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1 Introduction
The inverse variational inequalities were developed by He et al. [1, 2], which have many
applications in various fields such as market equilibrium issues in economics, transporta-
tion networks and communication networks; see [3–8]. In 2014, Li et al. [9] introduced
a new class of inverse mixed variational inequality in the setting of Hilbert spaces, which
has many applications in simple traffic network equilibrium control problems. Recently,
Habestreit et al. [10] focused on an inverse problem of parameter identification in the vec-
tor variational and vector quasi-variational inequalities and provided the existence results
for the regularized least square based optimization problems.

For the analysis of optimization problems, the idea of a gap function was first introduced
and plays an important role in developing iterative algorithms, but more importantly in
evaluating their convergence properties and obtaining useful stopping rules for iterative
algorithms; see [11–13]. Error bounds are very important and useful because they provide
a measure of the distance between a solution set and a feasible arbitrary point. Solodov [14]
developed some merit functions associated with a generalized mixed variational inequal-
ity (defined over the entire space) and used those functions to obtain mixed variational in-
equality error limits. Recently, Aussel et al. [15] introduced a new inverse quasi-variational
inequality (IQVI), obtained local (global) error bounds for an IQVI in terms of some gap
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functions to demonstrate IQVI’s applicability, and gave an example of problems with road
pricing. Sun and Chai [16] introduced regularized gap functions for generalized vector
variation inequalities (GVVI) and obtained GVVI error bounds for regularized gap func-
tions. Later on several authors studied the gap function for general variational inequality
and Minty type variational inequality and demonstrate their error bounds by using the
monotonicity in term of those gap functions; see [1–14]. Wu and Huang [17] implemented
generalized f -projection operators to deal with mixed variational inequality. Using the
generalized f -projection operator, Li and Li [18] recently investigated a restricted mixed
set-valued variational inequality in Hilbert spaces and proposed four merit functions for
the restricted mixed set-valued variational inequality and obtained error bounds through
these functions. Wang et al. [19] considered a vector inverse mixed quasi-variational in-
equality and proposed the gap function for the vector inverse mixed quasi-variational in-
equality and obtained error bounds by using the monotonicity and Lipschitz continuity of
the underlying mappings. Very recently in 2019, Kobis et al. [20] suggested the constrained
inverse variational inequality and by using the Gerstewitz functional, they established the
sufficient and necessary optimality condition of the constrained inverse variational in-
equality and obtained the gap function and error bounds for the constrained inverse vari-
ational inequality problem.

Motivated and inspired by the research going on in this direction, the purpose of this pa-
per is to introduce and study the mixed set valued vector inverse quasi-variational inequal-
ity problems (MSVIQVIP). We propose three gap functions, the residual gap function, the
regularized gap function, the D-gap function. By using these gap functions and the gen-
eralized f -projection operator, and under suitable conditions, we obtain error bounds for
this kind of mixed set-valued vector inverse quasi-variational inequalities. These bounds
provide effective estimated distances between an arbitrary feasible point and the solution
set of MSVIQVIPs. The results presented in the paper improve and generalize the corre-
sponding ones in [15, 19, 21].

2 Preliminaries
Throughout this article, R+ denotes the set of non-negative real numbers, 0 denotes the
origin of all finite dimensional spaces, and ‖ ·‖ and 〈·, ·〉, respectively, denote the norm and
the inner product in finite dimensional spaces. Let Ω ,F : Rn −→ Rn be the set-valued map-
pings with nonempty closed convex values, Qi : Rn −→ Rn (i = 1, 2, . . . , m) be single-valued
mappings, h : Rn −→ Rn be a single-valued mapping, and fi : Rn −→ R (i = 1, 2, . . . , m) be
real-valued convex functions. For abbreviation, we put

f = (f1, f2, . . . , fm), Q = (Q1,Q2, . . . ,Qm),

and, for any x, v ∈ Rn,

〈
Q(x), v

〉
=

(〈
Q1(x), v

〉
,
〈
Q2(x), v

〉
, . . . ,

〈
Qn(x), v

〉)
.

