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Abstract
This paper gives some novel generalizations by considering the generalized
conformable fractional integrals operator for reverse Minkowski type and reverse
Hölder type inequalities. Furthermore, novel consequences connected with this
inequality, together with statements and confirmation of various variants for the
advocated generalized conformable fractional integral operator, are elaborated.
Moreover, our derived results are provided to show comparisons of convergence
between old and modified operators towards a function under different parameters
and conditions. The numerical approximations of our consequence have several
utilities in applied sciences and fractional integro-differential equations.
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1 Introduction
Fractional calculus, generally referred to as the calculus of non-integer order, was a trade-
mark outgrowth of traditional definitions of calculus integral and derivative. The concept
of fractional calculus has provoked a host of researchers and was comprehensively stud-
ied in the literature for the last few decades. A continuous effort has been made on an
enormous scale and everybody has been stimulated by its different aspects. In the present
century, the exceptional idea has been described by several mathematicians with a slightly
distinct technique in different time scales; see, for instance, the Liouville, Riemann, Grun-
wald, Letnikov, Hadamard, Weyl, Riesz, Marchaud, Kober and Caputo fractional integrals
(see [1–11]). Most of these researchers first of all added fractional integrals, on the con-
cept of which the associated fractional derivative and other associated results had been
produced. Recently, Khalil et al. [2] and Abdeljawad [1] introduced fractional operators
known as fractional conformable derivatives and integrals. Jarad et al. [12] established
the fractional conformable integral operators. Meanwhile in [13], Anderson and Ulness
introduced the concept of local derivatives for upgrading the concept of the fractional
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conformable derivative. The exponential and Mittag-Leffler functions are used as kernels
by several researchers for developing new fractional techniques. In [14], Khan et al. estab-
lished a new class of generalized conformable fractional integral operators. Such general-
izations encourage future studies requiring extra thoughts to merge the fractional opera-
tors and achieve the variants regarding such fractional operators.

Conformable derivatives are nonlocal fractional derivatives. They can be called frac-
tional since we can take derivatives up to arbitrary order. However, since in the commu-
nity of fractional calculus, nonlocal fractional derivatives only are to be called fractional,
we prefer to replace conformable fractional by conformable (as a type of local fractional).
Conformable derivatives and other types of local fractional derivatives or modified con-
formable derivatives in [13] can gain in importance by the ability to use them to generate
more generalized nonlocal fractional derivatives with singular kernels (see [15–22]).

Integral inequalities have potential application in several areas of science: technology,
mathematics, chemistry, plasma physics, among others; especially we point out initial
value problems, the stability of linear transformation, integral differential equations, and
impulse equations [23–33]. Variants regarding fractional integral operators are of use in
significant strategies amongst researchers and accumulate fertile functional applications
in various areas of science; see [34–45]. On account of their potential results to be uti-
lized for the presence of nontrivial and positive solutions of a distinct kind of fractional
differential equations, our findings concerning fractional integrals are appreciable and es-
sential.

An enormous heft of present literature comprises generalizations of several variants
by fractional integral operators and their applications [46–52]. We state some of them,
that is, the variants of Minkowski, Hardy, Opial, Hermite–Hadamard, Grüss, Lyenger,
Wrtinger, Ostrowski, Čebyšev and Pólya–Szegö [53–59]. Such applications of fractional
integral operators compelled us to show the generalization of the reverse Minkowski in-
equality [43, 44, 53] involving generalized conformable fractional integrals operators.

The article is composed thus: in Sect. 2 we demonstrate the notations and primary def-
initions of our newly introduced operator generalized conformable fractional integrals.
Also, we present the results concerning the reverse Minkowski inequality. In Sect. 3, we
advocate essential consequences such as the reverse Minkowski inequality via the general-
ized conformable fractional integral operators. In Sect. 4, we show the associated variants
using this fractional integral.

