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Abstract
A number of families of q-extensions of analytic functions in the open unit disk U
have been defined by means of basic (or q-)calculus and considered from many
distinctive prospectives and viewpoints. In this paper, we generalize and study certain
subclasses of analytic functions involving higher-order q-derivative operators. We
settle characteristic equations for these presumably new classes and also study
numerous coefficient inequalities. For the results obtained in this presentation, we
also carry out appropriate connections with those in multiple other concerning works
on this subject.
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1 Introduction and definitions
By A(p) we denote the class of functions with series representation

f (z) = zp +
∞∑

n=1

an+pzn+p (
p ∈N = {1, 2, . . .}), (1.1)

which is analytic and p-valent in the open unit disk

U =
{

z : z ∈C and |z| < 1
}

.

In particular, we denote

A := A(1).

Moreover, we denote by S ⊂A the class of all univalent functions in the unit disk U.
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For two analytic functions fj, j = 1, 2, in U, a function f1 is said to be subordinate to the
function f2 and write as

f1 ≺ f2 or f1(z) ≺ f2(z)

if in U, we can find an analytic Schwarz function w with

w(0) = 0 and
∣∣w(z)

∣∣ < 1

such that

f1(z) = f2
(
w(z)

)
.

Further, if the function f2 is univalent in U then following equivalence relation holds true

f1(z) ≺ f2(z) (z ∈U) ⇒ f1(0) = f2(0) and f1(U) ⊂ f2(U).

The noteworthy class of Carathéodory functions P consists of all analytic functions ψ in
U normalized by

ψ(z) = 1 +
∞∑

n=1

ψnzn (1.2)

and satisfying

�(
ψ(z)

)
> 0 (∀z ∈U).

For a convex function f , it is always true that the image of f under U and all circles
lying within U centered at the origin are convex arcs. But justification is required whether
the characteristic still holds for circles with center at any other point, say ξ . Goodman
[4, 5] answered negatively and defined uniformly convex and starlike functions that have
this nice characteristic. Analytically, he defined uniformly convex and starlike functions,
respectively, as

�
{

1 +
(z – ξ )f ′′(z)

f ′(z)

}
> 0 (z ∈ U)

and

�
{

1 +
(z – ξ )f ′(z)
f (z) – f (ξ )

}
> 0 (z ∈U).

We denote the former by UCV and the later by US∗T . It is natural to ask whether classical
Alexander’s result holds for these two classes, but there are counterexamples [4], which
show that the relation is not true for these classes. Rønning [24], using UCV , introduced
the class

S∗T =
{

f ∈A : f (z) = zg ′(z), g(z) ∈ UCV
}
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and succeeded in proving that neither S∗T �⊂ US∗T nor US∗T �⊂ S∗T . Ultimately, Røn-
ning [23] and Ma and Minda [14] introduced the following one-variable characterization
of these classes.

Definition 1 Let f ∈A. Then f ∈ UCV if

�
{

(zf ′(z))′

f ′(z)

}
>

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈U).

Definition 2 Let f ∈A. Then f ∈ S∗T if

�
{

zf ′(z)
f (z)

}
>

∣∣∣∣
zf ′(z)
f (z)

– 1
∣∣∣∣ (z ∈U).

This led to the basis for conic domains introduced by Kanas and Wiśniowska [10, 11] as

Ωk =
{

u + iv : u > k
√

(u – 1)2 + v2
}

, k � 0. (1.3)

These domains represent the right half-plane, a parabola, a hyperbola, and an ellipse for
k = 0, k = 1, 0 < k < 1, and k > 1, respectively.