In this paper, we consider the mixed set valued vector inverse quasi-variational inequal-
ity for finding x̄ ∈ Ω(x̄) and ū ∈ F(x̄) such that

〈
Q(ū), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

)
/∈ – int Rm

+ , ∀y ∈ Ω(x̄). (2.1)

The solution set of (2.1) is denoted by (sol(2.1)).
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Special Cases
(i) If F is a single-valued mapping, then (2.1) reduces to the vector inverse mixed

quasi-variational inequality for finding x̄ ∈ Ω(x̄) such that

〈
Q(x̄), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

)
/∈ – int Rm

+ , ∀y ∈ Ω(x̄), (2.2)

which was studied in [19].
(ii) If C ⊂ Rn is a nonempty closed and convex subset, h(x) = x and Ω(x) = C for all

x ∈ Rn, then (2.2) collapses to the generalized vector variational inequality for
finding x̄ ∈ C such that

〈
Q(x̄), y – x

〉
+ f (y) – f (x) /∈ – int Rm

+ , ∀y ∈ C, (2.3)

which was considered in [16].
(iii) If f (x) = 0 for all x ∈ Rn, then (2.3) reduces to vector variational inequality

introduced and studied by [22–25]. Obviously, for m = 1, (2.2) collapses to the
inverse mixed quasi-variational inequality for finding x̄ ∈ Ω(x̄) such that

〈
Q1(x̄), y – h(x̄)

〉
+ f1(y) – f1

(
h(x̄)

) ≥ 0, ∀y ∈ Ω(x̄), (2.4)

which was studied in [21].
(iv) If f1(x) = 0 for all x ∈ R̄n, then inverse mixed quasi-variational inequality collapses

to the following inverse quasi-variational inequality for finding x̄ ∈ Ω(x̄) such that

〈
Q1(x̄), y – h(x̄)

〉 ≥ 0, ∀y ∈ Ω(x̄). (2.5)

(v) If C ⊂ Rn is a nonempty closed and convex subset and Ω(x) = C for all x ∈ Rn, then
the inverse mixed quasi-variational inequality collapses to the following mixed
variational inequality for finding x̄ ∈ C such that

〈
Q1(x̄), y – h(x̄)

〉
+ f1(y) – f1

(
h(x̄)

) ≥ 0, ∀y ∈ C, (2.6)

which was studied in [15].
(vi) When C = Rn, then the mixed variational inequality was investigated by Solodov

[14].
(vii) When Q1(x) = x, ∀x ∈ Rn, the mixed variational inequality becomes the inverse

mixed variational inequality which was introduced and studied by [9].
(viii) For i = 1, 2, . . . , m, we denote the inverse mixed quasi-variational inequality

(IMQVI) associated with Qi, h, Ω , and fi as (IMQVI)i. The solution sets of
(IMQVI)i are denoted by sol(IMQVI)i.

In this paper, we intend to study several scalar-valued gap functions and error bounds for
a mixed set-valued vector inverse quasi-variational inequality. In order to do so, we shall
recall some notations and definitions, which will be used in proving our main results.

Definition 2.1 ([15]) Let G : Rn −→ Rn and g : Rn −→ Rn be two maps.
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(i) (G, g) is said to be a strongly monotone couple with modulus μ if there exists a
constant μ > 0 such that

〈
G(y) – G(x), g(y) – g(x)

〉 ≥ μ‖y – x‖2, ∀x, y ∈ Rn;

(ii) g is said to be L-Lipschitz continuous on Rn if there exists a constant L > 0 such that

∥∥g(x) – g(y)
∥∥ ≤L‖x – y‖, ∀x, y ∈ Rn.

For any fixed ρ > 0, let G : Rn × Ω̃ −→ (–∞, +∞] be a function defined as follows:

G(ϕ, x) = ‖x‖2 – 2〈ϕ, x〉 + ‖ϕ‖2 + 2ρf (x), ∀ϕ ∈ Rn, x ∈ Ω̃ , (2.7)

where Ω̃ ⊂ Rn is a nonempty closed and convex subset, and f : Rn −→R is convex.

Definition 2.2 ([17]) We say that fג
Ω̃

: Rn −→ 2Ω̃ is a generalized f -projection operator if

ג
f
Ω̃

ϕ =
{

w ∈ Ω̃ : G(ϕ, w) = inf
y∈Ω̃

G(ϕ, y)
}

, ∀ϕ ∈ Rn.

Remark 2.3 If f (x) = 0 for all x ∈ Ω̃ , then the generalized f -projection operator fג
Ω̃

is equiv-
alent to the following metric projection operator:

PΩ̃ (ϕ) =
{

w ∈ Ω̃ : ‖w – ϕ‖ = inf
y∈Ω̃

‖y – ϕ‖
}

, ∀ϕ ∈ Rn.

Lemma 2.4 ([9, 17]) The following statements hold:
(i) For any given ϕ ∈ Rn, fג

Ω̃
ϕ is nonempty and single-valued.

(ii) For any given ϕ ∈ Rn, x = ג
f
Ω̃

ϕ if and only if

〈x – ϕ, y – x〉 + ρf (y) – ρf (x) ≥ 0, ∀y ∈ Ω̃ .

