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1 Introduction and preliminaries
Motivated by the role of the Schwarz lemma in complex analysis and numerous funda-
mental results, see for instance [16, 19] and references therein, in 2016, the first author
[1](a) has posted on ResearchGate the project “Schwarz lemma, the Carathéodory and
Kobayashi Metrics and Applications in Complex Analysis”.a Various discussions regard-
ing the subject can also be found in the Q&A section on ResearchGate under the question
“What are the most recent versions of the Schwarz lemma?” [1](b).b In this project and in
[16], cf. also [13], we developed the method related to holomorphic mappings with strip
codomain (we refer to this method as the approach via the Schwarz–Pick lemma for holo-
morphic maps from the unit disc into a strip). It is worth mentioning that the Schwarz
lemma has been generalized in various directions; see [2, 4, 7, 8, 13, 14, 18, 21] and the
references therein.

Recently Wang and Zhu [20] and Chen and Kalaj [5] have studied boundary Schwarz
lemma for solutions of Poisson’s equation. They improved Heinz’s theorem [10] and The-
orem A below. We found that Theorem A is a forgotten result of Hethcote [11], published
in 1977.

Note that previously Burgeth [3] improved the above result of Heinz and Theorem A
for real-valued functions (it is easy to extend his result for complex-valued functions; see
below) by removing the assumption f (0) = 0 but it is overlooked in the literature. Recently,
Mateljević and Sveltik [18] proved a Schwarz lemma for real harmonic functions with
values in (–1, 1) using a completely different approach than Burgeth [3] and showed that
the inequalities obtained are sharp.

In this paper, we further develop the method initiated in [18]. More precisely, we show
that, if U denotes the open unit disc and f : U → (–1, 1), f ∈ C2(U) and is continuous on
U, and |�f | ≤ c on U for some c > 0, then the mapping u = f ± c

4 (1 – |z|2) is subharmonic
or superharmonic and we estimate the harmonic function P[u∗]; see Theorem 2. Next,
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we extend the previous result to complex-valued functions; see Corollary 1. As an ap-
plication, we provide an elementary proof of a theorem of Chen and Kalaj [5] giving an
estimate of the solutions of the Poisson equations. Finally, we establish Schwarz lemmas
at the boundary for solutions of |�f | ≤ c. Our results are generalizations of Theorem 1.1
[20] and Theorem 2 [5].

The proofs are mainly based on two ingredients, the first of which is a sharp Schwarz
lemma for real harmonic functions with values in (–1, 1), see Theorem B, and the second is
the principle of harmonic majoration, which is a consequence of the maximum principle
for subharmonic functions.

1.1 Notations and background
In this paper T denotes the unit circle.

Recall that a real-valued function u, defined in an open subset D of the complex plane
C, is harmonic if it satisfies Laplace’s equation �u = 0 on D.

A real-valued function u ∈ C2(D) is called subharmonic if �u(z) ≥ 0 for all z ∈ D.
Let P be the Poisson kernel, i.e., the function

P
(
z, eiθ ) =

1 – |z|2
|z – eiθ |2 ,

and let G be the Green function on the unit disc, i.e., the function

G(z, w) =
1

2π
log

∣∣
∣∣
1 – zw
z – w

∣∣
∣∣, z, w ∈U, z �= w.

Let φ ∈ L1(T) be an integrable function on the unit circle. Then the function P[φ] given
by

P[φ](z) =
1

2π

∫ 2π

0
P
(
z, eiθ )φ

(
eiθ )dθ

is harmonic in U and has a radial limit that agrees with φ almost everywhere on T.
For g ∈ C(U), let

G[g](z) =
∫

U

G(z, w)g(w) dm(w),

|z| < 1 and let dm(w) denote the Lebesgue measure in U.
If we consider the function

u(z) := P[φ](z) – G[g](z),

then u satisfies the Poisson equation
⎧
⎨

⎩
�u = g on the disc U,

limr→1– u(reiθ ) = φ(eiθ ) a.e. on the circle.

One can easily see that the previous equation has a non-unique solution. Indeed, the
Poisson kernel P(z) = 1–|z|2

|1–z|2 is a harmonic function on the unit disc and limr→1– P(reiθ ) = 0
a.e., but P �= 0.
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It is well known that, if φ is continuous on the unit circle, then the harmonic function
P[φ] extends continuously on T and equals φ on T; see Hörmander [12].