The role of an extremal function is done by the function pk(z) given by

pk(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1+z
1–z (k = 0),

1 + 2
π2 (log 1+

√
z

1–
√

z )2 (k = 1),

1 + 2
1–k2 sinh2{( 2

π
arccos k) arctan h

√
z} (0 ≤ k < 1),

1 + 1
k2–1 [1 + sin( π

2K (κ)
∫ u(z)√

κ

0
dt√

1–t2
√

1–κ2t2 )] (k > 1),

(1.4)

where

u(z) =
√

κ – z√
κz – 1

(∀z ∈U),

and κ ∈ (0, 1) is chosen so that

k = cosh
(
πK ′(κ)/

(
4K(κ)

))
,

where K(κ) denotes the first-kind Legendre complete elliptic integral, and its derivative is
given by

K ′(κ) = K
(√

1 – κ2
)

and called the complementary integral of K(t). If we set the function

pk(z) = 1 + δkz + · · · ,
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subsequently, by [9] it is obvious that from (1.4) we have

δk =

⎧
⎪⎪⎨

⎪⎪⎩

8(arccos k)2

π (1–k2) (0 ≤ k < 1),
8

π2 (k = 1),
π2

4k2(1+t)
√

tR2(t) (k > 1).

(1.5)

Subjected to the above-mentioned conic domain, we define some elementary classes.

Definition 3 Let f be a function from the functional class A. Then f ∈ k-UCV if

�
{

(zf ′(z))′

f ′(z)

}
> k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ (∀z ∈U and k ≥ 0).

Definition 4 A normalized analytic function f belongs to the class k-S∗T if

�
{

zf ′(z)
f (z)

}
> k

∣∣∣∣
zf ′(z)
f (z)

– 1
∣∣∣∣ (∀z ∈U and k ≥ 0).

Definition 5 Let f be a function from the functional class A. Then f ∈ k-UQ if there
exists a function g ∈ k-UCV such that

�
{

(zf ′(z))′

g ′(z)

}
> k

∣∣∣∣
zf ′′(z)
g ′(z)

∣∣∣∣ (∀z ∈U and k ≥ 0).

Definition 6 A normalize analytic function f belongs to the class k-UK if there exists a
function g ∈ k-S∗T such that

�
{

zf ′(z)
g(z)

}
> k

∣∣∣∣
zf ′(z)
g(z)

– 1
∣∣∣∣ (∀z ∈U and k ≥ 0).

Now we recall some firm footing concept details and definitions of the q-difference cal-
culus, which play a vital role in our presentation. Unless otherwise notified, we presume
that 0 < q < 1 and p ∈ N = {1, 2, 3, . . .}. For a nonnegative number λ, the q-number [λ]q is
defined by

[λ]q =
j–1∑

j=0

qj = 1 + q + q2 + · · · + qj–1, [0]q = 0.

In general, for λ ∈C, we have [λ]q = 1–qλ

1–q . The q-factorials [j]q! are defined by [0]q! = 0 and
[j]q! =

∏j
k=1[k]q. It is straightforward to observe that limq→1–[λ]q = λ and limq→1–[j]q! = j!.

Definition 7 (See [7] and [8]) For a function f from class A, the q-derivative (or q-
difference) operator Dq in a subset of complex numbers C is defined by

(Dqf )(z) =

⎧
⎨

⎩

f (z)–f (qz)
(1–q)z (z �= 0),

f ′(0) (z = 0),
(1.6)

provided that f ′(0) exists.
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We observe from Definition 7 that

lim
q→1–

(Dqf )(z) = lim
q→1–

f (z) – f (qz)
(1 – q)z

= f ′(z)

for a differentiable function f in a subset of C. Further, by (1.1) and (1.6) we obtain

(
D(1)

q f
)
(z) = [p]qzp–1 +

∞∑

n=1

[n + p]qan+pzn+p–1, (1.7)

(
D(2)

q f
)
(z) = [p]q[p – 1]qzp–2 +

∞∑

n=1

[n + p]q[n + p – 1]qan+pzn+p–2, (1.8)

· · ·
· · ·
· · ·

(
D(p)

q f
)
(z) = [p]q! +

∞∑

n=1

[n + p]q!
[n]q!

an+pzn, (1.9)

where (D(p)
q f )(z) is the pth q-derivative of f (z).

