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Abstract
A classical result in randommatrix theory reveals that the limiting spectral distribution
of a Wigner matrix whose entries have a common variance and satisfy other regular
assumptions almost surely converges to the semicircular law. In the paper, we will
relax the assumption of uniform covariance of each entry, when the average of the
normalized sums of the variances in each row of the data matrix converges to a
constant, we prove that the same limiting spectral distribution holds. A similar result
on a sample covariance matrix is also established. The proofs mainly depend on the
Stein equation and the generalized Stein equation of independent random variables.
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1 Introduction
Suppose An is an n × n Hermitian matrix and λ1,λ2, . . . ,λn denote the real eigenvalues of
An. The empirical spectral distribution function (ESD) of An can be defined as

FAn (x) =
1
n

n∑

i=1

I{λi≤x},

where IA represents the indicator function on the set A. The limit distribution of FAn (x)
as n → ∞, if it exists, will be called the limiting spectral distribution (LSD) of An. Since
most of the global spectral limiting properties of An can be determined by its LSD, the LSD
of large dimensional random matrices has attracted considerable interest among mathe-
maticians, probabilists, and statisticians, one can refer to Wigner [15, 16], Grenander and
Silverstein [7], Jonsson [8], Yin and Krishnaiah [18], Bai and Yin [4] and so on.

The Wigner matrix is one of the most basic and popular objects in the random matrix
theory. A Wigner matrix is a symmetric (or Hermitian in the complex case) random matrix
whose entries on or above the diagonal are independent random variables. When a Wigner
matrix Xn whose entries are i.i.d. real (or complex) random variables with mean zero and
variance 1, Wigner [16] proved that the expected ESD of Wn = 1√

n Xn, tends to the limiting
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distribution Fsc, whose density is given by

fsc(x) =

⎧
⎨

⎩

1
2π

√
4 – x2I{|x|≤2} if |x| ≤ 2,

0 otherwise.

The LSD Fsc is usually called the semicircular law in the literature. Grenander [6] proved
that ‖FWn – Fsc‖ → 0 in probability. Arnold [1, 2] obtained the result that FWn converges to
Fsc almost surely. Pastur [12] removed the identically distributed assumption, and consid-
ered that when the entries above or on the diagonal of Xn are independent real or complex
random variables with mean zero and variance 1, may not necessarily be identically dis-
tributed, but satisfy the following Lindeberg type assumption, for any constant η > 0:

lim
n→∞

1
n2

n∑

i,j

E|Xij|2I
(|Xij| ≥ η

√
n
)

= 0. (1.1)

Then the ESD of Wn converges almost surely to the semicircular law.
Among the results above, the assumption that the entries of the Wigner matrix have a

common variance is necessary. However, in a practical application, the uniform variance
assumption is a strong condition. In the paper, we will remove the uniform variance as-
sumption and establish the same semicircular law result under a milder assumption on
the variances of the entries, in particular, we assume that the covariances of the entries
may not be equal to a constant, but only the average of the normalized sums of in each
row of the data matrix converges to a positive constant. The result reads as follows.

Theorem 1.1 Let Wn = 1√
n Xn be a Wigner matrix, and the entries above or on the diagonal

of Xn be independent real or complex random variables, but they may not be necessarily
identically distributed. Assume that all the entries of Xn are of mean zero, and the variance
E|Xij|2 = σ 2

ij , where σij satisfies 1
n
∑n

i=1 | 1
n
∑n

j=1 σ 2
ij – 1| → 0 as n → ∞, and the assumption

(1.1) holds. Then, almost surely, the ESD of Wn converges weakly to the semicircular law.

Remark 1.1 The result of Theorem 1.1 can be extended to a general one: when the aver-
age of the normalized sums in each row converges weakly to a positive constant σ 2, then
almost surely the LSD of Wn is the general semicircular law with density

fsc,σ (x) =

⎧
⎨

⎩

1
2π

√
4σ 2 – x2I{|x|≤2σ } if |x| ≤ 2σ ,

0 otherwise.