(iii) ג
f
Ω̃

: Rn −→ Ω is nonexpansive, that is,

fג∥∥
Ω̃

x – ג
f
Ω̃

y
∥∥ ≤ ‖x – y‖, ∀x, y ∈ Rn.

Lemma 2.5 ([21]) Let m be a positive number, B ⊂ Rn be a nonempty subset such that

‖v‖ ≤ m for all v ∈ B.

Let Ω : Rn −→ Rn be a set-valued mapping such that, for each x ∈ Rn, Ω(x) is a closed
convex set, and let f : Rn −→R be a convex function on Rn. Assume that

(i) there exists a constant γ > 0 such that

H
(
Ω(x),Ω(y)

) ≤ γ ‖x – y‖, x, y ∈ Rn;

(ii) 0 ∈ ⋂
w∈Rn Ω(w);
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(iii) f is �-Lipschitz continuous on Rn. Then there exists a constant κ =
√

6γ (m + ρ�)
such that

fג∥∥
Ω(x)z – ג

f
Ω(x)z

∥∥ ≤ κ‖x – y‖, ∀x, y ∈ Rn, z ∈ B.

Definition 2.6 ([19]) A function r : Rn −→ R is said to be a gap function for a mixed
set-valued vector inverse quasi-variational inequality on a set S̃ ⊂ Rn if it satisfies the
following conditions:

(i) r(x) ≥ 0 for any x ∈ S̃ ;
(ii) r(x̄) = 0, x̄ ∈ S̃ if and only if x̄ is a solution of (2.1).

Gap functions play an important role in the design of iterative algorithms to solve a
mixed set-valued vector inverse quasi-variational inequality. But more important is it to
evaluate their convergence properties and to obtain useful stopping rules for iterative al-
gorithms. This motivates us to research and evaluate various gap functions for a mixed
set-valued vector inverse quasi-variational inequality.

3 The residual gap functions
In this section, we will give the residual gap function for a mixed set-valued vector inverse
quasi-variational inequality and prove error bounds related to the residual gap function.
For a mixed set-valued vector inverse quasi-variational inequality, we define the residual
gap function as follows:

rρ(x) = min
1≤i≤m

{∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥}
, x ∈ Rn, u ∈ F(x),ρ > 0. (3.1)

Theorem 3.1 Suppose that F : Rn −→ Rn is a set-valued mapping and Qi : Rn −→ Rn

(i = 1, 2, . . . , m) are single-valued mappings. Assume that h : Rn −→ Rn is a single-valued
mapping, then, for any ρ > 0, rρ(x) is a gap function for (2.1) on Rn.

Proof Obviously, rρ(x) ≥ 0 for any x ∈ Rn. On the other hand, if

rρ(x̄) = 0,

then there exists 0 ≤ i0 ≤ m such that

h(x̄) = ג
fi0
Ω(x̄)

[
h(x̄) – ρQi0 (ū)

]
, ∀ū ∈ F(x̄).

Lemma 2.4 implies that

〈
h(x̄) –

[
h(x̄) – ρQi0 (ū)

]
, y – h(x̄)

〉
+ ρf (y) – ρf

(
h(x̄)

) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄)

and so

〈
Qi0 (ū), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄).

It ensures that

〈
Q(ū), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

)
/∈ – int Rm

+ , ∀y ∈ Ω(x̄), ū ∈ F(x̄).

Thus, x̄ is a solution of (2.1).
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Conversely, if x̄ is a solution of (2.1), there exists 1 ≤ i0 ≤ m such that

〈
Qi0 (ū), y – h(x̄)

〉
+ fi0 (y) – fi0

(
h(x̄)

) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄).

By Lemma 2.4, we have

h(x̄) = ג
fi0
Ω(x̄)

[
h(x̄) – ρQi0 (ū)

]
, ū ∈ F(x̄).

This means that

rρ(x̄) = min
1≤i≤m

{∥∥h(x̄) – ג
fi
Ω(x̄)

[
h(x̄) – ρQi(ū)

]∥∥}
= 0.

The proof is completed. �

Next we will give the residual gap function rρ , error bounds for (2.1).

Theorem 3.2 Let F : Rn −→ Rn be H-ϑ-Lipschitz continuous, Qi : Rn −→ Rn (i =
1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn −→ Rn be �-Lipschitz continuous, and for
i = 1, 2, . . . , m, (Qi,h) be strongly monotone couples with modulus μi. Let

m⋂

i=1

(
sol(2.1)i) �= ∅.

