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Abstract
In this article, we employ the elementary inequalities arising from the sub-linearity of
Choquet expectation to give a new proof for the generalized law of large numbers
under Choquet expectations induced by 2-alternating capacities with mild
assumptions. This generalizes the Linderberg–Feller methodology for linear
probability theory to Choquet expectation framework and extends the law of large
numbers under Choquet expectation from the strong independent and identically
distributed (iid) assumptions to the convolutional independence combined with the
strengthened first moment condition.
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1 Introduction
As pointed out in [1–7] and the references cited therein, the Choquet expectation can
provide a strong and convincing way to describe volatility uncertainty phenomena in fi-
nancial markets, as well as bridge the distance between the traditional and new-arising
sub-linear expectation theory. Recently, Choquet expectation finds its application in mon-
etary services aggregation [8]. Therefore, the theoretical study on the law of large numbers
(LLNs) and the central limit theorem (CLT) under Choquet expectations has been attract-
ing much attention of mathematicians and economists, and a great achievement has been
attained; for example, see [2, 9, 10].

Reviewing the literature of LLNs under Choquet expectations, we found that the proof
for LLNs can be mainly classified into two categories: one is the direct method, as in [2,
10], in which the purely probabilistic Linderberg–Feller idea and the classical inequality
technique, which are often applied to linear expectation case, are borrowed to derive the
LLNs under Choquet expectations. The other is the indirect method, such as done in [9], in
which the non-additive Choquet expectation is turned into an additive Lebesgue–Stieltjes
integral, then the existing additive properties can be used to derive the Choquet LLNs.

Checking carefully these existing methods, it is not difficult to find that their proof re-
lies mainly on the three assumptions: additivity of expectations, the independence and
the identical distribution of random variables. Noting that the latter two, or simply “iid”
assumption for short, are too strong to be verified and utilized in the simulation of real
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financial practice, one may naturally ask whether there are some weakened assumptions,
under which the desired Choquet LLNs are still valid and its applications are facilitated.
The answer is affirmative.

The main goals of this article are to: (1) adopt Choquet expectations induced by 2-
alternating capacities as an alternative of the first assumption of the additivity of expec-
tations in [9], and replace the independent and identical distribution (iid) condition for
random variables by a convolutional independence condition combined with the strength-
ened first moment condition which is much weaker than the iid constraints; (2) then prove
the LLNs under Choquet expectation through a pure probabilistic argument and classi-
cal inequality technique. This generalizes the Linderberg–Feller methodology from linear
probability theory to Choquet expectation framework.

The remaining part of this article is organized as follows. Section 2 is to recall the defi-
nitions for capacity, Choquet expectation, convolutional independence and the strength-
ened first moment condition, and then present their properties concisely. In Sect. 3, we
provide some useful lemmas based on these definitions, properties and some inequality
techniques. Section 4 is devoted to the presentation of a detailed proof for the LLNs un-
der Choquet expectation through a pure probabilistic argument and classical inequality
technique. We give some concluding remarks in the last section.

2 Preliminary
In this section, we recall the definitions and properties concerning capacities and Choquet
expectations.

Let (Ω , F ) be a measurable space, Cb(R) be the set of all bounded and continuous func-
tions on R and C2

b(R) be the set of functions in Cb(R) with bounded, continuous first and
second order derivatives.

Definition 1 ([3]) A set function V: F → [0, 1] is called a capacity, if it satisfies the fol-
lowing properties:

V(∅) = 0, V(Ω) = 1;

V(A) ≤ V(B) whenever A ⊆ B and A, B ∈F .

Especially, a capacity V is 2-alternating if for all A, B ∈F ,

V(A ∪ B) ≤ V(A) + V(B) – V(A ∩ B).

Definition 2 ([3]) Let X be a random variable on (Ω ,F ). The upper Choquet expectation
(integral) of X induced by a capacity V on F is defined by

CV [X] :=
∫

Ω

X dV(t) =
∫ ∞

0
V(X > t) dt +

∫ 0

–∞

[
V(X > t) – 1

]
dt.

The lower Choquet expectation of X induced by V is given by

CV [X] := –CV [–X],

which is conjugate to the upper expectation and satisfies CV [X] ≤ CV [X].
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For simplicity, we only consider the upper Choquet expectation in the sequel, since the
lower (conjugate) version can be considered similarly.

Proposition 1 ([3, 11]) Let X, Y be two random variables on (Ω ,F ), CV be the upper
Choquet expectation induced by a capacity V. Then, we have

(1) monotonicity: CV [X] ≥ CV [Y ] for X ≥ Y ;
(2) positive homogeneity: CV [λX] = λCV [X], ∀λ ≥ 0;
(3) translation invariance: CV [X + a] = CV [X] + a, ∀a ∈R.