Now, we will consider the LSD of a sample covariance matrix, which is also an impor-
tant object in random matrix theory and multivariate statistics. Suppose Yn = (Yij)n×N is
a real or complex random matrix, whose entries Yij (i = 1, . . . , n, j = 1, . . . , N) are i.i.d. real
or complex random variables with mean zero and variance 1. Write Yj = (Y1j, . . . , Ynj)′ and
Yn = (Y1, . . . , YN ). Define Ȳ = 1

N
∑N

k=1 Yk . Since S̃n = 1
N–1

∑N
k=1(Yk – Ȳ )(Yk – Ȳ )∗ shares the

same the LSD with Sn = 1
N

∑N
k=1 YkY ∗

k = 1
N YnY∗

n, where ∗ represents the conjugate trans-
pose symbol, we usually consider the sample covariance matrix defined by Sn = 1

N YnY∗
n,

The limiting spectral properties of large sample covariance matrices have generated a
considerable amount of interest in statistics, signal processing and other disciplines. The
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first result on the LSD of Sn is due to Marc̆enko and Pastur [10], who proved that when
limn→∞ n

N = y ∈ (0,∞), the LSD of Sn is M-P law FMP
y (x) with density

f MP
y (x) =

⎧
⎨

⎩

1
2πxy

√
(b – x)(x – a), if a ≤ x ≤ b,

0, otherwise,

and has a point mass 1 – 1/y at the origin if y > 1, where a = (1 – √y)2 and b = (1 + √y)2.
There is also some work on the discussion of the M-P law of sample covariance matrices,
such as Bai and Yin [4], Grenander and Silverstein [7], Jonsson [8], Yin [17], Silverstein
[13] and Silverstein and Bai [14]. A typical result (see Theorem 3.9 of Bai and Silverstein
[3]) states that when the entries of Yn are independent random variables with mean zero
and variance 1, n/N → y ∈ (0,∞), and for any η > 0,

1
η2nN

∑

i,j

E
(|Yij|2I

(|Yij| ≥ η
√

N
)) → 0, (1.2)

then the ESD of Sn tends to the M-P law FMP
y almost surely. Note that the entries of Yn

having a uniform variance 1 is also a necessary condition in the proof. By the same mo-
tivation as Theorem 1.1, we will also consider removing the equal covariance condition.
Similarly, we can get the following result.

Theorem 1.2 Assume that the entries of the random matrix Yn defined above are
independent variables with mean zero and variance E|Yij|2 = σ 2

ij , where σij satisfies
1
n
∑n

i=1 | 1
N

∑N
j=1 σ 2

ij – 1| → 0. Assume that n/N → y ∈ (0,∞) as n → ∞ and the assump-
tion (1.2) holds. Then, almost surely, the ESD of the sample covariance matrix Sn = 1

N YnY ∗
n

converges weakly to the M-P law.

Remark 1.2 Likewise, if there exists a positive constant σ 2 > 0 satisfying 1
n
∑n

i=1 ×
| 1

N
∑N

j=1 σ 2
ij –σ 2| → 0, the other assumptions remain unchanged, we also get, almost surely,

for the LSD of Sn = 1
N YnY ∗

n the general M-P law with density

f MP
y,σ (x) =

⎧
⎨

⎩

1
2πxyσ 2

√
(b̃ – x)(x – ã), if ã ≤ x ≤ b̃,

0 otherwise,

and it has a point mass 1 – 1/y at the origin if y > 1, where ã = σ 2(1 – √y)2 and b̃ = σ 2(1 +√y)2.