2 Preliminaries
This section is dedicated to some recognized definitions and results associated with the
generalized conformable fractional integral operators and their generalization related to
the generalized conformable fractional integral operators. Set et al. in [60] proved the
Hermite–Hadamard, and reverse Minkowski inequalities for Riemann–Liouville frac-
tional integrals. Additionally, Hardy’s type and reverse Minkowski inequalities were
supplied by Bougoffa in [38]. The subsequent consequences concerning the reverse
Minkowski inequalities are of significance for the classical integrals.



Rashid et al. Journal of Inequalities and Applications        (2020) 2020:177 Page 3 of 15

Theorem 2.1 ([60]) For p ≥ 1 and let there be two positive functions f1 and f2 on [0,∞). If
0 < θ1 ≤ f1(η)

f2(η) ≤ θ2, y ∈ [r1, r2], then

(∫ r2

r1

f p
1 (y) dy

) 1
p

+
(∫ r2

r1

f p
2 (y) dy

) 1
p

≤ 1 + θ2(θ1 + 2)
(θ1 + 1)(θ2 + 1)

(∫ r2

r1

(f1 + f2)p(y) dy
) 1

p
.

Theorem 2.2 ([60]) For p ≥ 1 and let there be two positive functions f1 and f2 on [0,∞). If
0 < θ1 ≤ f1(η)

f2(η) ≤ θ2, y ∈ [r1, r2], then

(∫ r2

r1

f p
1 (y) dy

) 2
p

+
(∫ r2

r1

f p
2 (y) dy

) 2
p

≥
(

(1 + θ2)(θ1 + 1)
θ2

– 2
)(∫ r2

r1

f p
1 (y) dy

) 1
p
(∫ r2

r1

f p
2 (y) dy

) 1
p

.

In [44], Dahmani used the Riemann–Liouville fractional integral operators to prove the
subsequent reverse Minkowski inequalities.

Theorem 2.3 ([44]) Let ς > 0 and p ≥ 1, and let there be two positive functions f1 and f2 on
[0,∞) such that, for all y > 0, Kς

r+
1

f p
1 (y) < ∞, Kς

r+
1

f p
2 (y) < ∞. If 0 < θ1 ≤ f1(η)

f2(η) ≤ θ2, η ∈ [r1, y],
then the following inequality holds:

(
Kς

r+
1

f p
1 (y)

) 1
p +

(
Kς

r+
1

f p
2 (y)

) 1
p ≤ 1 + θ2(θ1 + 2)

(θ1 + 1)(θ2 + 1)
(
Kς

r+
1

(f1 + f2)p(y)
) 1

p .

Theorem 2.4 ([44]) Let ς > 0 and p ≥ 1, and let there be two positive functions f1 and f2 on
[0,∞) such that, for all y > 0, Kς

r+
1

f p
1 (y) < ∞, Kς

r+
1

f p
2 (y) < ∞. If 0 < θ1 ≤ f1(η)

f2(η) ≤ θ2, η ∈ [r1, y],
then the following inequality holds:

(
Kς

r+
1

f p
1 (y)

) 2
p +

(
Kς

r+
1

f p
2 (y)

) 2
p ≥

(
(1 + θ2)(θ1 + 1)

θ2
– 2

)(
Kς

r+
1

f p
1 (y)

) 1
p
(
Kς

r+
1

f p
2 (y)

) 1
p .

Recall the definition of the generalized conformable fractional integral which is mainly
due to [14].