Compared to Proposition 1, the Choquet expectation induced by 2-alternating capacity
V implies more information than the general Choquet expectation does, for example, the
sub-additivity and sub-linearity, as presented in the following proposition.

Proposition 2 ([2, 3, 11]) Let CV be the upper Choquet expectation induced by 2-
alternating capacity V. Let X, Y be two random variables on (Ω ,F ). Then, we have

(1) sub-additivity:

CV [X + Y ] ≤ CV [X] + CV [Y ];

(2) for any constant a ∈R,

CV [aX] = a+
CV [X] – a–CV [X],

where a+ = max{a, 0} and a– = max{–a, 0};
(3) sub-linearity:

–CV
[|Y |] ≤ CV [Y ] ≤ CV [X + Y ] – CV [X] ≤ CV [Y ] ≤ CV

[|Y |].

Remark 1 Let V be a 2-alternating capacity and CV , CV be the induced upper, lower Cho-
quet expectation, respectively. Then

v(A) := CV [IA], ∀A ∈F

defines a capacity for the indicator function IA on the set A. Further, if Ac is the comple-
mentary set of A, then

V (A) = 1 – v
(
Ac), ∀A ∈F .

Next, we recall the definitions of distribution for random variables.

Definition 3 ([2]) Let CV be the upper Choquet expectation induced by a capacity V on
F . Let X be a random variable on (Ω ,F ). For any function ϕ on R with ϕ(X) ∈ F , the
distribution function of X is defined by

FX[ϕ] := CV
[
ϕ(X)

]
.
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Random variables X and Y are called identically distributed, if for any ϕ ∈ Cb(R) with
ϕ(X),ϕ(Y ) ∈F ,

CV
[
ϕ(X)

]
= CV

[
ϕ(Y )

]
< ∞.

Definition 4 ([2]) A sequence {Xi}∞i=1 of random variables is said to converge in distribu-
tion (in law) under upper Choquet expectionCV onF , if for any ϕ ∈ Cb(R) with ϕ(Xi) ∈F ,
i ≥ 1, the sequence {CV [ϕ(Xi)]}∞i=1 converges.

We conclude this section by reviewing two fundamental concepts, convolution and in-
dependence, which play important roles in the development of classical probability theory,
and then generalizing them to Choquet expectation framework.

Convolution and independence in linear probability theory. Let ξ and η be two random
variables on the probability space (Ω ,F , P), and EP[·] be the expectation operator under
probability P. ξ and η are said to be of convolution if for any bounded function ϕ,

EP
[
ϕ(ξ + η)

]
= EP

[
EP

[
ϕ(x + η)

]|x=ξ

]
.

Fubini’s theorem implies that

EP
[
ϕ(ξ + η)

]
= EP

[
EP

[
ϕ(x + η)

]|x=ξ

]
= EP

[
EP

[
ϕ(ξ + y)

]|y=η

]
. (1)

Obviously, if ξ and η are independent, then ξ and η are of convolution. However, the
converse may not be true. In this point of view, convolution is weaker than independence
in linear probability theory.

Motivated by this fact, we attempt to define a convolution-combined independence in
place of the strong independence assumption to prove the generalized LLNs under Cho-
quet expectation.

Definition 5 (Convolutional Independence) Let X and Y be two random variables and
{Xi}∞i=1 be a sequence of random variables on (Ω ,F ).

(i) The random variable X is said to be convolutionally independent of Y , if for any
function ϕ ∈ Cb(R),

CV
[
ϕ(X + Y )

]
= CV

[
CV

[
ϕ(x + Y )

]|x=X
]
.

(ii) The sequence {Xi}∞i=1 is said to be convolutionally independent, if Xi+1 is
convolutionally independent of

∑i
j=1 Xj for i ≥ 1.

Remark 2 A novel feature of this kind of convolution is its asymmetry and directionality.
According to new definition of convolution, the order of marginal Choquet expectations
may not be exchangeable. That is, the following could happen:

CV
[
CV

[
ϕ(x + Y )

]|x=X
] �= CV

[
CV

[
ϕ(X + y)

]|y=Y
]
.

Such a property is completely different from the notion of “mutual” independence in linear
probability theory, but it is more consistent with financial phenomenon.
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According to Definition 3, the verification of the identical distribution for random vari-
ables X and Y is hard to be implemented for all ϕ ∈ Cb(R) in application. We hope to reduce
the complex verification to only those functions satisfying the so-called strengthened first
moment condition. Therefore, we have the following definition.