The rest of the paper is organized as follows. The proofs of the main results are presented
in Sect. 2. In the Appendix, some useful lemmas are listed. In the sequel, when there is
no confusion, we may get rid of the subscript n in the notation of matrices for brevity.
A∗ denotes the conjugate transpose of matrix A, and tr(A) denotes the trace of A, and C
denotes positive constant, which may be different in different cases.
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2 Proofs
The Stieltjes transform method is mainly adopted to complete the proofs. For a distribu-
tion function F(x), its Stieltjes transform can be defined as

sF (z) =
∫ 1

x – z
dF(x), z ∈C

+ = {z = u + iv|u ∈R, v > 0}.

Obviously, we can write the Stieltjes transform of ESD FAn (x) as

sFAn (z) =
1
n

n∑

i=1

1
λi – z

=
1
n

tr(An – zIn)–1,

where In is the identity matrix with order n. The continuity theorem of Stieltjes trans-
form states that, for a sequence of functions of bounded variation {Gn} with the Stieltjes
transform sGn (z), Gn(–∞) = 0 for all n, and a function of bounded variation G, G(–∞) = 0,
with the Stieltjes transform sG(z), Gn converges vaguely to G if and only if sGn (z) converges
to sG(z) for z ∈ C

+. In view of the fact that the sequence of the ESD of Wigner matrix is
tight (see Lytova and Pastur [9]), the weak convergence of the ESD can be obtained by the
convergence of their corresponding Stieltjes transform. Furthermore, if the LSD is a deter-
ministic probability density function, then the almost surely convergence of the ESD can
be achieved by the almost surely convergence of the Stieltjes transform, which is a basic
idea in the following proofs.

2.1 Proof of Theorem 1.1
Define FWn to be the ESD of Wn and sn(z) the Stieltjes transforms of FWn . Then by the
continuity theorem of the Stieltjes transform, we complete the proof of Theorem 1.1 by
showing

sn(z) → s(z), z ∈C
+ a.s., (2.1)

where s(z) is the Stieltjes transform of the semicircular law Fsc.
The proofs of the real-valued Wigner matrix are almost the same as those of the

complex-valued Wigner matrix, that is, all the results as well as the main ingredients of the
proofs in the real symmetric matrices case remain valid in the Hermitian case with natu-
ral modifications. For the sake of simplicity, we will confine ourselves to a real symmetric
Wigner matrix. To this end, we will write Ŵn = 1√

n X̂n to be a Wigner matrix independent
of Wn, and the entries of X̂n = (X̂ij)n×n are independent N(0, 1) random variables. Define
FŴn to be the ESD of Ŵn, and ŝn(z) the Stieltjes transforms of FŴn . By Theorem 2.9 of Bai
and Silverstein [3], we know that, almost surely, the LSD of Ŵn is a semicircular law Fsc(x),
which means

ŝn(z) → s(z), z ∈C
+, a.s.

Thus, (2.1) can be achieved by

ŝn(z) – sn(z) → 0, z ∈C
+, a.s. (2.2)

In the sequel, we will complete the proof of (2.2) by the following two steps.
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(i) For any fixed z ∈C
+, ŝn(z) – Eŝn(z) → 0, a.s. and sn(z) – Esn(z) → 0, a.s.

(ii) For any fixed z ∈C
+, Esn(z) – Eŝn(z) → 0.

We begin with step (i). Define Wk to be a major submatrix of order (n – 1), obtained
from Wn with the kth row and column removed, and αk to be the vector from the kth
column of Wn by deleting the kth entry. Denote by Ek(·) conditional expectation with
respect to the σ -field generated by the random variables {Xi,j, i, j > k}, with the convention
that Ensn(z) = Esn(z) and E0sn(z) = sn(z). Then

sn(z) – Esn(z) =
n∑

k=1

[
Ek–1

(
sn(z)

)
– Ek

(
sn(z)

)]
:=

n∑

k=1

γk .