Assume that there exists κi ∈ (0, μi
ϑLi

) such that

fiג∥∥
Ω(x)z – ג

fi
Ω(y)z

∥∥ ≤ κi‖x – y‖, ∀x, y ∈ Rn, u ∈ F(x), z ∈ {
v | v = h(x) – ρQi(u)

}
. (3.2)

Then, for any x ∈ Rn and ρ > κi�
μi–ϑκiLi

,

d
(
x,

(
sol(2.1)

)) ≤ ρϑLi + �

ρμi – ρκiϑLi – κi�
rρ(x),

where

d(x,
(
sol(2.1)

)
= inf

x̄∈(sol(2.1))
‖x – x̄‖

denotes the distance between the point x and the set (sol(2.1)).

Proof Because
⋂m

i=1(sol(2.1)i) �= ∅, we assume that x̄ ∈ Ω(x̄) is a common solution of (2.1)i,
i = 1, . . . , m, and thus, for any i ∈ {1, . . . , m}, we have

〈
Qi(ū), y – h(x̄)

〉
+ fi(y) – fi

(
h(x̄)

) ≥ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄). (3.3)

By definition of fiג
Ω(x̄)[h(x) – ρQi(u)], Lemma 2.4 implies that

〈
ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
–

(
h(x) – ρQi(u)

)
, y – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]〉

+ ρfi(y) – ρfi
(
ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]) ≥ 0, ∀y ∈ Ω(x̄), u ∈ F(x). (3.4)
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Since x̄ ∈ ⋂m
i=1(sol(2.1)i), h(x̄) ∈ Ω(x̄). Replacing y by h(x̄) in (3.4), we get

〈
ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
–

(
h(x) – ρQi(u)

)
,h(x̄) – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]〉

+ ρfi
(
h(x̄)

)
– ρfi

(
ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]) ≥ 0, ∀u ∈ F(x). (3.5)

From ג
fi
Ω(x̄)[h(x) – ρQi(u)] ∈ Ω(x̄), by (3.3), it follows that

〈
ρQi(ū), fiג

Ω(x̄)
[
h(x) – ρQi(u)

]
– h(x̄)

〉

+ ρfi
(
ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

])
– ρfi

(
h(x̄)

) ≥ 0. (3.6)

By (3.5) and (3.6), we have

〈
ρQi(ū) – ρQi(u) – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
+ h(x), fiג

Ω(x̄)
[
h(x) – ρQi(u)

]
– h(x̄)

〉 ≥ 0,

which also implies

〈
ρQi(ū) – ρQi(u), fiג

Ω(x̄)
[
h(x) – ρQi(u)

]
– h(x)

〉
–

〈
ρQi(ū) – ρQi(u),h(x̄) – h(x)

〉

+
〈
h(x) – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
, fiג

Ω(x̄)
[
h(x) – ρQi(u)

]
– h(x)

〉

+
〈
h(x) – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
,h(x) – h(x̄)

〉 ≥ 0.

Since, for i = 1, 2, . . . , m, (Qi,h) are strongly monotone couples with modulus μi, we have

〈
ρQi(ū) – ρQi(u), fiג

Ω(x̄)
[
h(x) – ρQi(u)

]
– h(x)

〉
–

∥∥h(x) – ג
fi
Ω(ū)

[
h(x) – ρQi(u)

]∥∥2

+
〈
h(x) – ג

fi
Ω(x̄)

[
h(x) – ρQi(u)

]
,h(x) – h(x̄)

〉 ≥ ρμi‖x – x̄‖2.

By inserting ג
fi
Ω(x)[h(x) – ρQi(u)] and using the Cauchy–Schwarz inequality along with the

triangular inequality, we have

∥∥ρQi(ū) – ρQi(u)
fiג∥∥}∥∥

Ω(x̄)
[
h(x) – ρQi(u)

]
– ג

fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥

+
fiג∥∥

Ω(x)
[
h(x) – ρQi(u)

]
– h(x)

∥∥}

+
∥∥h(x) – h(x̄)

∥∥{∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥ +
fiג∥∥

Ω(x)
[
h(x) – ρQi(u)

]

– ג
fi
Ω(x̄)

[
h(x) – ρQi(u)

]∥∥} ≥ ρμi‖x – x̄‖2.

Using the Lipschitz continuity of Qi, h, and H-ϑ-Lipschitz continuity of F and condition
(3.2), we have

ϑLiρ‖x̄ – x‖{κi‖x̄ – x‖ +
fiג∥∥

Ω(x)
[
h(x) – ρQi(u)

]
– h(x)

∥∥}

+ �‖x – x̄‖{∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥ + κi‖x – x̄‖} ≥ ρμi‖x – x̄‖2.