Definition 2.5 ([14]) Let f be a conformable integrable function on the interval [r1, r2] ⊆
[0,∞). The right-sided and left-sided generalized conformable fractional integrals τ

�K
ς

r+
1

and τ
�K

ς
r–
2

of order ς > 0 are defined by

τ
�K

ς

r+
1

f (y) =
1

Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)ς–1 f (η)
η1–τ–�

dη, y > r1, (2.1)

and

τ
�K

ς
r–
2

f (y) =
1

Γ (ς )

∫ r2

y

(
ητ+� – yτ+�

τ + �

)ς–1 f (η)
η1–τ–�

dη, y < r2, (2.2)

where ς ∈ C, R(ς ) > 0, � ∈ (0, 1], τ ∈ R with τ + � �= 0, and Γ is the well-known gamma
function.
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Remark 2.6 In Eqs. (2.1) and (2.2):
(i) If τ = 0, then we attain the subsequent Riemann–Liouville type fractional

conformable integral operators; see [12]:

�Kς

r+
1

f (y) =
1

Γ (ς )

∫ y

r1

(
y� – η�

�

)ς–1 f (η)
η1–�

dη, y > r1, (2.3)

and

�Kς
r–
2

f (y) =
1

Γ (ς )

∫ r2

y

(
η� – y�

�

)ς–1 f (η)
η1–�

dη, y < r2, (2.4)

where ς ∈C, R(ς ) > 0, � ∈ (0, 1].
(ii) If τ = 0 and � = 1, then we attain the subsequent Riemann–Liouville type fractional

integral operators; see [10, 15]:

Kς

r+
1

f (y) =
1

Γ (ς )

∫ y

r1

(y – η)ς–1f (η) dη, y > r1, (2.5)

and

Kς
r–
2

f (y) =
1

Γ (ς )

∫ r2

y
(η – y)ς–1f (η) dη, y < r2, (2.6)

where ς ∈C, R(ς ) > 0.

3 Reverse Minkowski inequalities via generalized conformable fractional
integral operators

This section comprises our principal involvement of establishing the proof of the reverse
Minkowski inequalities via generalized conformable fractional integral operators defined
in (2.1) and (2.2) and an associated theorem insinuated as the reverse Minkowski inequal-
ities.

Theorem 3.1 For ς > 0, � ∈ (0, 1], τ ∈ R and � + τ �= 0 with p ≥ 1 and let there be two
positive functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞ and y

�Kς

r+
1

f p
2 (y) < ∞.

If 0 < θ1 ≤ f1(η)
f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all x ∈ [r1, y], then

(y
�K

ς

r+
1

f p
1 (y)

) 1
p +

(y
�K

ς

r+
1

f p
2 (y)

) 1
p ≤ 1 + θ2(θ1 + 2)

(θ1 + 1)(θ2 + 1)
(y
�K

ς

r+
1

(f1 + f2)p(y)
) 1

p . (3.1)

Proof By the suppositions mentioned in Theorem 3.1, f1(η)
f2(η) ≤ θ2, r1 ≤ η ≤ y, we have

(M + 1)pf p
1 (η) ≤ Mp(f1(η) + f2(η)

)p. (3.2)
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If we multiply both sides of (3.2) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

(M + 1)p

Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f p
1 (η)

ς1–τ–�
dη

≤ Mp

Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1(η) + f2(η))p

ς1–τ–�
dη. (3.3)

Similarly,

(y
�K

ς

r+
1

f p
1 (y)

) 1
p ≤ θ2

θ2 + 1
(y
�
Kς

r+
1

(f1 + f2)p(y)
) 1

p . (3.4)

In contrast, as mf2(η) ≤ f1(η), it follows that

(
1 +

1
θ1

)p

f p
2 (η) ≤

(
1
θ1

)p(
f1(η) + f2(η)

)p. (3.5)

Again, if we multiply both sides of (3.5) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the

subsequent inequality with respect to η from r1 to y, we obtain

(y
�K

ς

r+
1

f p
2 (y)

) 1
p ≤ 1

θ1 + 1
(y
�K

ς

r+
1

(f1 + f2)p(y)
) 1

p . (3.6)

Thus adding (3.4) and (3.6) yields the desired inequality. �

Inequality (3.1) is referred to as the reverse Minkowski inequality via generalized con-
formable fractional integrals.