By Theorem A.5 of Bai and Silverstein [3], we know

γk =
1
n

(
Ek–1 tr(Wn – zI)–1 – Ek tr(Wn – zI)–1)

=
1
n

(
Ek–1

(
tr(Wn – zI)–1 – tr(Wk – zIn–1)–1)

– Ek
(
tr(Wn – zI)–1 – tr(Wk – zIn–1)–1))

=
1
n

(
Ek–1

1 + α∗
k (Wk – zIn–1)–2αk

–z – α∗
k (Wk – zIn–1)–1αk

– Ek
1 + α∗

k (Wk – zIn–1)–2αk

–z – α∗
k (Wk – zIn–1)–1αk

)
.

Note that

∣∣1 + α∗
k (Wk – zIn–1)–2αk

∣∣

≤ 1 + α∗
k (Wk – zIn–1)–1(Wk – z̄In–1)–1αk

= v–1 Im
(
z + α∗

k (Wk – zIn–1)–1αk
)
,

which implies |γk| ≤ 2/nv. Since {γk , k ≥ 1} forms a martingale difference sequence, then
it follows by Lemma A.1 with p = 4 that

E
∣∣sn(z) – Esn(z)

∣∣4 ≤ K4E

( n∑

k=1

|γk|2
)2

≤ K4

( n∑

k=1

4
n2v2

)2

≤ 16K4

n2v4 = O
(
n–2),

which, together with the Borel–Cantelli lemma, yields

sn(z) – Esn(z) → 0, a.s.

for every fixed z ∈C
+.

Similarly, we also get

ŝn(z) – Eŝn(z) → 0, a.s.

for every fixed z ∈C+. Therefore, step (i) is completed.
Now we come to step (ii). We firstly introduce some notation:

X(s) = s1/2X + (1 – s)1/2X̂, 0 ≤ s ≤ 1, G(z) =
(

1√
n

X – zI
)–1

,
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Ĝ(z) =
(

1√
n

X̂ – zI
)–1

, G(s, z) =
(

1√
n

X(s) – zI
)–1

.

By the facts that X(1) = X, X(0) = X̂, we can write

Esn(z) – Eŝn(z)

=
1
n

E
(
trG(z) – tr Ĝ(z)

)

=
∫ 1

0

∂

∂s
E
(

1
n

trG(s, z)
)

ds

=
1

2n3/2

∫ 1

0
Etr

∂

∂z
G(s, z)

(
(1 – s)–1/2X̂ – s–1/2X

)
ds. (2.3)

Denote G′ = ∂
∂z G(s, z). Write the (i, j)-entry of G′ by G′

ij and the (i, j)-entry of X(s) by
Xij(s). Since the random variables X̂ij are independent N(0, 1) random variables, applying
the Stein equation in Lemma A.2 with Φ = G′

ij, we have

Etr
∂

∂z
G(s, z)(1 – s)–1/2X̂

= (1 – s)–1/2
∑

i,j

E
(
X̂ijG′

ij
)

= (1 – s)–1/2
∑

i,j

(
E|X̂ij|2E

(
Dij(s)G′

ij
)
(1 – s)1/2n–1/2)

= n–1/2
∑

i,j

E
(
Dij(s)G′

ij
)
,

where Dij(s) = ∂/∂Xij(s).
On the other hand, as the random variables Xij are independent, we will adopt the gen-

eralized Stein equation in Lemma A.3 to rewrite the second term in the parentheses of
the r.h.s. of (2.3). To this end, we will take p = 1 and Φ = G′

ij in Lemma A.3. Note that
κ1 = EXij = 0 and κ2 = E|Xij|2. Then we have

Etr
∂

∂z
G(s, z)s–1/2X

= s–1/2
∑

i,j

E
(
XijG′

ji
)

= s–1/2
∑

i,j

(
E|Xij|2E

(
Dij(s)G′

ji
)
s1/2n–1/2 + εij

)

= n–1/2
∑

i,j

E|Xij|2E
(
Dij(s)G′

ji
)

+ s–1/2ε

and

|ε| :=
∣∣∣∣
∑

i,j

εij

∣∣∣∣ ≤ C
s
n

∑

i,j

E|Xij|3 sup
X(s)∈℘n

∣∣D2
ij(s)G′

ji
∣∣,

where ℘n is the set of n × n real symmetric matrices.
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Thus