Hence, for any x ∈ Rn and i ∈ {1, 2, . . . , m}, ρ > κi�
μi–κiϑLi

and μi > κiϑLi, we have

‖x – x̄‖ ≤ ρϑLi + �

ρμi – ρκiϑLi – κi�

∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥, ∀u ∈ F(x).
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This implies

‖x – x̄‖ ≤ ρϑLi + �

ρμi – ρκiϑLi – κi�
min

1≤i≤m

{∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥}
,

which means that

d
(
x,

(
sol(2.1)

)) ≤ ‖x – x̄‖ ≤ ρϑLi + �

ρμi – ρκiϑLi – κi�
rρ(x).

The proof is completed. �

Remark 3.3 Lemma 2.5 implies that condition (3.2) holds under certain appropriate as-
sumptions.

4 The regularized gap function
The regularized gap function for (2.1) is defined for all x ∈ Rn as follows:

φρ(x) = min
1≤i≤m

sup
y∈Ω(x)

{〈
Qi(u),h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2ρ

∥∥h(x) – y
∥∥2

}
, ∀u ∈ F(x),

where ρ > 0 is a parameter.

Lemma 4.1 We have

φρ(x) = min
1≤i≤m

{〈
Qi(u), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2
}

, (4.1)

where

Ri
ρ(x) = h(x) – ג

fi
Ω(x)

[
h(x) – ρQi(u)

]
, ∀x ∈ Rn ∀u ∈ F(x).

And if x ∈ h–1(Ω), where

h
–1(Ω) =

{
ξ ∈ Rn | h(ξ ) ∈ Ω(ξ )

}
,

then

φρ(x) ≥ 1
2ρ

rρ(x)2. (4.2)

Proof For given x ∈ Rn and i ∈ {1, 2, . . . , m}, set

ψi(x, y) =
〈
Qi(u),h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2ρ

∥∥h(x) – y
∥∥2, y ∈ Rn,∀u ∈ F(x).

Consider the following problem:

gi(x) = max
y∈Ω(x)

ψi(x, y).
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Since ψi(x, ·) is a strongly concave function and Ω(x) is nonempty closed and convex, the
above optimization problem has a unique solution, say z ∈ Ω(x). Evoking the condition of
optimality at z, we get

0 ∈Qi(u) + ∂fi(z) +
1
ρ

(
z – h(x)

)
+ NΩ(x)(z),

where NΩ(x)(z) is the normal cone at z to Ω(x) and ∂fi(z) denotes the subdifferential of fi

at z. Therefore,

〈
z –

(
h(x) – ρQi(u)

)
, y – z

〉
+ ρfi(y) – ρfi(z) ≥ 0, ∀y ∈ Ω(x), u ∈ F(x),

and so

z = ג
fi
Ω(x)

[
h(x) – ρQi(u)

]
, u ∈ F(x).

Hence gi(x) can be rewritten as

gi(x) =
〈
Qi(u),h(x) – ג

fi
Ω(x)

[
h(x) – ρQi(u)

]〉
+ fi

(
h(x)

)
– fi

(
ג

fi
Ω(x)

[
h(x) – ρQi(u)

])

–
1

2ρ

∥∥h(x) – ג
fi
Ω(x)

[
h(x) – ρQi(u)

]∥∥2 ∀u ∈ F(x).

Letting

Ri
ρ(x) = h(x) – ג

fi
Ω(x)

[
h(x) – ρQi(u)

]
, ∀u ∈ F(x),

we get

gi(x) =
〈
Qi(u), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2, ∀u ∈ F(x), (4.3)

and so

φρ(x) = min
1≤i≤m

{〈
Qi(u), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2
}

.

From the definition of the projection ג
fi
Ω(x)[h(x) – ρQi(u)], we have

〈
ג

fi
Ω(x)

[
h(x) – ρQi(u)

]
– h(x) + ρQi(u), y – ג

fi
Ω(x)

[
h(x) – ρQi(u)

]〉

+ ρfi(y) – ρfi
(
ג

fi
Ω(x)

[
h(x) – ρQi(u)

]) ≥ 0, ∀u ∈ F(x).

For any x ∈ h–1(Ω), we have h(x) ∈ Ω(x), and therefore, by taking y = h(x) in the above
relation, we get

〈
ρQi(u) – Ri

ρ(x), Ri
ρ(x)

〉
+ ρfi

(
h(x)

)
– ρfi

(
h(x) – Ri

ρ(x)
) ≥ 0, ∀u ∈ F(x),

that is,

〈
Qi(u), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
) ≥ 1

ρ

〈
Ri

ρ(x), Ri
ρ(x)

〉
=

1
ρ

∥∥Ri
ρ(x)

∥∥2, ∀u ∈ F(x).
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From the definition of rρ(x) and (4.1), we get

φρ(x) ≥ 1
2ρ

rρ(x)2.