Definition 6 (The strengthened first moment condition) A sequence {Xi}∞i=1 of random
variables on (Ω ,F ) is said to satisfy the strengthened first moment condition if the following
Choquet expectations are finite for i ≥ 1:

CV [Xi] = CV [X1], CV [Xi] = CV [X1];

CV
[|Xi|

]
= CV

[|X1|
]
, CV

[|Xi|
]

= CV
[|X1|

]
.

3 Useful lemmas
In this section, we apply the convolutional independence and the strengthened first mo-
ment condition proposed in Sect. 2, which are obviously weaker than the iid assumption
used in the existing methods, and then prove two useful lemmas.

Lemma 1 Let {Xi}∞i=1 be a sequence of convolutionally independent random variables on
(Ω ,F ). Let V be a 2-alternating capacity defined on F , and CV , CV be the induced up-
per, lower Choquet expectation, respectively. Then, for any ϕ ∈ Cb(R) and any constant
yi ∈R,

I1 ≤ CV

[
ϕ

( n∑
i=1

Xi

)]
– ϕ

( n∑
i=1

yi

)
≤ I2, (2)

where

I1 :=
n∑

m=1

inf
x∈R

{
CV

[
ϕ(x + Xn–(m–1) – ym)

]
– ϕ(x)

}
,

I2 :=
n∑

m=1

sup
x∈R

{
CV

[
ϕ(x + Xn–(m–1) – ym)

]
– ϕ(x)

}
.

Proof Set Sn :=
∑n

i=1 Xi, S0 = 0.

CV
[
ϕ(Sn)

]
– ϕ

( n∑
i=1

yi

)
=

n–1∑
m=0

�m, (3)

where

�0 := CV
[
ϕ(Sn)

]
– CV

[
ϕ(Sn–1 + y1)

]
, for m = 0;

�m := CV

[
ϕ

(
Sn–m +

m∑
i=1

yi

)]
– CV

[
ϕ

(
Sn–(m+1) +

m+1∑
i=1

yi

)]
, for m ≥ 1.
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We now estimate the term �m for 0 ≤ m ≤ n – 1. We let h(x) = CV [ϕ(x + Xn–m)] and
apply the convolutional independence of {Xi}n

i=1 to derive

CV

[
ϕ

(
Sn–m +

m∑
i=1

yi

)]
= CV

[
CV

[
ϕ(x + Xn–m)

]|x=Sn–(m+1)+
∑m

i=1 yi

]

= CV

[
h

(
Sn–(m+1) +

m∑
i=1

yi

)]
,

which, combined with the sub-linearity of CV in Proposition 2, implies

�m = CV

[
h

(
Sn–(m+1) +

m∑
i=1

yi

)]
– CV

[
ϕ

(
Sn–(m+1) +

m∑
i=1

yi + ym+1

)]

≤ CV

[
h

(
Sn–(m+1) +

m∑
i=1

yi

)
– ϕ

(
Sn–(m+1) +

m∑
i=1

yi + ym+1

)]

≤ sup
x∈R

{
h(x) – ϕ(x + ym+1)

}

= sup
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}
.

On the other hand, we apply the sub-linearity in Proposition 2 again,

�m = CV

[
h

(
Sn–(m+1) +

m∑
i=1

yi

)]
– CV

[
ϕ

(
Sn–(m+1) +

m∑
i=1

yi + ym+1

)]

≥ CV

[
h

(
Sn–(m+1) +

m∑
i=1

yi

)
– ϕ

(
Sn–(m+1) +

m∑
i=1

yi + ym+1

)]

≥ inf
x∈R

{
h(x) – ϕ(x + ym+1)

}

= inf
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}
.

That is,

inf
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}

≤ �m ≤ sup
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}
.

This with (3) implies that

n–1∑
m=0

inf
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}

≤ CV
[
ϕ(Sn)

]
– ϕ

( n∑
i=1

yi

)

≤
n–1∑
m=0

sup
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}
.
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The desired conclusion (2) then follows directly from the facts that

sup
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}

= sup
x∈R

{
CV

[
ϕ(x + Xn–m – ym+1)

]
– ϕ(x)

}
,

inf
x∈R

{
CV

[
ϕ(x + Xn–m)

]
– ϕ(x + ym+1)

}

= inf
x∈R

{
CV

[
ϕ(x + Xn–m – ym+1)

]
– ϕ(x)

}
,

which completes the proof. �

Further, we estimate the bounds for I1, I2 of Lemma 1 under the strengthened first mo-
ment condition.