∣∣Esn(z) – Eŝn(z)
∣∣

≤ 1
2n3/2

∫ 1

0

(
1

n1/2

∣∣∣∣
∑

i,j

{(
1 – E|Xij|2

)
E
(
Dij(s)G′

ji
)}∣∣∣∣ +

1
s1/2 |ε|

)
ds

=
1

2n2

∫ 1

0

∣∣∣∣
∑

i,j

{(
1 – E|Xij|2

)
E
(
Dij(s)G′

ji
)}∣∣∣∣ds +

1
2n3/2

∫ 1

0

1
s1/2 |ε|ds

:= I + II. (2.4)

By (3.25) in Lytova and Pastur [9],

∣∣D(l)
ij G′

ij
∣∣ ≤ cl/v(l+2), (2.5)

where cl is an absolute constant for every l. Let l = 1, then |DijG′
ij| ≤ c1/v3, and

E
(
Dij(s)G′

ji
) ≤ sup

s

∣∣Dij(s)G′
ij
∣∣ ≤ c1/v3.

Since E|Xij|2 = σ 2
ij , and σij satisfies 1

n
∑n

i=1 | 1
n
∑n

j=1 σ 2
ij – 1| → 0 based on the condition in

Theorem 1.1, we easily get

1
n2

∣∣∣∣
∑

i,j

(
1 – E|Xij|2

)∣∣∣∣ =
1
n2

∣∣∣∣n
2 –

∑

i,j

σ 2
ij

∣∣∣∣ ≤ 1
n

n∑

i

∣∣∣∣∣1 –
1
n

n∑

j

σ 2
ij

∣∣∣∣∣ → 0,

and then

I = o(1). (2.6)

We have

II ≤ C
2n3/2

∫ 1

0

s1/2

n
∑

i,j

E|Xij|3 sup
X(s)∈℘n

∣∣D2
ij(s)G′

ij
∣∣ds.

By the assumption (1.1), we select a sequence ηn ↓ 0 as n → ∞, such that

lim
n→∞

1
n2η2

n

∑

i,j

E|Xij|2I
(|Xij| ≥ ηn

√
n
)

= 0.

And the convergence rate of ηn can be as slow as desired. For definiteness, we may assume
that ηn > 1/ log n and ηn → 0. Then we have

II ≤ Cηn

2n2

∫ 1

0
s1/2

∑

i,j

E|Xij|2 sup
X(s)∈℘n

∣∣D2
ij(s)G′

ij
∣∣ds.

Since

1
n2

∑

i,j

E|Xij|2 – 1 ≤ 1
n2

∣∣∣∣
∑

i,j

σ 2
ij – n2

∣∣∣∣
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=
1
n

∣∣∣∣n –
1
n

∑

i,j

σ 2
ij

∣∣∣∣ ≤ 1
n

n∑

i

∣∣∣∣∣1 –
1
n

n∑

j

σ 2
ij

∣∣∣∣∣ → 0,

we obtain 1
n2

∑
i,j E|Xij|2 = 1 + o(1). And by (2.5), let l = 2, then

sup
X(s)∈℘n

∣∣D2
ij(s)G′

ij
∣∣ ≤ c2/v4.

So we have

II ≤ 1
2

∫ 1

0
s1/2ηn

(
1
n2

∑

i,j

E|Xij|2
)

sup
X(s)∈℘n

∣∣D2
ij(s)G′

ji
∣∣ds ≤ Cηn + o(1).

By ηn → 0 as n → ∞, we have II = o(1). This, together with (2.4) and (2.6), means that

Esn(z) – Eŝn(z) → 0

for any fixed z ∈C
+. Step (ii) is completed.

Combining steps (i) and (ii), we see that (2.2) is proved. Therefore, we have

FWn w→Fsc, a.s.,

By (2.1)–(2.2), we complete the proof of Theorem 1.1.