The following is a consequence of the maximum principle for subharmonic functions.

Theorem (Harmonic majoration) Let u be a subharmonic function in C2(U) ∩C(U). Then

u ≤ P[u|T] on U.

2 The Schwarz lemma for harmonic functions
In [10], Heinz proved that, if f is a harmonic mapping f from the unit disc into itself such
that f (0) = 0, then

∣
∣f (z)

∣
∣ ≤ 4

π
arctan |z|.

Moreover, this inequality is sharp for each point z ∈U.
This inequality for functions from the unit disk to unit ball of Cn are discussed in [9] to

establish Landau’s theorem for p-harmonic mappings in several variables.
Later, in 1977, Hethcote [11] improved the above result of Heinz by removing the as-

sumption f (0) = 0 and showed the following.

Theorem A ([11]) If f is a harmonic mapping from the unit disc into itself, then

∣∣∣
∣f (z) –

1 – |z|2
1 + |z|2 f (0)

∣∣∣
∣ ≤ 4

π
arctan |z|

holds for all z ∈U.

We remark that the estimate of Theorem A cannot be sharp for all values z in the unit
disc.

Recently, Mateljević and Sveltik [18] proved a Schwarz lemma for real harmonic func-
tions with values in (–1, 1) using a completely different approach from Burgeth [3].

Theorem B ([18]) Let u : U → (–1, 1) be a harmonic function such that u(0) = b. Then

mb
(|z|) ≤ u(z) ≤ Mb

(|z|) for all z ∈U.

Moreover, this inequality is sharp for each z ∈ U, where Mb(r) := 4
π

arctan a+r
1+ar , mb(r) :=

4
π

arctan a–r
1–ar , and a = tan bπ

4 .

Clearly Theorem B improves Theorem A for real harmonic functions, as one can check
the following elementary proposition.

Proposition 2.1 Let b be in (–1, 1) and r ∈ [0, 1). Then
(1) Mb(r) ≤ 1–r2

1+r2 b + 4
π

arctan r =: Ab(r) and mb(r) ≥ 1–r2

1+r2 b – 4
π

arctan r.
(2) The mapping b 	→ Mb(r) is increasing on (–1, 1).

Using a standard rotation, we can extend Theorem B for complex harmonic functions
from the unit disc into itself.
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Theorem 1 Let f : U →U be a harmonic function from the unit disc into itself. Then

∣∣f (z)
∣∣ ≤ M|f (0)|

(|z|)

holds for all z ∈U.

Proof Fix z0 in the unit disc and choose unimodular λ such that λf (z0) = |f (z0)|.
Define u(z) = 
(λf (z)).
Hence, using Theorem B, we get

∣
∣f (z0)

∣
∣ = u(z0) ≤ Mu(0)

(|z0|
) ≤ M|f (0)|

(|z0|
)
,

as the mapping b 	→ Mb(|z0|) is increasing. �

3 Schwarz lemma for mappings with bounded Laplacian
The following theorem is our main result of this section.

Theorem 2 Let f be a C2(U) real-valued function, continuous on U and f ∗ = f |T. Let b =
P[f ∗](0), c ∈ R and K be a positive number such that K ≥ ‖P[f ∗]‖∞.

(i) If f satisfies �f ≥ –c, then

f (z) ≤ KMb/K
(|z|) +

c
4
(
1 – |z|2)

holds for all z ∈U.
(ii) If f satisfies �f ≤ c, then

f (z) ≥ Kmb/K
(|z|) –

c
4
(
1 – |z|2)

holds for all z ∈U.

Proof (i) Define f 0(z) = f (z) + c
4 (|z|2 – 1), and set P[f ∗](0) = b. Then f 0 is subharmonic and

f 0 ≤ P[f ∗]. As 1
K P[f ∗] is a real harmonic function with codomain (–1, 1), by Theorem B,

we obtain P[f ∗](z) ≤ KMb/K (|z|). Thus

f (z) ≤ KMb/K
(|z|) +

c
4
(
1 – |z|2), for all z ∈U.

(ii) If f satisfies �f ≤ c, then define f0(z) = f (z) – c
4 (|z|2 – 1), and set P[f ∗](0) = b. In a

similar way, we show that the inequality

f (z) ≥ Kmb/K
(|z|) –

c
4
(
1 – |z|2)

holds for all z ∈U. �

For complex-valued functions with bounded Laplacian from the unit disc into itself, we
prove the following.
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Corollary 1 Suppose that f : U → U, f ∈ C2(U) and continuous on U, and |�f | ≤ c on U

for some c > 0. Then

∣
∣f (z)

∣
∣ ≤ Mb

(|z|) +
c
4
(
1 – |z|2)

holds for all z ∈U, where b = |P[f ∗](0)|.