Theorem 3.2 For ς > 0, � ∈ (0, 1], τ ∈R and � + τ �= 0 with p ≥ 1 let there be two positive
functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
2 (y) < ∞ and y

�Kς

r+
1

f p
1 (y) < ∞. If

0 < θ1 ≤ f1(η)
f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

(y
�K

ς

r+
1

f p
1 (y)

) 2
p +

(y
�K

ς

r+
1

f p
2 (y)

) 2
p ≤

(
(θ1 + 1)(θ2 + 1)

θ2
– 2

)(y
�
Kς

r+
1

f p
1 (y)

) 1
p
(y
�K

ς

r+
1

f p
1 (y)

) 1
p .(3.7)

Proof The product of inequalities (3.4) and (3.6) yields

(
(θ1 + 1)(θ2 + 1)

θ2
– 2

)(y
�
Kς

r+
1

f p
1 (y)

) 1
p
(y
�K

ς

r+
1

f p
2 (y)

) 1
p ≤ [(y

�K
ς

r+
1

(f1 + f2)p(y)
) 1

p
]2. (3.8)

Now, utilizing the Minkowski inequality to the right hand side of (3.8), one obtains

[(y
�K

ς

r+
1

(f1 + f2)p(y)
) 1

p
]2

≤ [y
�K

ς

r+
1

f p
1 (y))

1
p + y

�K
ς

r+
1

f p
2 (y))

1
p
]2

≤ (y
�K

ς

r+
1

f p
1 (y)

) 2
p +

(y
�K

ς

r+
1

f p
2 (y)

) 2
p + 2

[y
�K

ς

r+
1

f p
1 (y))

1
p
][y

�
Kς

r+
1

f p
2 (y))

1
p
]
. (3.9)

Thus, from inequalities (3.8) and (3.9), we obtain the inequality (3.7). �
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4 Certain associated inequalities via generalized conformable fractional
integral operators (GCFI)

This section is dedicated to deriving certain associated variants regarding GCFI operator.

Theorem 4.1 For ς > 0, � ∈ (0, 1], τ ∈ R, � + τ �= 0 with p, q ≥ 1 and 1
p + 1

q = 1, suppose
that there are two positive functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞

and y
�Kς

r+
1

f p
2 (y) < ∞. If 0 < θ1 ≤ f1(η)

f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

(y
�K

ς

r+
1

f p
1 (y)

) 1
p
(y
�K

ς

r+
1

f q
2 (y)

) 1
q ≤

(
θ2

θ1

) 1
pq (y

�K
ς

r+
1

f
1
p

1 (y)f
1
q

2 (y)
)
. (4.1)

Proof Under the given suppositions f1(η)
f2(η) ≤ θ2, r1 ≤ η ≤ y, therefore we have

f
1
q

2 (η) ≥ θ
–1
q

2 f
1
q

1 (η). (4.2)

Taking the product of both sides of (4.2) by f
1
p

1 (η), it follows that

f
1
p

1 (η)f
1
q

2 (η) ≥ θ
–1
q

2 f1(η). (4.3)

If we multiply both sides of (4.3) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

θ
–1
q

2
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f1(η) dη

ς1–τ–�

≤ 1
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f
1
p

1 (η)f
1
q

2 (η) dη

ς1–τ–�
. (4.4)

Consequently, we have

θ
– 1

pq
2

(y
�K

ς

r+
1

f p
1 (y)

) 1
p ≤ (y

�K
ς

r+
1

f
1
p

1 (y)f
1
q

2 (y)
) 1

p . (4.5)

In contrast, as θ1f2(η) ≤ f1(η), we have

θ
1
p

1 f
1
p

2 (η) ≤ f
1
p

1 (η). (4.6)

Again, if we multiply both sides of (4.6) by f
1
q

2 (η) and invoke the relation 1
p + 1

q = 1, it yields

θ
1
p

1 f2(η) ≤ f
1
p

1 (η)f
1
q

2 (η). (4.7)

If we multiply both sides of (4.7) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