The proof is completed. �

Theorem 4.2 For ρ > 0, φρ is a gap function for (2.1) on the set

h
–1(Ω) =

{
ξ ∈ Rn | h(ξ ) ∈ Ω(ξ )

}
.

Proof From the definition of φρ , we have

φρ(x) ≥ min
1≤i≤m

{〈
Qi(u),h(x)–y

〉
+ fi

(
h(x)

)
– fi(y)–

1
2ρ

∥∥h(x)–y
∥∥2

}
, ∀y ∈ Ω(x), u ∈ F(x).

Therefore, for any x ∈ h–1(Ω), by setting y = h(x), we have

φρ(x) ≥ 0.

Suppose that x̄ ∈ h–1(ω) with φρ(x̄) = 0. From (4.2), it follows that

rρ(x̄) = 0,

which implies that x̄ is the solution of (2.1).
Conversely, if x̄ is a solution of (2.1), there exists 1 ≤ i0 ≤ m such that

〈
Qi0 (ū),h(x̄) – y

〉
+ fi0

(
h(x̄)

)
– fi0 (y) ≤ 0, ∀y ∈ Ω(x̄), ū ∈ F(x̄),

which means that

min
1≤i≤m

{
sup

y∈Ω(x̄)

{〈
Qi(ū),h(x̄) – y

〉
+ fi

(
h(x̄)

)
– fi(y) –

1
2ρ

∥∥h(x̄) – y
∥∥2

}}
≤ 0, ∀ū ∈ F(x̄).

Thus,

φρ(x̄) ≤ 0.

The preceding claim leads to

φρ(x̄) ≥ 0

and it implies that

φρ(x̄) = 0.

The proof is completed. �
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Since φρ can act as a gap function for (2.1), according to Theorem 4.2, investigating the
error-bound properties that can be obtained with φρ is interesting. The following corollary
is obtained directly by Theorem 3.2 and (3.5).

Corollary 4.3 Let F : Rn −→ Rn be H-ϑ-Lipschitz continuous, Qi : Rn −→ R
n (i =

1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn −→ R
n be �-Lipschitz continuous, and for

i = 1, 2, . . . , m, (Qi,h) be strongly monotone couples with modulus μi. Let
⋂m

i=1(sol(2.1)i) �= ∅.
Assume that there exists κi ∈ (0, μi

ϑLi
) such that

fiג∥∥
Ω(x)z – ג

fi
Ω(y)z

∥∥ ≤ κi‖x – y‖, ∀x, y ∈ Rn, u ∈ F(x),∀z ∈ {
v | v = h(x) – ρQi(u)

}
.

Then, for any x ∈ h–1(Ω) and any ρ > κi�
μi–κiϑLi

,

d
(
x,

(
sol(2.1)

)) ≤ ρϑLi + �

ρμi – ρκiϑLi – κi�

√
2ρφρ(x).

If F is a single-valued mapping, then we have Corollary 4.3.

Corollary 4.4 Let Qi : Rn −→ Rn (i = 1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn −→ Rn

be �-Lipschitz continuous, and for i = 1, 2, . . . , m, (Qi,h) be strongly monotone couples with
modulus μi. Let

⋂m
i=1(sol(2.1)i) �= ∅. Assume that there exists κi ∈ (0, μi

Li
) such that

fiג∥∥
Ω(x)z – ג

fi
Ω(y)z

∥∥ ≤ κi‖x – y‖, ∀x, y ∈ Rn,∀z ∈ {
v | v = h(x) – ρQi(x)

}
.

Then, for any x ∈ h–1(Ω) and any ρ > κi�
μi–κiLi

,

d
(
x,

(
sol(2.2)

)) ≤ ρLi + �

ρμi – ρκiLi – κi�

√
2ρφρ(x).

5 The D-gap functions
It is surprising that the regularized gap function φρ does not provide global error bounds
for (2.1) on Rn. Solodov [14] proposed the D-gap function for a mixed variational inequal-
ity and obtained error bounds for a mixed variational inequality related to the D-gap func-
tion. With this inspiration, we introduce the D-gap function for (2.1), which gives for Rn

the global error bound for (2.1).
For (2.1) with α > β > 0, the D-gap function is defined as follows:

Gαβ (x) = min
1≤i≤m

{
sup

y∈Ω(x)

{〈
Qi(u),h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2α

∥∥h(x) – y
∥∥2

}

– sup
y∈Ω(x)

{〈
Qi(u),h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2β

∥∥h(x) – y
∥∥2

}}
, ∀u ∈ F(x).