Proof Fix z0 in the unit disc and choose λ such that λf (z0) = |f (z0)|. Define u(z) = 
(λf (z))
(we say that u is a real-valued harmonic associated to complex-valued harmonic f at z0).
We have �u = 
(λ�f ). As u is a real function with codomain (–1, 1) satisfying |�u| ≤ c,
by Theorem 2, we get

∣∣u(z)
∣∣ ≤ Mb1

(|z|) +
c
4
(
1 – |z|2), where b1 = P

[
u∗](0).

We have b1 = P[u∗](0) = 
(λP[f ∗](0)) ≤ |P[f ∗](0)|. Hence

∣
∣f (z0)

∣
∣ ≤ Mb

(|z0|
)

+
c
4
(
1 – |z0|2

)
,

where b = |P[f ∗](0)|, as the mapping b 	→ Mb(|z0|) is increasing. �

Under the conditions of the previous theorem and using Proposition 2.1 we obtain

∣
∣∣
∣f (z) –

1 – |z|2
1 + |z|2 P

[
f ∗](0)

∣
∣∣
∣ ≤ 4

π
arctan |z| +

c
4
(
1 – |z|2). (3.1)

3.1 Applications
For a given continuous function g : G →C, Chen and Kalaj [5] established some Schwarz
type Lemmas for mappings f in G satisfying the Poisson equation �f = g , where G is a
subset of the complex plane C. Then they applied these results to obtain a Landau type
theorem, which is a partial answer to the open problem in [6].

We provide a different and an elementary proof of Theorem C, giving a Schwarz type
lemma for mappings satisfying Poisson’s equations.

Theorem C ([5]) Let g ∈ C(U) and φ ∈ C(T). If a complex-valued function f satisfies �f =
g in U and f = φ in T, then for z ∈U

∣
∣∣
∣f (z) – P[φ](0)

1 – |z|2
1 + |z|2

∣
∣∣
∣ ≤ 4

π

∥∥P[φ]
∥∥∞ arctan |z| +

1
4
‖g‖∞

(
1 – |z|2), (3.2)

where ‖P[φ]‖∞ = supz∈U |P[φ](z)| and ‖g‖∞ = supz∈U |g(z)|.

Now we show that Theorem 2 implies Theorem C.
We will consider first the case when f is a real-valued C2(U) function, continuous on U,

satisfying �f = g and f ∗ = φ. Let K := ‖P[φ]‖∞. By Theorem 2, we have

mb/K
(|z|)K – ‖g‖∞

(1 – |z|2)
4

≤ f (z) ≤ Mb/K
(|z|)K + ‖g‖∞

(1 – |z|2)
4

,
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where b = P[φ](0). Using Proposition 2.1(1), we get

Mb/K
(|z|)K ≤ 1 – |z|2

1 + |z|2 b +
4K
π

arctan |z|

and

mb/K
(|z|)K ≥ 1 – |z|2

1 + |z|2 b –
4K
π

arctan |z|.

Hence, the following inequality:

∣∣
∣∣f (z) –

1 – |z|2
1 + |z|2 P[φ](0)

∣∣
∣∣ ≤ 4

π

∥
∥P[φ]

∥
∥∞ arctan |z| +

1
4
‖g‖∞

(
1 – |z|2)

holds for all z ∈U.
If f is a complex-valued function, we may consider u = 
(λf ), where λ is a complex

number of modulus 1. Indeed, we have

u(z) –
1 – |z|2
1 + |z|2 P

[
u∗](0) = 


(
λ

(
f (z) –

1 – |z|2
1 + |z|2 P[φ](0)

))
,

where u∗ = 
(λφ) on T. Now, one can choose λ such that

∣
∣∣
∣f (z) –

1 – |z|2
1 + |z|2 P[φ](0)

∣
∣∣
∣ = u(z) –

1 – |z|2
1 + |z|2 P

[
u∗](0).

4 Boundary Schwarz lemmas
We establish Schwarz lemmas at the boundary for solutions of |�f | ≤ c. Our results are
generalizations of Theorem 1.1 [20] and Theorem 2 [5].