θ
1

pq
1

(y
�K

ς

r+
1

f2(y)
) 1

q ≤ (y
�K

ς

r+
1

f
1
p

1 (y)f
1
q

2 (y)
) 1

q . (4.8)

Multiplying (4.5) and (4.8), the required inequality (4.1) can be concluded. �
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Theorem 4.2 For ς > 0, � ∈ (0, 1], τ ∈ R, � + τ �= 0 with p, q ≥ 1 and 1
p + 1

q = 1. Suppose
that there are two positive functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞

and y
�Kς

r+
1

f p
2 (y) < ∞. If 0 < θ1 ≤ f1(η)

f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

(y
�K

ς

r+
1

f1(y)f2(y)
) ≤ 2p–1θ

p
2

p(θ2 + 1)p

(y
�
Kς

r+
1

(
f p
1 + f p

2
)
(y)

)
+

2q–1

p(θ1 + 1)p

(y
�K

ς

r+
1

(
f q
1 + f q

2
)
(y)

)
. (4.9)

Proof By the given assumption f1(η)
f2(η) < θ2, we have

(θ2 + 1)pf p
1 (η) ≤ θ

p
2 (f1 + f2)p(η). (4.10)

If we multiply both sides of (4.10) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

(θ2 + 1)p

Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f p
1 (η) dη

ς1–τ–�

≤ θ
p
2

Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1 + f2)p(η) dη

ς1–τ–�
. (4.11)

It follows that

(y
�K

ς

r+
1

f p
1 (y)

) ≤ θ
p
2

(θ2 + 1)p

(y
�K

ς

r+
1

(f1 + f2)p(y)
)
. (4.12)

In contrast, using 0 < θ1 ≤ f1(η)
f2(η) , r1 < η < y, we have

(θ1 + 1)qf q
2 (η) ≤ (f1 + f2)q(η). (4.13)

Again, if we multiply both sides of (4.13) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate

the subsequent inequality with respect to η from r1 to y, we obtain

(y
�K

ς

r+
1

f q
2 (y)

) ≤ 1
(θ1 + 1)q

(y
�K

ς

r+
1

(f1 + f2)q(y)
)
. (4.14)

Now, taking into account Young’s inequality,

f1(η)f2(η) ≤ f p
1 (η)

p
+

f q
2 (η)

q
. (4.15)

Now, if we multiply both sides of (4.15) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the

subsequent inequality with respect to η from r1 to y, we obtain

(y
�K

ς

r+
1

(f1f2)(y)
) ≤ 1

p
(y
�K

ς

r+
1

f p
1 (y)

)
+

1
q
(y
�K

ς

r+
1

f q
2 (y)

)
. (4.16)
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With the aid of (4.12) and (4.14) with (4.16), one obtains

(y
�K

ς

r+
1

(f1f2)(y)
)

≤ 1
p
(y
�K

ς

r+
1

f p
1 (y)

)
+

1
q
(y
�K

ς

r+
1

f q
2 (y)

)

≤ θ
p
2

p(θ2 + 1)p

(y
�K

ς

r+
1

(f1 + f2)p(y)
)

+
1

q(θ1 + 1)q

(y
�K

ς

r+
1

(f1 + f2)q(y)
)
. (4.17)

Using the inequality (μ + ν)s ≤ 2s–1(μs + νs), s > 1, μ,ν > 0, one can obtain

(y
�K

ς

r+
1

(f1 + f2)p(y)
) ≤ 2p–1(y

�K
ς

r+
1

(
f p
1 + f p

2
)
(y)

)
(4.18)

and

(y
�K

ς

r+
1

(f1 + f2)q(y)
) ≤ 2q–1(y

�K
ς

r+
1

(
f q
1 + f q

2
)
(y)

)
. (4.19)

Hence, the proof of (4.9) can be concluded from (4.17), (4.18), and (4.19) collectively. �

Theorem 4.3 For ς > 0, � ∈ (0, 1], τ ∈R, � + τ �= 0 with p ≥ 1 and let there be two positive
functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞ and y

�Kς

r+
1

f p
2 (y) < ∞. If

0 < λ < θ1 ≤ f1(η)
f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

θ2 + 1
θ2 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)) ≤ (y
�K

ς

r+
1

(f1)p(y)
) 1

p +
(y
�K

ς

r+
1

(f2)p(y)
) 1

p

≤ θ1 + 1
θ1 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)) 1
p . (4.20)

Proof Under the given supposition 0 < λ < θ1 ≤ f p
1 (η)

f p
2 (η)

≤ θ2, we have

θ1λ ≤ θ2λ ⇒ θ1λ + θ1 ≤ θ1λ + θ2 ≤ θ2λ + θ2

⇒ (θ2 + 1)(θ1 – λ) ≤ (θ1 + 1)(θ2 – λ).

It follows that

θ2 + 1
θ2 – λ

≤ θ1 + 1
θ1 – λ

.

Also, we have

θ1 – λ ≤ f1(η) – λf2(η)
f2(η)

≤ θ2 – λ,

implying

(f1(η) – λf2(η))p

(θ2 – λ)p ≤ f p
2 (η) ≤ (f1(η) – λf2(η))p

(θ1 – λ)p . (4.21)
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Furthermore, we have

1
θ2

≤ f2(η)
f1(η)

≤ 1
θ1

⇒ θ1 – λ

λθ1
≤ f1(η) – λf2(η)

λf1(η)
≤ θ2 – λ

θ2λ
.

It follows that
(

θ2

θ2 – λ

)p(
f1(η) – λf2(η)

)p ≤ f p
1 (η) ≤

(
θ1

θ1 – λ

)p(
f1(η) – λf2(η)

)p. (4.22)

If we multiply both sides of (4.22) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

1
(θ2 – λ)pΓ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1(η) – λf2(η))p dη

ς1–τ–�

≤ 1
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f p
2 (η)) dη

ς1–τ–�

≤ 1
(θ1 – λ)pΓ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1(η) – λf2(η))p dη

ς1–τ–�
.

Accordingly, it can be written as

1
θ2 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)p) 1
p ≤ (y

�K
ς

r+
1

(f2)p(y)
) 1

p

≤ 1
θ1 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)p) 1
p . (4.23)

Adopting the same technique with (4.22), one obtains

θ2

θ2 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)p) 1
p ≤ (y

�K
ς

r+
1

f p
1 (y)

) 1
p

≤ θ1

θ1 – λ

(y
�K

ς

r+
1

(
f1(y) – λf2(y)

)p) 1
p . (4.24)

Hence, by adding inequalities (4.23) and (4.24), we attain the inequality (4.20). �

Theorem 4.4 For ς > 0, � ∈ (0, 1], τ ∈R, � +τ �= 0 with p ≥ 1 and let there are two positive
functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞ and y

�Kς

r+
1

f p
2 (y) < ∞. If

0 < � ≤ f1(η) ≤H and 0 < m ≤ f2(η) ≤M for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

(y
�Ky

r1 f p
1 (η)

) 1
p +

(y
�Ky

r1 f p
2 (η)

) 1
p ≤ H(� + M) + M(H + m)

(m + H)(� + M)
(y
�Ky

r1 (f1 + f2)p(η)
) 1

p . (4.25)

Proof Under the given suppositions, observe that

1
M ≤ 1

f2(η)
≤ 1

m
. (4.26)

Conducting the product between (4.26) and 0 ≤ � ≤ f1(η) ≤H, we have

�

M ≤ f1(η)
f2(η)

≤ H
m

. (4.27)
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From (4.27), we obtain

f p
2 (η) ≤

( M
� + M

)p(
f1(η) + f2(η)

)p (4.28)

and

f p
1 (η) ≤

( H
m + H

)p(
f1(η) + f2(η)