By (4.1) in Lemma 4.1, we know Gαβ can be rewritten as

Gαβ (x) = min
1≤i≤m

{〈
Qi(u), Ri

α(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2

–
(〈
Qi(u), Ri

β (x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

β (x)
)

–
1

2β

∥∥Ri
β (x)

∥∥2
)}

,
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where

Ri
α(x) = h(x) – ג

fi
Ω(x)

[
h(x) – αQi(u)

]

and

Ri
β (x) = h(x) – ג

fi
Ω(x)

[
h(x) – βQi(u)

]
, ∀x ∈ Rn, u ∈ F(x).

Theorem 5.1 For any x ∈ Rn, α > β > 0, we have

1
2

(
1
β

–
1
α

)
r2
β (x) ≤ Gαβ (x) ≤ 1

2

(
1
β

–
1
α

)
r2
α(x). (5.1)

Proof From the definition of Gαβ (x), it follows that

Gαβ (x) = min
1≤i≤m

{〈
Qi(u), Ri

α(x) – Riβ(x)
〉
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2 + fi
(
h(x) – Ri

β (x)
)

+
1

2β

∥∥Ri
β (x)

∥∥2
}

, ∀u ∈ F(x).

For any given i ∈ {1, 2, . . . , m}, we set

gi
αβ (x) =

〈
Qi(u), Ri

α(x) – Ri
β (x)

〉
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2

+ fi
(
h(x) – Ri

β (x)
)

+
1

2β

∥∥Ri
β (x)

∥∥2, ∀u ∈ F(x). (5.2)

Since ג
fi
Ω(x)[h(x) – βQi(u)] ∈ Ω(x), by Lemma 2.4, we know

〈
ג

fi
Ω(x)

[
h(x) – αQi(u)

]
–

(
h(x) – αQi(u)

)
, fiג

Ω(x)
[
h(x) – βQi(u)

]
– ג

fi
Ω(x)

[
h(x) – αQi(u)

]〉

+ αfi
(
ג

fi
Ω(x)

[
h(x) – βQi(u)

])
– αfi

(
ג

fi
Ω(x)

[
h(x) – αQi(u)

]) ≥ 0, ∀u ∈ F(x),

which means that

〈
αQi(u) – Ri

α(x), Ri
α(x) – Ri

β (x)
〉

+ αfi
(
h(x) – Ri

β (x)
)

– αfi
(
h(x) – Ri

α(x)
) ≥ 0, ∀u ∈ F(x). (5.3)

Combining (5.2) and (5.3), we get

gi
αβ (x) ≥ 1

α

〈
Ri

α(x), Ri
α(x) – Ri

β (x)
〉
–

1
2α

∥∥Ri
α(x)

∥∥2 +
1

2β

∥∥Ri
β (x)

∥∥2

=
1

2α

∥∥Ri
α(x) – Ri

β (x)
∥∥2 +

1
2

(
1
β

–
1
α

)∥∥Ri
β (x)

∥∥2. (5.4)
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Since ג
fi
Ω(x)[h(x) – αQi(u)] ∈ Ω(x), by Lemma 2.4, we have

〈
ג

fi
Ω(x)

[
h(x) – βQi(u)

]
–

(
h(x) – βQi(u)

)
, fiג

Ω(x)
[
h(x) – αQi(u)

]
– ג

fi
Ω(x)

[
h(x) – βQi(u)

]〉

+ βfi
(
ג

fi
Ω(x)

[
h(x) – αQi(u)

])
– βfi

(
ג

fi
Ω(x)

[
h(x) – βQi(u)

]) ≥ 0, ∀u ∈ F(x).

Hence

〈
βQi(u) – Ri

β (x), Ri
β (x) – Ri

α(x)
〉
+βfi

(
h(x) – Ri

α(x)
)

–βfi
(
h(x) – Ri

β (x)
) ≥ 0, ∀u ∈ F(x),

and so

1
β

〈
Ri

β (x), Ri
α(x) – Ri

β (x)
〉 ≥ 〈

Qi(u), Ri
α(x) – Ri

β (x)
〉
– fi

(
h(x) – Ri

α(x)
)

+ fi
(
h(x) – Ri

β (x)
)
.

This together with (5.3) shows that

gi
αβ (x) ≤ 1

β

〈
Ri

β (x), Ri
α(x) – Ri

β (x)
〉
–

1
2α

∥∥Ri
α(x)

∥∥2 +
1

2β

∥∥Ri
β (x)

∥∥2

= –
1

2β

∥∥Ri
α(x) – Ri

β (x)
∥∥2 +

1
2

(
1
β

–
1
α

)∥∥Ri
α(x)

∥∥2. (5.5)

From (5.4) and (5.5), for any i ∈ {1, 2, . . . , m}, we get

1
2

(
1
β

–
1
α

)∥∥Ri
β (x)

∥∥2 ≤ gi
αβ (x) ≤ 1

2

(
1
β

–
1
α

)∥∥Ri
α(x)

∥∥2.