Lemma 2 Let V be a 2-alternating capacity and CV , CV be the induced upper and lower
Choquet expectation, respectively. Let the sequence {Xi}∞i=1 of random variables satisfy the
strengthened first moment condition. Set CV [Xi] = μ and CV [Xi] = μ, i ≥ 1. Then, for each
function ϕ ∈ C2

b(R), there exists a positive constant bn(ε) with bn(ε) → 0, as n → ∞, such
that

(I)
∑n

i=1 supx∈R{CV [ϕ(x + Xi
n )] – ϕ(x)} ≤ supx∈R G(ϕ′(x),μ,μ) + bn(ε).

(II)
∑n

i=1 infx∈R{CV [ϕ(x + Xi
n )] – ϕ(x)} ≥ infx∈R G(ϕ′(x),μ,μ) – bn(ε).

Here G(x,μ,μ) := x+μ – x–μ with constants μ < μ < ∞.

Proof Applying the Taylor expansion, we have, for ϕ and 0 ≤ θ1 ≤ 1,

ϕ

(
x +

Xi

n

)
– ϕ(x) = ϕ′(x)

Xi

n
+ Jn(x, Xi),

where Jn(x, Xi) := (ϕ′(x + θ1
Xi
n ) – ϕ′(x)) Xi

n .
Take the upper Choquet expectation CV on both sides of the above equality and apply

the sub-linearity of CV ,

–CV
[∣∣Jn(x, Xi)

∣∣] ≤ CV

[
ϕ

(
x +

Xi

n

)
– ϕ(x)

]
– CV

[
ϕ′(x)

Xi

n

]
≤ CV

[∣∣Jn(x, Xi)
∣∣].

Since CV [Xi] = μ, CV [Xi] = μ, i = 1, 2, . . . n, we have

CV

[
ϕ′(x)

Xi

n

]
=

1
n

G
(
ϕ′(x),μ,μ

)
.

Therefore, by the translation invariance for CV in Lemma 1,

–CV
[∣∣Jn(x, Xi)

∣∣]

≤ CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x) –

1
n

G
(
ϕ′(x),μ,μ

)

≤ CV
[∣∣Jn(x, Xi)

∣∣]. (4)
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Take supremum supx∈R on both sides of (4),

sup
x∈R

{
–CV

[∣∣Jn(x, Xi)
∣∣]}

≤ sup
x∈R

{
CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x) –

1
n

G
(
ϕ′(x),μ,μ

)}

≤ sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣]. (5)

For convenience, denote

Ti
n(x) := CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x) –

1
n

G
(
ϕ′(x),μ,μ

)
.

From (5), we have

–
n∑

i=1

sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣] ≤
n∑

i=1

sup
x∈R

Ti
n(x) ≤

n∑
i=1

sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣]. (6)

To estimate the right hand term
∑n

i=1 supx∈RCV [|Jn(x, Xi)|] in (6), we apply the strength-
ened first moment condition

CV [Xi] = CV [X1],CV
[|Xi|

]
= CV

[|X1|
]

< ∞, i ≥ 1

and for any ε > 0,

CV
[|X1|

]
< ∞ implies CV

[|X1|I{|X1|>nε}
] → 0, as n → ∞

derived from the definition of Choquet expectation [3, 11]. Thus, we have, for any ε > 0,

n∑
i=1

sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣]

≤
n∑

i=1

{
sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣I{| Xi
n |>ε}

]
+ sup

x∈R
CV

[∣∣Jn(x, Xi)
∣∣I{| Xi

n |≤ε}
]}

≤
n∑

i=1

CV

[(
sup
x∈R

∣∣∣∣ϕ′
(

x + θ1
Xi

n

)∣∣∣∣ + sup
x∈R

∣∣ϕ′(x)
∣∣
) |Xi|

n
I{|Xi|>nε}

]

+
n∑

i=1

1
2
CV

[
sup
x∈R

∣∣∣∣ϕ′′
(

x + θ2
Xi

n

)∣∣∣∣X2
i

n2 I{|Xi|≤nε}
]

≤
n∑

i=1

1
n

2
∥∥ϕ′∥∥CV

[|Xi|I{|Xi|>nε}
]

+
n∑

i=1

1
n2

∥∥ϕ′′∥∥CV
[|Xi|

]
nε

= 2
∥∥ϕ′∥∥CV

[|X1|I{|X1|>nε}
]

+
∥∥ϕ′′∥∥CV

[|X1|
]
ε

:= bn(ε) → 0, n → ∞, (7)

where ‖ϕ‖ := supx∈R |ϕ(x)| and 0 ≤ θ1, θ2 ≤ 1.
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Combining (6) and (7), for the arbitrary of ε, as n → ∞, we have

n∑
i=1

sup
x∈R

Ti
n(x) ≤

n∑
i=1

sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣] ≤ bn(ε) → 0. (8)

With the help of the estimates (8), we finally derive the estimate for the first assertion
(I) of this lemma.

n∑
i=1

sup
x∈R

{
CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x)

}

=
n∑

i=1

sup
x∈R

{
CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x) –

1
n

G
(
ϕ′(x),μ,μ

)
+

1
n

G
(
ϕ′(x),μ,μ

)}

≤
n∑

i=1

sup
x∈R

Ti
n(x) +

n∑
i=1

sup
x∈R

{
1
n

G
(
ϕ′(x),μ,μ

)}

≤ bn(ε) + sup
x∈R

G
(
ϕ′(x),μ,μ

)
.