2.2 Proof of Theorem 1.2
We will also consider the real-valued sample covariance matrix case and take a similar
procedure to Theorem 1.1 to complete the proof. To this end, we also firstly define Ŷn =
(Ŷij)n×N to be a n × N random matrix independent of Yn, and the entries Ŷ ,

ijs to be i.i.d.
N(0, 1) random variables. Write Ŝn = 1

N ŶnŶ ∗
n . We will use FSn and FŜn to denote the ESD

of Sn and Ŝn, respectively. Let mn(z) and m̂n(z) be the Stieltjes transforms of FSn and FŜn ,
respectively.

By Theorem 3.10 of Bai and Silverstein [3], we have obtained

m̂n(z) → m(z), a.s.

where m(z) is the Stieltjes transform of standard M-P law FMP
y . Thus, by the continuity

theorem of the Stieltjes transform again, we complete the proof by showing that, for any
fixed z ∈C

+,
(i) mn(z) – Emn(z) → 0, a.s. and m̂n(z) – Em̂n(z) → 0, a.s.

(ii) Emn(z) – Em̂n(z) → 0.
For (i), we prove it by a similar argument to Bai and Silverstein [3]. For the sake of com-

pleteness, we will also give the proof. Let Ẽk(·) denote the conditional expectation given
by {Yk+1, . . . , YN }, with the convention that ẼN mn(z) = Emn(z) and Ẽ0mn(z) = mn(z). Then

mn(z) – Emn(z) =
N∑

k=1

(̃
Ekmn(z) – Ẽk–1mn(z)

)
:=

N∑

k=1

γ̃k ,



Jin and Xie Journal of Inequalities and Applications        (2020) 2020:174 Page 9 of 13

where

γ̃k =
1
n

(̃
Ek tr(Sn – zIn)–1 – Ẽk–1tr(Sn – zIn)–1)

=
1
n

(
(̃Ek – Ẽk–1)

(
tr(Sn – zIn)–1 – tr(Snk – zIn)–1))

= –
1
n

(
(̃Ek – Ẽk–1)

Y∗
k(Snk – zIn)–2Yk

1 + Y∗
k(Snk – zIn)–1Yk

)
.

Here Snk = Sn – YkY∗
k and Yk is the kth column of Yn with the kth element removed, and

∣∣∣∣
Y∗

k(Snk – zIn)–2Yk

1 + Y∗
k(Snk – zIn)–1Yk

∣∣∣∣ ≤ Y∗
k((Snk – uIn)2 + v2In)–1

Yk

Im (1 + Y∗
k(Snk – zIn)–1Yk)

=
1
v

.

Note that {γ̃k , k ≥ 1} forms a sequence of bounded martingale differences.
By Lemma A.1 with p = 4, we have

E
∣∣mn(z) – Emn(z)

∣∣4 ≤ K4E

( N∑

k=1

|γk|2
)2

≤ K4N2

v4n4 = O
(
N–2).

By the Borel–Cantelli lemma again, we see that almost surely mn(z) – Emn(z) → 0. By the
same argument, we get m̂n(z) – Em̂n(z) → 0, a.s., which means (i) is completed.

Then we come to the proof of (ii). We firstly introduce some notation. For 0 ≤ s ≤ 1,

H(s) = s1/2Y + (1 – s)1/2Ŷ , V (s) =
1√
n

H(s),

J(s) = V (s)V ∗(s), U(z, s) =
(
J(s) – zI

)–1,

M0(z, s) =
1
n

tr U(z, s), U ′ =
∂

∂z
U(z, s).