Recently, the studies of q-calculus have inspired an intense interest of researchers be-
cause of its advantages in many areas of mathematics and physics. The significance of the
operator Dq is quite obvious by its applications in the study of several subclasses of analytic
functions. Initially, in 1990, Ismail et al. [6] gave the idea of q-extension of the class of star-
like functions; nevertheless, a foothold usage of the q-calculus in the context of geometric
function theory was effectively invoked by Srivastava [26]. After that, wonderful studies
have been done by numerous mathematicians offering a momentous part in the advance-
ment of geometric function theory. In particular, the study the q-Mittag-Leffler functions
for close-to-convex functions was done by Srivastava and Bansal [30] (see also [21]). In
[32], they also considered the functional class of q-starlike functions related to conic re-
gion σk , where the estimate of the third Hankel determinant has been settled in [17] (see
also [28]). Recently, Srivastava et al. (see, e.g., [15, 31, 34, 35] published a set of papers, in
which they concentrated on the class of q-starlike functions related to the Janowski func-
tions from different aspects. For some more recent investigations on q-calculus, we refer
to [13, 16, 27, 29, 33]. In this paper, we mainly generalize the work presented in Srivastava
et al. [32].

Definition 8 (See [6]) A function f ∈A belongs to the functional class S∗
q if

f (0) = f ′(0) – 1 = 0 (1.10)

and
∣∣∣∣

z
f (z)

(Dqf )z –
1

1 – q

∣∣∣∣ ≤ 1
1 – q

. (1.11)

In view of the last inequality, it is obvious that, in the limiting case q → 1–,
∣∣∣∣w –

1
1 – q

∣∣∣∣ ≤ 1
1 – q

,
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the above closed disk is merely the right-half plane, and the class S∗
q of q-starlike functions

turns into the prominent class S∗. Analogously, by the principle of subordination we may
express relations (1.10) and (1.11) as follows (see [36]):

z
f (z)

(Dqf )(z) ≺ p̂(z)
(

p̂(z) =
1 + z

1 – qz

)
.

The notation S∗
q was first used by Sahoo et al. [25].

Remark 1 In defining the class Cq of q-convex functions, the most important Alexander
theorem [3] for functions f ∈A was used by Baricz and Swaminathan [2] as

f (z) ∈ Cq ⇐⇒ z(Dqf )(z) ∈ S∗
q .

The generalization of P(pk) to k-Pq presented in Definition 9 is due to Srivastava et al.
[32]. He used the conic domain and the earlier discussed q-calculus as follows.

Definition 9 A function ψ ∈P belongs to the class k-Pq if the following relation holds:

ψ(z) ≺ 2pk(z)
(1 + q) + (1 – q)pk(z)

with the function pk(z) given in equation (1.4).

It is interesting that in geometric characteristics the function ψ ∈ k-Pq takes all values
from the domain Ωk,q, k ≥ 0, analytically given by

Ωk,q =
{

w : �
(

(1 + q)w
(q – 1)w + 2

)
> k

∣∣∣∣
(1 + q)w

(q – 1)w + 2
– 1

∣∣∣∣

}
,

which represent q-analogues of generalized conic regions.
Note the following easily observable facts about the class k-Pq.

Remark 2 Firstly, we see that

k-Pq ⊆P
[

2k
2k + 1 + q

]
,

where P[ 2k
2k+1+q ] is the famous class of functions with real parts greater than 2k

2k+1+q . Sec-
ondly, we have

lim
q−→1–

k-Pq = P(pk),

where P(pk) is the familiar class given by Wisniowska and Kanas [10]. Thirdly, by taking
the limit we obtain

lim
q−→1–

0-Pq = P ,

where P is the class of functions given by (1.2).
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Using the q-differential operator, various new classes have been defined. Hence it is nat-
ural to give the following definition.

Definition 10 A function f ∈A is said to belong to the class k-S∗
q (p) if

�
( (1 + q) z(D(p)

q f )(z)

(D(p–1)
q f )(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

+ 2

)
> k

∣∣∣∣
(1 + q) z(D(p)

q f )(z)

(D(p–1)
q f )(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

+ 2
– 1

∣∣∣∣

or, equivalently,

z(D(p)
q f )(z)

(D(p–1)
q f )(z)

∈ k-Pq.