Taking infimum infx∈R on both sides of (4) and arguing similarly as for the first assertion
(I), we obtain the estimate for the second assertion (II) of this lemma.

n∑
i=1

inf
x∈R

Ti
n(x) ≥ –

n∑
i=1

sup
x∈R

CV
[∣∣Jn(x, Xi)

∣∣] ≥ –bn(ε).

Hence

n∑
i=1

inf
x∈R

{
CV

[
ϕ

(
x +

Xi

n

)]
– ϕ(x)

}

≥
n∑

i=1

inf
x∈R

Ti
n(x) +

n∑
i=1

inf
x∈R

{
1
n

G
(
ϕ′(x),μ,μ

)}

≥ –bn(ε) + inf
x∈R

G
(
ϕ′(x),μ,μ

)
.

This completes the proof. �

For later use we quote from [2] a conclusion related to the function G defined in
Lemma 2.

Lemma 3 ([2]) Let G(x, y, z) be the function defined in Lemma 2, that is,

G(x, y, z) := x+y – x–z.

Then, for any monotonic function ϕ ∈ Cb(R),
(I) infy∈Dn supx∈R G(ϕ′(x),μ – 1

n
∑n

i=1 yi,μ – 1
n
∑n

i=1 yi) = 0.
(II) infy∈Dn infx∈R G(ϕ′(x),μ – 1

n
∑n

i=1 yi,μ – 1
n
∑n

i=1 yi) = 0.
Here, Dn := {y := (y1, y2, . . . , yn) : yi ∈ [μ,μ], i = 1, 2, . . . , n}.
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4 Main results
In this section, we shall prove the generalized LLNs under Choquet expectation under the
convolutional independence and the strengthened first moment conditions in Theorem 1
and Theorem 2. Theorem 1 is for any monotonic function ϕ ∈ Cb(R) and Theorem 2 is
for general ϕ ∈ Cb(R). These two theorems generalize the existing LLNs from the strong
iid assumption to the much weaker conditions.

Theorem 1 (Generalized LLNs for monotonic functions in Cb(R)) Let V be a 2-alterna-
ting capacity defined on F , and CV , CV be the induced upper, lower Choquet expectation,
respectively. Let {Xi}∞i=1 be a convolutionally independent sequence of random variables on
(Ω ,F ) with CV [Xi] = μ, CV [Xi] = μ. Assume {Xi}∞i=1 satisfies the strengthened first moment
condition and Sn :=

∑n
i=1 Xi. Then, for each monotonic function ϕ ∈ Cb(R),

(I) lim
n→∞CV

[
ϕ

(
Sn

n

)]
= sup

μ≤x≤μ

ϕ(x);

(II) lim
n→∞CV

[
ϕ

(
Sn

n

)]
= inf

μ≤x≤μ
ϕ(x).

(9)

Proof We decompose the proof into 2 steps. Step 1 is to prove the conclusion for any
monotonic ϕ ∈ C2

b(R), and Step 2 is for any monotonic ϕ ∈ Cb(R).
Step 1 for any monotonic ϕ ∈ C2

b(R): Set

Dn =
{

y := (y1, y2, . . . , yn) : μ ≤ yi ≤ μ, i = 1, . . . , n
}

.

Obviously, supy∈Dn ϕ( 1
n
∑n

i=1 yi) = supμ≤x≤μ ϕ(x). Thus,

CV

[
ϕ

(
1
n

Sn

)]
– sup

μ≤x≤μ

ϕ(x)

= CV

[
ϕ

(
1
n

Sn

)]
– sup

y∈Dn
ϕ

(
1
n

n∑
i=1

yi

)

= inf
y∈Dn

{
CV

[
ϕ

(
1
n

Sn

)]
– ϕ

(
1
n

n∑
i=1

yi

)}
. (10)

Applying Lemma 1, (I) of Lemma 2 and (I) of Lemma 3, we derive, for any ε > 0,

inf
y∈Dn

{
CV

[
ϕ

(
1
n

Sn

)]
– ϕ

(
1
n

n∑
i=1

yi

)}

≤ inf
y∈Dn

n∑
i=1

sup
x∈R

{
CV

[
ϕ

(
x +

Xi – yi

n

)]
– ϕ(x)