By the same procedure in (2.3), we have

Emn(z) – Em̂n(z)

=
∫ 1

0

∂

∂s
E
(
M0(z, s)

)
ds

=
1

2nN1/2

∫ 1

0
Etr

((
(1 – s)–1/2Ŷ – s–1/2Y

)
V ∗(s)U ′)ds. (2.7)

It follows by Lemma A.2 with Φ = (V ∗(s)U ′)ij that

Etr
(
(1 – s)–1/2Ŷ V ∗(s)U ′)

= (1 – s)–1/2
∑

i,j

E
(
Ŷij

(
V ∗(s)U ′)

ij

)

=
1

N1/2

∑

i,j

E|Ŷij|2E
(
Dij(s)

(
V ∗(s)U ′)

ij

)
,

where Dij(s) = ∂/∂Vij(s).



Jin and Xie Journal of Inequalities and Applications        (2020) 2020:174 Page 10 of 13

By Lemma A.3 with p = 1 and Φ = (V ∗(s)U ′)ij again, we can see by κ1 = EYij = 0 and
κ2 = E|Yij|2 that

Etr
(
s–1/2Y

(
V ∗(s)U ′))

= s–1/2
∑

i,j

E
(
Yij

(
V ∗(s)U ′)

ij

)

= s–1/2
∑

i,j

(
1

N1/2 s1/2E|Yij|2E
(
Dij

(
V ∗(s)U ′)

ij

)
+ εij

)

=
1

N1/2

∑

i,j

E|Yij|2E
(
Dij

(
V ∗(s)U ′)

ij

)
+ s–1/2ε0

and

|ε0| :=
∣∣∣∣
∑

i,j

εij

∣∣∣∣ ≤ C
s
N

∑

i,j

E|Yij|3 sup
V∈Mn,N

∣∣D2
ij
(
V ∗U ′)

ij

∣∣,

where Mn,N is the set of n × N real matrices.
By (2.7), we have

∣∣Emn(z) – Em̂n(z)
∣∣

≤ 1
2nN1/2

∫ 1

0

(
1

N1/2

∣∣∣∣
∑

i,j

[(
1 – E|Yij|2

)
E
(
Dij

(
V ∗U ′)

ij

)]∣∣∣∣ +
1

s1/2 |ε0|
)

ds

=
1

2nN

∫ 1

0

∣∣∣∣
∑

i,j

{(
1 – E|Yij|2

)
E
(
Dij

(
V ∗U ′)

ij

)}∣∣∣∣ds +
1

2nN1/2

∫ 1

0

1
s1/2 |ε0|ds

:= Î + ÎI. (2.8)

The bound of |Dr
ij(V ∗U ′)ji|, r = 1, 2, is critical for the proof. Since (V ∗U ′)ij is analytic

in z ∈ C
+, by the Cauchy inequality for the bound of derivatives of analytic functions in

Lemma A.4, to get the bound of Dr
ij(V ∗U ′)ij, r = 1, 2, on any compact set of C+, it suffices

to find the bound of Dr
ij(V ∗U)ij on the compact set. By elementary calculations, we can get

the derivatives of V ∗U with respect to the entries Vij, i = 1, 2, . . . , n, j = 1, 2, . . . N ,

Dij
(
V ∗U

)
ij = Dij(UV )ij = Uii –

(
V ∗UV

)
jjUii – (UV )2

ij,

D2
ij
(
V ∗U

)
ij = –6Uii(UV )ij + 6Uii(UV )ii

(
V ∗UV

)
jj + 2(UV )3

ij.

As U = (VV ∗ – zIn×n)–1, this induces ‖U‖ ≤ 1
v , |Uii| ≤ 1

v . Define Ũ = (V ∗V – zIN×N )–1. We
also have ‖Ũ‖ ≤ 1

v . By the facts that V Ũ = UV and V ∗V Ũ = V ∗UV , we get

V ∗V Ũ = IN×N + zŨ

and

∣∣(V ∗UV
)

jj

∣∣ =
∣∣(V ∗V Ũ

)
jj

∣∣ ≤ 1 +
|z|
v

.
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By the Schwartz inequality, we have

∣∣(UV )ij
∣∣ ≤ (

U∗VV ∗U∗)1/2
ii ≤

((
1 +

|z|
v

)
1
v

)1/2

.