)p. (4.29)

If we multiply both sides of (4.28) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

1
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f p
2 (η) dη

ς1–τ–�

≤ Mp

(� + M)pΓ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1(y) + f2(y))p(η) dη

ς1–τ–�
. (4.30)

Accordingly,

(y
�Ky

r1 f p
2 (y)

) 1
p ≤ M

� + M
(y
�
Ky

r1 (f1 + f2)p(y)
) 1

p . (4.31)

Adopting the same technique as (4.29), one obtains

(y
�Ky

r1 f p
1 (y)

) 1
p ≤ H

m + H
(y
�
Ky

r1 (f1 + f2)p(y)
) 1

p . (4.32)

Hence, by adding (4.31) and (4.32), we obtain the inequality (4.25). �

Theorem 4.5 For ς > 0, � ∈ (0, 1], τ ∈ R, � + τ �= 0 with p ≥ 1 let there be two positive
functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞ and y

�Kς

r+
1

f p
1 (y) < ∞. If

0 < � ≤ f1(η) ≤H and 0 < m ≤ f2(η) ≤M for θ1, θ2 ∈R+ for all η ∈ [r1, y], then

1
θ2

(y
�Ky

r1 f1(y)f2(y)
) ≤ 1

(θ1 + 1)(θ2 + 1)
(y
�Ky

r1

(
f1(y) + f2(y)

))2

≤ 1
θ1

(y
�Ky

r1 f1(y)f2(y)
)
. (4.33)

Proof Under the given suppositions, 0 < θ1 ≤ f1(η)
f2(η) ≤ θ2, it follows that

f2(η)(θ1 + 1) ≤ f1(η) + f2(η) ≤ f2(η)(θ2 + 1). (4.34)

Additionally, we have 1
θ2

≤ f2(η)
f1(η) ≤ 1

θ1
, which yields

(
θ2 + 1

θ2

)
f1(η) ≤ f1(η) + f2(η) ≤

(
θ1 + 1

θ1

)
f1(η). (4.35)

The product of (4.34) and (4.35) gives

f1(η)f2(η)
θ2

≤ (f1(η) + f2(η))2

(θ1 + 1)(θ2 + 1)
≤ f1(η)f2(η)

θ1
. (4.36)
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Now, if we multiply both sides of (4.36) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the

subsequent inequality with respect to η from r1 to y, we obtain

1
θ2Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f1(η)f2(η) dη

ς1–τ–�

≤ 1
Γ (ς )((θ1 + 1)(θ2 + 1))

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 (f1(η) + f2(η))2 dη

ς1–τ–�

≤ 1
θ1Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f1(η)f2(η) dη

ς1–τ–�
.

One observes that

1
θ2

(y
�Ky

r1 f1(y)f2(y)
) ≤ 1

(θ1 + 1)(θ2 + 1)
(y
�Ky

r1

(
f1(y) + f2(y)

))2 ≤ 1
θ1

(y
�Ky

r1 f1(y)f2(y)
)
,

which is the desired result. �

Theorem 4.6 For ς > 0, � ∈ (0, 1], τ ∈R, � +τ �= 0 with p ≥ 1 and let there are two positive
functions f1, f2 on [0,∞) such that, for all y > r1, τ

�K
ς

r+
1

f p
1 (y) < ∞ and y

�Kς

r+
1

f p
2 (y) < ∞. If

0 < � ≤ f1(η) ≤H and 0 < θ1 ≤ f2(η) ≤ θ2 for θ1, θ2 ∈R+ and for all η ∈ [r1, y], then

(y
�K

ς

r+
1

f p
1 (y)

) 1
p +

(y
�K

ς

r+
1

f p
2 (y)

) 1
p ≤ 2

(y
�K

ς

r+
1
Up(f1(y), f2(y)

)) 1
p , (4.37)

where U (f1(η), f2(η)) = max{θ2[(1 + θ2
θ1

)f1(y) – θ2f2(y)], (θ1+θ2)f2(y)–f1(y)
θ1

}.