Remark 3 First of all, it is straightforward to see that

0-S∗
q (1) = S∗

q ,

where the functional class S∗
q was considered and analyzed by Ismail et al. [6]. Secondly,

we easily observe that

lim
q−→1–

k-S∗
q (1) = k-S∗ = k-S∗T ,

where the class k-S∗T was presented and studied by Kanas and Wiśniowska [11]. Thirdly,

k-S∗
q (1) = k-S∗

q ,

where the function class k-S∗
q was initially considered and studied by Srivastava et al. [32].

Finally,

lim
q−→1–

0-S∗
q (1) = S∗,

where S∗ is the essential class of starlike functions.

Definition 11 Just as in Remark 1, by the Alexander theorem [3] the class k-Cq can be
defined by the following relation:

f (z) ∈ k-Cq(p) ⇐⇒ z
p!

(
D(p)

q f
)
(z) ∈ k-S∗

q (p).

Definition 12 Any function f ∈A(p) is said to belong to the class k-Kq(p) if

�
( (1 + q) z(D(p)

q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2

)
> k

∣∣∣∣
(1 + q) z(D(p)

q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

∣∣∣∣
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or, equivalently,

z(D(p)
q f )(z)

(D(p–1)
q g)(z)

∈ k-Pq

for some g ∈ k-S∗
q (p).

Definition 13 In similar manner as in Remark 1, by using the idea of Alexander’s relation
[3] we define the class k-C∗

q (p) by the following relation:

f (z) ∈ k-C∗
q (p) ⇐⇒ z

p!
(
D(p)

q f
)
(z) ∈ k-Kq(p).

Remark 4 First of all, we can see that

0-Kq(1) = Kq,

where Kq(p) is the function class defined and examined by Raghavendar et al. [20]. Sec-
ondly, in the limit case, we have

lim
q−→1–

k-Kq(1) = k-K = k-UK and lim
q−→1–

k-C∗
q (1) = k-C∗ = k-UQ,

where k-UK(p) and k-UQ(p) are the function classes introduced and studied by Acu [1].
Thirdly, we have

lim
q−→1–

0-Kq(1) = K and lim
q−→1–

0-C∗
q (1) = C∗,

where C∗ and K are the function classes of quasi-convex and close-to-convex functions;
for details, see [12, 19].

2 A set of lemmas
Each of the lemmas given further will be helpful in demonstrating our main results.

Lemma 1 ([22]) Let ψ be a function of the form

ψ(z) = 1 +
∞∑

n=1

ψnzn

subordinate to a function H of the form

H(z) = 1 +
∞∑

n=1

Cnzn.

In particular, when H is univalent in the unit disk U and H(U) is convex, then

|ψn| ≤ |C1| (n ∈N).
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Lemma 2 Suppose that the sequence {ak}∞k=0 is defined by

ap = 1

and

an+p =
δk(q + 1)[n + 1]q!

2[n + p]q!([n + 1]q – 1)

n–1∑

l=1

[p + l]q!
[l + 1]q!

ap+l. (2.1)

Then

an+p–1 =
n∏

j=2

[j]q{2([j]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

.

Proof By (2.1) we easily get

[n + p]q!
[n + 1]q!

(
[n + 1]q – 1

)
an+p =

n∑

l=1

[n + p – l]q!
[n + 1 – l]q!

an+p–lcl (2.2)

and

[n + p – 1]q!
[n + 1]q!

(
[n + 1]q – 1

)
an+p–1 =

n∑

l=1

[n + p – 1 – l]q!
[n + 1 – l]q!

an+p–1–lcl. (2.3)

Combining (2.2) and (2.3), we obtain

an+p

an+p–1
=

[n + 1]q{2([n]q – 1) + δk(1 + q)}
2{{[n + 1]q – 1}[n + p]q

.

Similarly, we deduce the following result:

an+p–1 =
an+p–1

an+p–2
· an+p–2

an+p–3
· . . . · ap+2

ap+1
· ap+1

ap
· ap.

This completes the proof of Lemma 2. �

3 Main results
In this section, we prove our main results. We assume that

k ≥ 0 and q ∈ (0, 1).

Theorem 1 Let f be a p-valently analytic function of the form (1.1). Then f belongs to the
class k-S∗

q if it satisfies the condition

∞∑

n=1

[n + p]q!
[n + 1]q!