}

≤ inf
y∈Dn

{
sup
x∈R

G

(
ϕ′(x),μ –

1
n

n∑
i=1

yi,μ –
1
n

n∑
i=1

yi

)
+ bn(ε)

}

= inf
y∈Dn

sup
x∈R

G

(
ϕ′(x),μ –

1
n

n∑
i=1

yi,μ –
1
n

n∑
i=1

yi

)
+ bn(ε)

= bn(ε). (11)
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Further, the term bn(ε) in (11) is still a positive real-valued constant and similar to inequal-
ity (7), we have

bn(ε) = 2
∥∥ϕ′∥∥{

CV
[|X1|I{|X1|>nε–μ}

]

+ μCV [I{|X1|>nε–μ}]
}

+ ε
∥∥ϕ′′∥∥(

CV
[|X1|

]
+ μ

)

→ 0, as n → ∞,

where the definition of Choquet expectation and the fact that CV [I{|X1|>nε–μ}] ≤ 1
nε–μ

×
CV [|X1|] → 0 as n → ∞ are used. Thus, combining this inequality with (10) and (11), we
have

lim sup
n→∞

CV

[
ϕ

(
1
n

Sn

)]
≤ sup

μ≤x≤μ

ϕ(x). (12)

On the other hand, we apply Lemma 1, the second assertion (II) of Lemma 2 and the
second assertion (II) of Lemma 3, and we have, for any ε > 0,

inf
y∈Dn

{
CV

[
ϕ

(
1
n

Sn

)]
– ϕ

(
1
n

n∑
i=1

yi

)}

≥ inf
y∈Dn

n∑
n=1

inf
x∈R

{
CV

[
ϕ

(
x +

Xi – yi

n

)]
– ϕ(x)

}

≥ inf
y∈Dn

{
inf
x∈R

G

(
ϕ′(x),μ –

1
n

n∑
i=1

yi,μ –
1
n

n∑
i=1

yi

)
– bn(ε)

}

= inf
y∈Dn

inf
x∈R

G

(
ϕ′(x),μ –

1
n

n∑
i=1

yi,μ –
1
n

n∑
i=1

yi

)
– bn(ε)

= –bn(ε) → 0, n → ∞.

According to (10), we get

lim inf
n→∞ CV

[
ϕ

(
1
n

Sn

)]
≥ sup

μ≤x≤μ

ϕ(x). (13)

Combining (12) with (13), we can prove that conclusion (I) holds for any monotonic func-
tion ϕ ∈ C2

b(R).
Step2: For each monotone ϕ ∈ Cb(R), there exists a monotone function ϕ ∈ C2

b(R) such
that [12, 13]

sup
x∈R

∣∣ϕ(x) – ϕ(x)
∣∣ ≤ ε, ∀ε > 0.

Apply Step 1 to function ϕ(x) and the sub-linearity of CV ,
∣∣∣∣CV

[
ϕ

(
Sn

n

)]
– sup

μ≤x≤μ

ϕ(x)
∣∣∣∣

≤
∣∣∣∣CV

[
ϕ

(
Sn

n

)]
– CV

[
ϕ

(
Sn

n

)]∣∣∣∣
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+
∣∣∣∣CV

[
ϕ

(
Sn

n

)]
– sup

μ≤x≤μ

ϕ(x)
∣∣∣∣

+
∣∣∣ sup
μ≤x≤μ

ϕ(x) – sup
μ≤x≤μ

ϕ(x)
∣∣∣

≤ 2ε +
∣∣∣∣CV

[
ϕ

(
Sn

n

)]
– sup

μ≤x≤μ

ϕ(x)
∣∣∣∣. (14)

Thus, we prove the conclusion (I) for any monotonic function ϕ ∈ Cb(R).
The second conclusion (II) of this theorem follows directly from a combination of the

conjugate property,

CV
[
ϕ(Xi)

]
= –CV

[
–ϕ(Xi)

]
, ∀Xi ∈F , i ≥ 1,

and the proved conclusion (I). This completes the proof. �

An application of Theorem 1 to a special pair functions Hδ(x) and hδ(x) defined below,
which can be viewed as continuous approximation from upper bound and lower bound,
respectively, to the discontinuous indicator function IA, we can infer the following two
corollaries concerning the upper and lower Choquet expectation CV and CV or the in-
duced upper and lower capacity V (A) and v(A).