It follows by the Cauchy inequality in Lemma A.4 that

sup
V∈Mn,N

∣∣Dij
(
V ∗U ′)

ij

∣∣ = O(1)

and

sup
V∈Mn,N

∣∣D2
ij
(
V ∗U ′)

ij

∣∣ = O(1) (2.9)

hold uniformly on any compact set of C+.
Since 1

n
∑n

i=1 | 1
N

∑N
j=1 σ 2

ij – 1| → 0 by the assumption in Theorem 1.2,

1
nN

∣∣∣∣
∑

i,j

(
1 – E|Yij|2

)∣∣∣∣ =
1

nN

∣∣∣∣nN –
∑

i,j

σ 2
ij

∣∣∣∣ ≤ 1
n

n∑

i

∣∣∣∣∣1 –
1
N

N∑

j

σ 2
ij

∣∣∣∣∣ → 0,

which, together with (2.8) and (2.9), yields Î = o(1).
By the assumption (1.2), without loss of generality, we select a sequence ηn ↓ 0 and ηn >

1/ log N as n → ∞. Then

ÎI ≤ Cηn

2nN

∫ 1

0
s1/2

∑

i,j

E|Yij|2 sup
V∈Mn,N

∣∣D2
ij
(
V ∗U ′)

ij

∣∣ds.

We also easily get 1
nN

∑
i,j E|Yij|2 = 1 + o(1). Using (2.9) again, we can see

∣∣Emn(z) – Em̂n(z)
∣∣ ≤ Cηn + o(1).

As ηn → 0, we have

Emn(z) – Em̂n(z) → 0

for any z ∈C
+, which completes the proof of (ii).

Based on steps (i) and (ii), we conclude that

FSn w→FMP
y , a.s.

The proof of Theorem 1.2 is complete.

Appendix: Some lemmas
We will list several important lemmas in our proofs. The first one is the Burkholder in-
equality for a complex martingale difference sequence, which can be found in Burkholder
[5].
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Lemma A.1 Let {Xk} be a complex martingale difference sequence with respect to the in-
creasing σ -field {Fk}. Then, for p > 1,

E
∣∣∣
∑

Xk

∣∣∣
p ≤ KpE

(∑
|Xk|2

) p
2 ,

where Kp is a constant related to p.

The second one is the well-known Stein equation for independent Gaussian random
variables. It should be noted that a similar result holds for independent complex-valued
Gaussian random variables.

Lemma A.2 Let ξ be a Gaussian random variable of zero mean, and Φ : R → C be a
differentiable function with bounded derivative Φ ′. Then we have

E
(
ξΦ(ξ )

)
= E

(
ξ 2)E

(
Φ ′(ξ )

)
.

The third one is the generalized Stein equation for independent random variables, which
can be found in Lytova and Pastur [9, Proposition 3.1].

Lemma A.3 Let ξ be a random variable such that E(|ξ |p+2) < ∞ for a certain nonnegative
integer p. Then, for any function Φ : R →C of the class Cp+1 with bounded derivatives Φ (l),
l = 1, 2, . . . , p + 1, we have

E
(
ξΦ(ξ )

)
=

p∑

l=0

κl+1

l!
E
(
Φ (l)(ξ )

)
+ εp,

where κl is the lth cumulant of ξ , and the remainder term εp admits the bound

|εp| ≤ cpE{|ξ |p+2 sup
∣∣Φ (p+1)(t)

∣∣, cp ≤ 1 + (3 + 2p)p+2

(p + 1)!
.

At last, a useful result on the bound of analytic function will be introduced, which is
quoted from Markushevich and Silverstein [11, Theorem 14.7].

Lemma A.4 (Cauchy inequality) Let f (z) be analytic in the simply connected domain D
that contains the circle CR(z0) = {z : |z – z0| = R}. If |f (z)| ≤ M holds for all points z ∈ CR(z0),
then

∣∣f (n)(z0)
∣∣ ≤ n!M

Rn (n = 1, 2, . . .).
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