Λ3|an+p| < (1 + q), (3.1)

where

Λ3 = 2(k + 1)q
(
[n + 1]q – 1

)
+

∣∣(q – 1)[n + 1]q + 2
∣∣. (3.2)
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Proof If (3.1) holds, then it suffices to establish the inequality

k
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

D(p–1)
q f (z)

(q – 1) z(D(p)
q f )(z)

D(p–1)
q f (z)

+ 2
– 1

∣∣∣∣ – �
[ (1 + q) z(D(p)

q f )(z)

D(p–1)
q f (z)

(q – 1) z(D(p)
q f )(z)

D(p–1)
q f (z)

+ 2
– 1

]
< 1.

Since

k
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

+ 2
– 1

∣∣∣∣ – �
[ (1 + q) z(D(p)

q f )(z)

(D(p–1)
q f )(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

+ 2
– 1

]

≤ (k + 1)
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q f )(z)

+ 2
– 1

∣∣∣∣

= 2(k + 1)
∣∣∣∣

z(D(p)
q f )(z) – (D(p–1)

q f )(z)
(q – 1)z(D(p)

q f )(z) + 2(D(p–1)
q f )(z)

∣∣∣∣

= 2(k + 1)
∣∣∣∣

∑∞
n=1

[n+p]q !
[n+1]q ! ([n + 1]q – 1)an+pzn+1

(q + 1)[p]q! +
∑∞

n=1
[n+p]q !
[n+1]q ! {(q – 1)[n + 1]q + 2}an+pzn+1

∣∣∣∣

≤ 2

∑∞
n=1

[n+p]q !
[n+1]q ! ([n + 1]q – 1)|an+p|

(q + 1) +
∑∞

n=2
[n+p]q !
[n+1]q ! |(q – 1)[n + 1]q + 2||an+p|

, (3.3)

the upper bound of the relation given by (3.3) is unity if

∞∑

n=1

[n + p]q!
[n + 1]q!

Λ3 · |an+p| < (1 + q),

where Λ3 is given by (3.2). Consequently, proof is completed. �

If in Theorem 3, we put p = 1 and q −→ 1–, then we get the following result.

Corollary 1 (See [11]) Any function f ∈A of the form (1.1) belongs to the class k-S∗T if it
satisfies the inequality

∞∑

n=1

{
(k + 1)n + 1

}|an| < 1.

Theorem 2 A function f ∈A(p) of the form (1.1) belongs to the function class k-Cq(p) if

∞∑

n=2

[n + p]q!
[n]q!

Λ3|an+p| < (1 + q),

where Λ3 is defined in (3.2).
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Proof We omit the details of the proof, since it easily follows by applying Theorem 1 in
conjunction with Definition 11. �

Theorem 3 A function f ∈A(p) having series expansion (1.1) belongs to the class k-K∗
q(p)

if

∞∑

n=2

{
2(k + 1)Λ1 + Λ2

}
< (1 + q), (3.4)

where

Λ1 =
∣∣bn+p – [n + 1]qan+p

∣∣ (3.5)

and

Λ2 =
∣∣(1 – q)[n + 1]qan+p – 2bn+p

∣∣. (3.6)

Proof Assuming that (3.4) holds, it suffices to check that

k
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

∣∣∣∣ – �
[ (1 + q) z(D(p)

q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

]
< 1.

We have

k
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

∣∣∣∣ – �
[ (1 + q) z(D(p)

q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

]

≤ (k + 1)
∣∣∣∣

(1 + q) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

(q – 1) z(D(p)
q f )(z)

(D(p–1)
q g)(z)

+ 2
– 1

∣∣∣∣

= 2(k + 1)
∣∣∣∣

z(D(p)
q f )(z) – 2(D(p–1)

q g)(z)
(q – 1)z(D(p)

q f )(z) + 2(D(p–1)
q g)(z)

∣∣∣∣

= 2(k + 1)
∣∣∣∣

∑∞
n=1

[n+p]q !
[n+1]q ! {[n + 1]qan+p – bn+p}zn+1

(q + 1)[p]q!z +
∑∞

n=1
[n+p]q !
[n+1]q ! {(q – 1)[n + 1]qan+p + 2bn+p}zn+1

∣∣∣∣

≤
2(k + 1)