Corollary 1 Let the function Hδ(x) be defined by

Hδ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x < μ – δ,
μ–x
δ

, μ – δ ≤ x < μ,

0, μ ≤ x < μ,
x–μ

δ
, μ ≤ x < μ,

1, x ≥ μ + δ.

Then we have

0 ≤ CV [I{ Sn
n <μ–δ}∪{ Sn

n >μ+δ}] ≤ CV

[
Hδ

(
Sn

n

)]
→ 0 as n → ∞. (15)

Proof Noticing that we cannot apply directly the conclusion (I) of Theorem 1 to prove (15)
since the function Hδ is non-monotonic. However, we can split Hδ into a sum of monotonic
functions, for example,

Hδ(x) = H (1)
δ (x) + H (2)

δ (x)

with

H (1)
δ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x < μ – δ,
μ–x
δ

, μ – δ ≤ x < μ,

0, x ≥ μ,

H (2)
δ (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < μ,
x–μ

δ
, μ ≤ x < μ,

1, x ≥ μ + δ.
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From this, we have

0 ≤ CV [I{ Sn
n <μ–δ}∪{ Sn

n >μ+δ}] (by monotoncity)

≤ CV

[
Hδ

(
Sn

n

)]
(by monotoncity)

= CV

[
H (1)

δ

(
Sn

n

)
+ H (2)

δ

(
Sn

n

)]
(by spliting)

≤ CV

[
H (1)

δ

(
Sn

n

)]
+ CV

[
(H (2)

δ

(
Sn

n

)]
(by sublinearity)

→ sup
μ≤x≤μ

H (1)
δ (x) + sup

μ≤x≤μ

H (2)
δ (x) (by Theorem 1)

= 0 + 0 = 0,

which implies (15). This completes the proof. �

Corollary 2 Assume that x∗ ∈ [μ,μ], δ > 0 is sufficiently small such that (x∗ – δ, x∗ + δ) ⊂
[μ,μ] as x∗ ∈ (μ,μ) or (x∗ – δ, x∗) ⊂ [μ,μ] as x∗ = μ or (x∗, x∗ + δ) ⊂ [μ,μ] as x∗ = μ, and
the function hδ(x) is defined by

hδ(x) =

⎧⎨
⎩

1 – (x–x∗)2

δ2 , |x – x∗| < δ,

0, others,
for x∗ ∈ (μ,μ),

hδ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < x∗ – δ,

1 – (x–x∗)2

δ2 , x∗ – δ ≤ x ≤ x∗,

1, x > x∗,

for x∗ = μ;

hδ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x < x∗,

1 – (x–x∗)2

δ2 , x∗ ≤ x ≤ x∗ + δ,

0, x > x∗ + δ,

for x∗ = μ.

Then we have

1 ≥ CV [I{| Sn
n –x∗|<δ}] ≥ CV

[
hδ

(
Sn

n

)]
→ 1, as n → ∞. (16)

Proof Noting that the function hδ is non-monotonic as x∗ ∈ (μ,μ), we decompose it into
a sum of monotonic functions in order to apply Theorem 1; for example,

hδ(x) = h(1)
δ (x) + h(2)

δ (x) – 1

with

h(1)
δ (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ x∗ – δ,

hδ , x∗ – δ < x ≤ x∗,

1, x > x∗,

h(2)
δ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≤ x∗,

hδ , x∗ < x ≤ x∗ + δ,

0, x > x∗ + δ.
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From this, we have

1 ≥ CV [I{| Sn
n –x∗|<δ}] (by monotoncity)

≥ CV

[
hδ

(
Sn

n

)]
(by monotoncity)

= CV

[
h(1)

δ

(
Sn

n

)
+ h(2)

δ

(
Sn

n

)
– 1

]

= CV

[
h(1)

δ

(
Sn

n

)
–

(
1 – h(2)

δ

(
Sn

n

))]
(by spliting)

≥ CV

[
h(1)

δ

(
Sn

n

)]
– CV

[(
1 – h(2)

δ

(
Sn

n

))]
(by sublinearity)

→ sup
μ≤x≤μ

h(1)
δ (x) – sup

μ≤x≤μ

(
1 – h(2)

δ (x)
)

(by Theorem 1)

= 1 – 0 = 1,

which implies (16).
As x∗ = μ or x∗ = μ, we can directly apply Theorem 1 to obtain (16) since hδ(x) is mono-

tonic and continuous in these two cases. This completes the proof. �

Combining Theorem 1, Corollary 1 and Corollary 2, we shall present the generalized
LLNs for functions in Cb(R), the main result of this article.