Theorem 3 Suppose f ∈ C2(U), continuous onUwith codomain (–1, 1), such that �f ≥ –c.
If f is differentiable at z = 1 with f (1) = 1, then the following inequality holds:

fx(1) ≥ 2
π

tan
π

4
(1 – b) –

c
2

,

where

b = P
[
f ∗](0).

Before giving the proof, one can easily show that

M′
b(r) =

4
π

[
1 – a2

(a2 + 1)r2 + 4ar + a2 + 1

]
.

Hence

M′
b(1) =

2
π

[
1 – a
1 + a

]
=

2
π

tan
π

4
(1 – b),

as a = tan bπ
4 .
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Proof Since f is differentiable at z = 1, we know that

f (z) = 1 + fz(1)(z – 1) + fz̄(1)(z̄ – 1) + o
(|z – 1|).

That is,

fx(1) = lim
r→1–

f (r) – 1
r – 1

.

On the other hand, Theorem 2(i) leads to

1 – f (r) ≥ 1 – Mb(r) –
c
4
(
1 – r2).

Dividing by (1 – r) and letting r → 1–, we get

fx(1) ≥ M′
b(1) –

c
2

. (4.1)

Thus

fx(1) ≥ 2
π

tan
π

4
(1 – b) –

c
2

. �

Corollary 2 Suppose f ∈ C2(U), with codomain (–1, 1), is continuous on U and is differ-
entiable at z = 1 with f (1) = 1.

(i) If �f ≥ –c, then

fx(1) ≥ 2
π

– b –
c
2

.

(ii) If |�f | ≤ c and f (0) = 0, then |b| ≤ c
4 and

fx(1) ≥ 2
π

–
3
4

c,

where b = P[f ∗](0).

Proof (i) Using the inequality Mb ≤ Ab from Proposition 2.1 and Mb(1) = Ab(1) = 1, we
get

M′
b(1) ≥ A′

b(1) =
2
π

– b.

(ii) The estimate |b| ≤ c
4 follows directly from Theorem 2 using the assumption

f (0) = 0. �

Remark 4 One can also prove directly that M′
b(1) ≥ A′

b(1), that is,

2
π

tan
π

4
(1 – b) ≥ 2

π
– b for b ∈ [0, 1). (4.2)

Using the convexity of the tangent function, we get

tan x ≥ 2
(

x –
π

4

)
+ 1 for x ∈ [0,π/2).
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For b ∈ [0, 1), let us substitute x by π
4 (1 – b), we obtain

2
π

tan
π

4
(1 – b) ≥ 2

π
– b.

The following theorem is a generalization of Theorem 2 in [5] where the authors proved
a Schwarz lemma on the boundary for a function f satisfying �f = g and under the as-
sumption f (0) = 0.

Theorem 5 Suppose that f ∈ C2(U) ∩ C(U) is a function of U into U satisfying |�f | ≤ c,
where 0 ≤ c < 4

π
tan π

4 (1 – b). If, for some ξ ∈ T, limr→1– |f (rξ )| = 1, then

lim inf
r→1–

|f (ξ ) – f (rξ )|
1 – r

≥ 2
π

tan
π

4
(1 – b) –

c
2

,

where b = |P[f ∗](0)|.
If, in addition, we assume that f (0) = 0, then

|b| ≤ c
4

and

lim inf
r→1–

|f (ξ ) – f (rξ )|
1 – r

≥ 2
π

–
3
4

c.

Proof Using Corollary 1, we have

∣∣f (ξ ) – f (rξ )
∣∣ ≥ 1 –

∣∣f (rξ )
∣∣ ≥ 1 – Mb(r) –

c
4
(
1 – r2).

Thus

lim inf
r→1–

|f (ξ ) – f (rξ )|
1 – r

≥ lim
r→1–

1 – Mb(r) – c
4 (1 – r2)

1 – r
= M′

b(1) –
c
2

.

The conclusion follows as M′
b(1) = 2

π
tan π

4 (1 – b).
If in addition, we assume that f (0) = 0, using the inequality (3.1), we obtain |b| < c

4 . Hence

lim inf
r→1–

|f (ξ ) – f (rξ )|
1 – r

≥ 2
π

tan
π

4
(1 – b) –

c
2

≥ 2
π

– b –
c
2

≥ 2
π

–
3
4

c.

The second estimate follows from the inequality (4.2). �
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