∑∞
n=1

[n+p]q !
[n+1]q ! |[n + 1]qan+p – bn+p|

(q + 1)[p]q! –
∑∞

n=2
[n+p]q !
[n+1]q ! |(1 – q)[n + 1]qan+p – 2bn+p|

. (3.7)

The last expression in (3.7) is bounded above by 1 if

∞∑

n=1

{
2(k + 1)Λ1 + Λ2

}
< (1 + q),

where Λ1 and Λ2 are given by (3.5) and (3.6), respectively, which completes the proof. �
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Theorem 4 A function f from the class A(p) having series expansion (1.1) belongs to the
class k-C∗

q (p) if

∞∑

n=1

[n + 1]q
{

2(k + 1)Λ1 + Λ2
}

< (1 + q),

where Λ1 and Λ2 are respectively presented in (3.5) and (3.6).

Proof The proof of Theorem 4 follows easily by using Theorem 3 and Definition 13. �

Theorem 5 Let f ∈ k-S∗
q (p) be of the form (1.1). Then

|an+p–1| ≤
n∏

j=2

[j]q{2([j – 1]q – 1) + (q + 1)δk}
2{[j]q – 1}[j + p – 1]q

(
n ∈N \ {1}). (3.8)

Proof For f ∈ k-S∗
q (p), by definition we obtain

z(D(p)
q f )(z)

(D(p–1)
q f )(z)

= ψ(z), (3.9)

where

ψ(z) ≺ 2pk(z)
(1 + q) + (1 – q)pk(z)

. (3.10)

If

pk(z) = 1 + δkz + · · · ,

then after some appropriate computations, condition (3.10) can be written as

ψ(z) ≺ 1 +
(1 + q)

2
δkz + · · · , (3.11)

and if

ψ(z) = 1 +
∞∑

n=1

ψnzn, (3.12)

then by application of Lemma 1 in conjunction with (3.11) and (3.12) we have

|ψn| ≤ (1 + q)
2

|δk| (n ∈N). (3.13)

Now from (3.9) we set

z
(
D(p)

q f
)
(z) =

(
D(p–1)

q f
)
(z)ψ(z),
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which implies that

[p]q!z +
∞∑

n=1

[n + p]q!
[n + 1]q!

an+pzn+1 =

(
[p]q!z +

∞∑

n=2

[n + p]q!
[n + 1]q!

an+pzn+1

)

·
(

1 +
∞∑

n=1

ψnzn

)
.

Now the comparison of the corresponding coefficients of zn gives

[n + p]q!
[n + 1]q!

(
[n + 1]q – 1

)
an+p =

n∑

l=1

[n + p – l]q!
[n + 1 – l]q!

an+p–lcl, ap = 1.

Equivalently,

|an+p| ≤ [n + 1]q!
[n + p]q!([n + 1]q – 1)

n∑

l=1

[n + p – l]q!
[n + 1 – l]q!

|an+p–l||cl|, ap = 1.

Moreover, by (3.13) we have

|an+p| ≤ δk(q + 1)[n + 1]q!
2[n + p]q!([n + 1]q – 1)

n–1∑

l=1

[p + l]q!
[l + 1]q!

|ap+l|, ap = 1. (3.14)

Now, using Lemma 2, we have

|an+p–1| ≤
n∏

j=2

[j]q{2([j]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

. (3.15)
�

Specifically, for instance, setting p = 1 and letting q −→ 1–, we obtain the estimate on
the nth coefficient of the class k-S∗T , settled by Wisniowska and Kanas as follows.

Corollary 2 (See [11]) For an analytic function f ∈ k-S∗T , we have

|an| ≤
n–2∏

j=0

j(j – 2) + δk

(j – 1)(j)
(
n ∈ N \ {1}).

Theorem 6 Let f ∈ k-Cq(p) be of the form (1.1). Then

|an+p–1| ≤ 1
[n + p]q

n∏

j=2

[j]q{2([j – 1]q – 1) + (q + 1)δk}
2{[j]q – 1}[j + p – 1]q

(
n ∈N \ {1}).