Hence

1
2

(
1
β

–
1
α

)
min

1≤i≤m

{∥∥Ri
β (x)

∥∥2} ≤ min
1≤i≤m

{
gi
αβ (x)

} ≤ 1
2

(
1
β

–
1
α

)
min

1≤i≤m

{∥∥Ri
α(x)

∥∥2},

and so

1
2

(
1
β

–
1
α

)
r2
β (x) ≤ Gαβ (x) ≤ 1

2

(
1
β

–
1
α

)
r2
α(x).

The proof is completed. �

Now we prove that Gαβ in the set Rn is a global gap function for (2.1).

Theorem 5.2 For 0 < β < α, Gαβ is a gap function for (2.1) on Rn.

Proof From (5.2), we have

Gαβ (x) ≥ 0, ∀x ∈ Rn.

Suppose that x̄ ∈ Rn with Gαβ (x̄) = 0, then (5.2) implies that

rβ (x̄) = 0.

From Theorem 3.1, we know x̄ is a solution of (2.1).
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Conversely, if x̄ is a solution of (2.1), then from Theorem 3.1, it follows that

rα(x̄) = 0.

Obviously, (5.2) shows that

Gαβ (x̄) = 0.

The proof is completed. �

Use Theorem 3.2 and (5.2), we immediately get a global error bound in the set Rn for
(2.1).

Corollary 5.3 Let F : Rn −→ Rn be H-ϑ-Lipschitz continuous, Qi : Rn −→ Rn (i =
1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn −→ Rn be �-Lipschitz continuous, and for
i = 1, 2, . . . , m, (Qi,h) be strongly monotone couples with modulus μi. Let

⋂m
i=1(sol(2.1)i) �= ∅.

Assume that there exists κi ∈ (0, μi
ϑLi

) such that

fiג∥∥
Ω(x)z – ג

fi
Ω(y)z

∥∥ ≤ κi‖x – y‖, ∀x, y ∈ Rn, u ∈ F(x), z ∈ {
v | v = h(x) – βQi(u)

}
.

Then, for any x ∈ Rn and any β > κi�
μi–κiϑLi

,

d
(
x,

(
sol(2.1)

)) ≤ βϑLi + �

βμi – βκiϑLi – κi�

√
2αβ

α – β
Gαβ (x).

Note that, if F is a single-valued mapping, then Corollary 5.3 reduces to the following.

Corollary 5.4 Let Qi : Rn −→ Rn (i = 1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn −→ Rn

be �-Lipschitz continuous, and for i = 1, 2, . . . , m, (Qi,h) be strongly monotone couples with
modulus μi. Let

⋂m
i=1(sol(2.2)i) �= ∅. Assume that there exists κi ∈ (0, μi

Li
) such that

fiג∥∥
Ω(x)z – ג

fi
Ω(y)z

∥∥ ≤ κi‖x – y‖, ∀x, y ∈ Rn, u ∈ F(x), z ∈ {
v | v = h(x) – βQi(u)

}
.

Then, for any x ∈ Rn and any β > κi�
μi–κiLi

,

d
(
x,

(
sol(2.1)

)) ≤ βLi + �

βμi – βκiLi – κi�

√
2αβ

α – β
Gαβ (x).

Remark 5.5 We note that i = 1 and f1(x) = 0∀x ∈ Rn, then the results obtained in this paper
collapse to the corresponding ones in [15] and [21].

6 Concluding remarks
One of the classical approaches in the analysis of a variational inequality and its variants
is to transform it into an equivalent optimization problem by the notion of gap functions.
In addition, gap functions play a central role in deriving the so-called error bounds, which
provide a measure of the distances between the solution set and an arbitrary feasible point.
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This motivates us to study and analyze different gap functions and error bounds for mixed
set valued vector inverse quasi-variational inequalities (MSVIQVIs).

In this paper, we introduce MSVIQVIs, which include an inverse variational inequal-
ity, an inverse mixed variational inequality, an inverse quasi-variational inequality, a vec-
tor variational inequality, and an inverse quasi-variational inequality, as special cases. We
propose three gap functions for the MSVIQVI, i.e., the residual gap function, the regular-
ized gap function, and the D-gap function. By using these gap functions and a generalized
f -projection operator, and under suitable conditions, we obtain error bounds for this kind
of mixed set-valued vector inverse quasi-variational inequalities. These bounds provide
effective estimated distances between an arbitrary feasible point and the solution set of an
MSVIQVIP. The results presented in the paper improve and generalize the corresponding
ones in [15, 19, 21].
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