Theorem 2 (Generalized LLNs for functions in Cb(R)) Let the assumptions in Theorem 1
hold. Then, for any function ϕ ∈ Cb(R),

(I) lim
n→∞CV

[
ϕ

(
Sn

n

)]
= sup

μ≤x≤μ

ϕ(x);

(II) lim
n→∞CV

[
ϕ

(
Sn

n

)]
= inf

μ≤x≤μ
ϕ(x).

(17)

Proof Since the conclusions (I) and (II) are conjugate, we mainly pay attention to the proof
for (I), and (II) can be derived analogously.

For the conclusion (I), it suffices to show that

lim sup
n→∞

CV

[
ϕ

(
Sn

n

)]
≤ sup

μ≤x≤μ

ϕ(x), (18)

and

lim inf
n→∞CV

[
ϕ

(
Sn

n

)]
≥ sup

μ≤x≤μ

ϕ(x). (19)

Let x∗ ∈ [μ,μ] be a point such that ϕ(x∗) = supμ≤x≤μ ϕ(x). we infer from the continuity
of ϕ that, for any ε > 0, there exists a δ > 0 such that

sup
μ–δ≤x≤μ+δ

ϕ(x) ≤ ϕ
(
x∗) + ε.
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We also let M = supx∈R |ϕ(x)|. Then, applying (15) of Corollary 1 to

V
({

Sn

n
> μ + δ

}
∪

{
Sn

n
< μ – δ

})
→ 0, as n → ∞,

we obtain

CV

[
ϕ

(
Sn

n

)]

≤ CV

[
ϕ

(
Sn

n

)
I{μ–δ≤ Sn

n ≤μ+δ}

]
+ CV

[
ϕ

(
Sn

n

)
I{ Sn

n <μ–δ}∪{ Sn
n >μ+δ}

]

≤ sup
μ–δ≤x≤μ+δ

ϕ(x) + M · V
({

Sn

n
> μ + δ

}
∪

{
Sn

n
< μ – δ

})

→ ϕ
(
x∗) + ε, as n → ∞.

This implies (18).
On the other hand, we have

CV

[
ϕ

(
Sn

n

)]
– ϕ

(
x∗)

= CV

[(
ϕ

(
Sn

n

)]
– ϕ

(
x∗))I{| Sn

n –x∗|<δ} +
(

ϕ

(
Sn

n

)
] – ϕ

(
x∗))I{| Sn

n –x∗|≥δ}]

≥ CV [–ε – 2M · I{| Sn
n –x∗|≥δ}]

= –ε – 2M · v
(∣∣∣∣Sn

n
– x∗

∣∣∣∣ ≥ δ

)

= –ε – 2M · (1 – V
(∣∣∣∣Sn

n
– x∗

∣∣∣∣ < δ

)
.

Noticing that

V
(∣∣∣∣Sn

n
– x∗

∣∣∣∣ < δ

)
= CV [I{| Sn

n –x∗|<δ}] ≥ CV
(
hδ(x)

)

and (16) of Corollary 2, then combining with the above inequality, we arrive at

1 ≥ V
(∣∣∣∣Sn

n
– x∗

∣∣∣∣ < δ

)
= CV [I{| Sn

n –x∗|<δ}] ≥ CV
(
hδ(x)

) → 1, n → ∞, (20)

and thus

v
(∣∣∣∣Sn

n
– x∗

∣∣∣∣ ≥ δ

)
= 1 – V

(∣∣∣∣Sn

n
– x∗

∣∣∣∣ < δ

)
→ 0, n → ∞. (21)

We conclude from the above deduction,

CV

[
ϕ

(
Sn

n

)]
– ϕ

(
x∗) ≥ –ε – 2Mε → 0, n → ∞,
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from which we can infer (19),

lim inf
n→∞CV

[
ϕ

(
Sn

n

)]
≥ sup

μ≤x≤μ

ϕ(x).

A combination of the conclusions for (18) and (19) completes the proof of this theo-
rem. �

5 Concluding remark
In this article, we employed an elementary argument technique, such as Taylor’s expan-
sion, the elementary inequalities arising from the sub-linearity of Choquet expectation,
and made mild assumptions of the convolutional independence and the strengthened first
moment condition to give a new proof for the generalized LLNs under Choquet expecta-
tion.

The novel features are: (1) The proof is purely probabilistic without using other arti-
ficial tools like characteristic functions or PDEs. This can be viewed as an extension of
Linderberg–Feller’s ideas for linear probability theory to Choquet expectation framework.
(2) The proof is accomplished under much weaker conditions, and thus we generalize the
LLNs under Choquet expectation theory from the strong iid assumptions to the convo-
lutional independence combined with the strengthened first moment assumptions. This
facilitates the application of Choquet expectation in the simulation for financial phenom-
ena.
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