Proof The proof of Theorem 6 follows easily by using Definition 11 and Theorem 5. �
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Theorem 7 Let f ∈ k-K∗
q be of the form (1.1). Then

|an+p–1| ≤ [n]q!
[n + p]q!

(n–2∏

j=0

[j]q{2([j – 1]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

)

+
(q + 1)|δk|

2[n]q

n–1∑

j=1

n–2∏

j=0

|δk(q + 1) + 2q[j]q|
2q[j + 1]q

(
n ∈N \ {1}). (3.16)

Proof By definition, for a function f belonging to k-Kq(p), we have that

z(D(p)
q f )(z)

(D(p–1)
q g)(z)

= ψ(z), (3.17)

where

g(z) = zp +
∞∑

n=1

bn+pzn+p,

and that

ψ(z) ≺ 2pk(z)
(1 + q) + (1 – q)pk(z)

. (3.18)

If

pk(z) = 1 + δkz + · · · ,

then after some convenient computations, condition (3.18) can be written as

ψ(z) ≺ 1 +
(1 + q)

2
δkz + · · · , (3.19)

and if

ψ(z) = 1 +
∞∑

n=1

ψnzn, (3.20)

then applying Lemma 1 in conjunction with (3.19) and (3.20), we get

|ψn| ≤ (1 + q)
2

|δk| (n ∈N). (3.21)

Next, equation (3.17) may be written as

z
(
D(p)

q f
)
(z) =

(
D(p–1)

q g
)
(z)ψ(z),
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and using the series form, we get

[p]q!z +
∞∑

n=1

[n + p]q!
[n + 1]q!

an+pzn+1 =

(
[p]q!z +

∞∑

n=2

[n + p]q!
[n + 1]q!

bn+pzn+1

)

·
(

1 +
∞∑

n=1

ψnzn

)
.

Next, the comparison of the corresponding coefficients of zn yields

[n + p]q!
[n + 1]q!

(
[n + 1]qan+p – bn+p

)
=

n∑

l=1

[n + p – l]q!
[n + 1 – l]q!

an+p–lcl (ap = 1).

This implies that

[n + p]q!
[n + 1]q!

[n + 1]q|an+p| ≤ |bn+p| +
n–1∑

j=1

|an+p–l||cl| (a1 = 1).

Moreover, using Theorem 5 and (3.21), we get

|an+p| ≤ [n]q!
[n + p]q!

(n–2∏

j=0

[j]q{2([j – 1]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

)

+
[n + 1]q!(q + 1)|δk|
2[n + 1]q[n + p]q!

n–1∑

j=1

n–2∏

j=0

[j]q{2([j – 1]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

.

Thus we have proved the statement of Theorem 7. �

Putting p = 1 and letting q −→ 1– in Theorem 7, we obtain the estimates of the nth
coefficients of the functions from the class k-UK, given by Noor et al.

Corollary 3 (See [18]) Let f ∈ k-UK be of the form (1.1). Then

|an| ≤ (|δk|)n–1

n!
+

|δk|
n

n–1∑

j=1

(|δk|)j–1

(j – 1)!
(
n ∈N \ {1}).

Further, setting

k = 0 = p – 1

in Theorem 7, then δk = 2, and letting q −→ 1–, we get the known result by Kaplan et al.

Corollary 4 ([12]) Let f ∈K be an analytic function. Then

|an| ≤ n
(
n ∈N \ {1}).
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Theorem 8 Let f ∈ k-C∗
q (p) with series expansion (1.1). Then

|an| ≤
[n]2

q!
[n + p]2

q!

(n–2∏

j=0

[j]q{2([j – 1]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

)
+

(q + 1)|δk|
2[n + p]q!

·
n–1∑

j=1

n–2∏

j=0

[j]q{2([j – 1]q – 1) + δk(q + 1)}
2{[j]q – 1}[j + p – 1]q

(
n ∈N \ {1}). (3.22)

Proof Using Theorem 7 and Definition 13 immediately yields the proof. �
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