Proof Under the given suppositions 0 < θ1 ≤ f1(η)
f2(η) ≤ θ2, r1 ≤ η ≤ y, we have

0 < θ1 ≤ θ2 + θ1 –
f1(η)
f2(η)

(4.38)

and

θ2 + θ1 –
f1(η)
f2(η)

≤ θ2. (4.39)

From (4.38) and (4.39), one obtains

f2(η) <
(θ2 + θ1)f2(η) – f1(η)

θ1
≤ U

(
f1(η), f2(η)

)
, (4.40)

where U (f1(η), f2(η)) = max{θ2[(1 + θ2
θ1

)f1(y) – θ2f2(y)], (θ1+θ2)f2(y)–f1(y)
θ1

}. Also, from the given
supposition 0 < 1

θ2
≤ f2(η)

f1(η) ≤ 1
θ1

, one has

1
θ2

≤ 1
θ2

+
1
θ1

–
f2(η)
f1(η)

(4.41)

and

1
θ2

+
1
θ1

–
f2(η)
f1(η)

≤ 1
θ1

. (4.42)
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From (4.41) and (4.42), we get

1
θ2

≤ ( 1
θ1

+ 1
θ2

)f1(η) – f2(η)
f1(η)

≤ 1
θ1

, (4.43)

implying

f1(η) ≤ θ2

(
1
θ1

+
1
θ2

)
f1(η) – θ2f2(η)

=
θ2(θ1 + θ2)f1(η) – θ2

2 θ1f2(η)
θ1θ2

=
(

θ2

θ1
+ 1

)
f1(η) – θ2f2(η)

≤ θ2

[(
θ2

θ1
+ 1

)
f1(η) – θ2f2(η)

]

≤ U
(
f1(η), f2(η)

)
. (4.44)

From (4.40) and (4.44), we have

f p
1 (η) ≤ Up(f1(η), f2(η)

)
(4.45)

and

f p
2 (η) ≤ Up(f1(η), f2(η)

)
. (4.46)

If we multiply both sides of (4.45) with 1
Γ (ς )ς1–τ–� ( yτ+�–ητ+�

τ+�
)τ–1 and then integrate the sub-

sequent inequality with respect to η from r1 to y, we obtain

1
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 f p
1 (η) dη

ς1–τ–�

≤ 1
Γ (ς )

∫ y

r1

(
yτ+� – ητ+�

τ + �

)τ–1 Up(f1(η), f2(η)) dη

ς1–τ–�
. (4.47)

Accordingly,

(y
�K

ς

r+
1

f p
1 (y)

) 1
p ≤ (y

�K
ς

r+
1
Up(f1(y), f2(y)

)) 1
p . (4.48)

Adopting the same technique for (4.46), we have

(y
�K

ς

r+
1

f p
2 (y)

) 1
p ≤ (y

�K
ς

r+
1
Up(f1(y), f2(y)

)) 1
p . (4.49)

Hence, by adding (4.48) and (4.49), we obtain the inequality (4.37). �

5 Concluding remarks
This paper begins with a compact evaluation of fractional integrals in the sense of
Riemann–Liouville and Riemann–Liouville type conformable fractional integral opera-
tors in addition to a new fractional integral operator according to Khan et al. [14]. We
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generalize the reverse Minkowski inequalities via generalized conformable fractional inte-
grals; specifically, the inequality concerning fractional integrals in the Riemann–Liouville
sense is given [44]. The associated significant variants regarding generalized conformable
fractional integrals are demonstrated. Numerous variants can be established for the appli-
cation of several defined fractional integral operators. One of the well-known inequalities
is the Chebyshev inequality lately derived in [38]. Finally, this concept can be extended in
the form of a K analogue for deriving similar types of results and these are also helpful for
establishing the refinements of several existing results in the literature.
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