f (s, u1(s)

)
– f

(
s, u2(s)

)∣∣ds

≤ L
∫ 1

0

∣∣G(t, s)
∣∣∣∣u1(s) – u2(s)

∣∣ds

≤ L
∫ 1

0

∣∣G(t, s)
∣∣ds‖u1 – u2‖. (33)

Substituting of Lemma 2.2(iii), Lemma 2.3(iii), Lemma 2.4(iii), and Lemma 2.5(iii) into
(33), we conclude that T is a contraction mapping and thus obtain the desired result. �

4 Conclusion
In this paper, we study a linear fractional differential equation. Firstly, by obtaining the
Green’s function we derive a Lyapunov-type inequality for such a boundary value problem.
Furthermore, we use the contraction mapping theorem to study the existence of a unique
solution for the corresponding nonlinear problem.
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