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Abstract
We study a generalized left sided tempered fractional (GTF)-integral concerning
another function Ψ in the kernel. Then we investigate several kinds of inequalities
such as Grüss-type and certain other related inequalities by utilizing the GTF-integral.
Additionally, we present various special cases of the main result. By utilizing the
connection between GTF-integral and Riemann–Liouville integral concerning
another function Ψ in the kernel, certain distinct particular cases of the main result
are also presented. Furthermore, certain other inequalities can be formed by applying
various kinds of conditions on the function Ψ .
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1 Introduction
The field of fractional calculus deals with the integrals and differentiation of an arbitrary
non-integer order. In the last three centuries, this field has been considered as the most
power tool in describing the anomalous kinetics and its wide applications in diverse do-
mains. Numerous mathematical, statistical, engineering, physical, chemical, and biologi-
cal phenomena can be modeled by utilizing ordinary differential equations involving frac-
tional derivatives. Many a mathematician and physicist has contributed to the develop-
ment of the theories of fractional calculus. The interesting reader is referred to [1–3]
and the references therein. In practical applications, a numerous types of fractional in-
tegrals and derivatives operators, such as the Riemann–Liouville, Caputo, Riesz, Hilfer,
Hadamard, Erdélyi–Kolber, Saigo, and Marichev–Saigo–Maeda operators, were exten-
sively studied by various researchers. We refer the reader to [2–4].

Later, mathematicians introduced the notion of fractional conformable integrals and
derivatives which are cited therein. Khalil et al. [5] introduced fractional conformable
derivatives operators with some shortcoming. Abdeljawad [6] investigated the properties
of the fractional conformable derivative operators. Jarad et al. [7] defined generalized frac-
tional conformable integral and derivative operators. Anderson and Unless [8] presented
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the idea of a conformable derivative by employing local proportional derivatives. In [9],
Abdeljawad and Baleanu gave certain monotonicity results for fractional difference op-
erators with discrete exponential kernels. In [10], Abdeljawad and Baleanu have defined
a fractional derivative operator with exponential kernel and the discrete version. In [11],
Atangana and Baleanu defined a new fractional derivative operator with the non-local and
non-singular kernel. A fractional derivative without a singular kernel can be found in the
work of Caputo and Fabrizio [12]. Certain properties of fractional derivatives without a
singular kernel can be found in the work of Losada and Nieto [13]. In [14–16], the authors
studied stability analysis and a numerical scheme for fractional Klein–Gordon equations,
existence results in Banach space for a nonlinear impulsive system and results for mild
solutions of fractional coupled hybrid boundary value problems.

A variety of such types of distinguished operators led researchers to establish new ideas
and fractional integral inequalities by utilizing these new operators. In [17, 18], Hasib et
al. established various inequalities by using AB-fractional and Saigo fractional integral
operators. Recently Alzabut et al. and Rahman et al. [19, 20] studied generalized propor-
tional derivatives and integral operators and established a certain Gronwall inequality and
the Minkowski inequalities involving the said operators. Rahman et al. [21, 22] presented
fractional integral inequalities for a family of positive continuous and decreasing functions
and inequalities for convex functions by employing proportional Hadamard fractional in-
tegrals. Recently, researchers presented several various remarkable inequalities with prop-
erties and applications for the fractional conformable integrals and proportional integrals.
The interested reader may consult [23–33].

2 Preliminaries
In this section, we consider some well-known definitions and mathematical preliminaries.

Definition 2.1 ([34]) Suppose that the functions U ,V : [a1, b1] →R are positive with A≤
U (ϑ) ≤ B and C ≤ V(ϑ) ≤D, for all ϑ ∈ [a1, b1], then the following inequality holds:

∣
∣
∣
∣

1
b1 – a1

∫ b1

a1

U (ϑ)V(ϑ) dϑ –
1

b1 – a1

∫ b1

a1

U (ϑ) dϑ
1

b1 – a1

∫ b1

a1

V(ϑ) dϑ

∣
∣
∣
∣

≤ 1
4

(B – A)(D – C), (2.1)

where the constants B, A, C , D ∈R and 1
4 is the sharp value of inequality (2.1).

Definition 2.2 ([35, 36]) The function U (�) will be in the space Lp,r[0,∞[ if

Lp,r[0,∞[ =
{

U : ‖U‖Lp,r [0,∞[ =
(∫ s

r

∣
∣U (�)

∣
∣
p
�r d�

) 1
p

< ∞, 1 ≤ p < ∞, r ≥ 0
}

. (2.2)

If we consider r = 0, then (2.2) gives

Lp[0,∞[ =
{

U : ‖U‖Lp[0,∞[ =
(∫ s

r

∣
∣U (�)

∣
∣
p d�

) 1
p

< ∞, 1 ≤ p < ∞
}

.

Definition 2.3 ([37]) Suppose that we have the functionU ∈ L1[0,∞[ and assume that the
function Ψ is positive, monotone and an increasing on [0,∞[ and let Ψ ′ be continuous on
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[0,∞[ with Ψ (0) = 0. Then the Lebesgue real-valued measurable function U defined on
[0,∞[ is said to be in the space χ

p
Ψ (0,∞), (1 ≤ p < ∞) for which

‖U‖χ
p
Ψ

=
(∫ s

r

∣
∣U (�)

∣
∣
p
Ψ ′(�) d�

) 1
p

< ∞, 1 ≤ p < ∞.

When p = ∞, then

‖U‖χ∞
Ψ

= ess sup
0≤�<∞

[

Ψ ′(�)U (�)
]

.

Note that the space χ
p
Ψ (0,∞) coincides with the space Lp[0,∞[ if Ψ (�) = � for 1 ≤ p < ∞

and similarly with the space Lp,r[1,∞[ if Ψ (�) = ln� for 1 ≤ p < ∞.

The tempered fractional integral was first studied by Buschman [38], but Li et al. [39]
and Meerschaert et al. [40] have described the associated tempered fractional calculus
more explicitly. Fernandez and Ustaoǧlu [41] investigated several analytic properties of
tempered fractional integrals.

Definition 2.4 ([39, 40]) Suppose that [a, b] is a real interval and κ , ξ ∈ C with 	(κ) > 0
and 	(ξ ) ≥ 0, then the left sided tempered fractional integral is defined by

(

aJ κ ,ξU
)

(�) =
1

Γ (κ)

∫ �

a
e–ξ (�–t)(� – t)κ–1U (t) dt, a < �. (2.3)

Remark 2.1 Setting ξ = 0 in (2.3) yields the following Riemann–Liouville fractional inte-
gral:

(

aJ κU
)

(�) =
1

Γ (κ)

∫ �

a
(� – t)κ–1U (t) dt, � > a. (2.4)

The tempered fractional integral (2.3) satisfies the following semigroup property:

aJ κ ,ξ (
aJ λ,ξU (�)

)

= aJ κ+λ,ξU (�).

In [42], Fahad et al. defined the following general form of the generalized tempered frac-
tional integral concerning another function.

Definition 2.5 Let U be an integrable function in the space χ
p
Ψ (0,∞) and assume that

the function Ψ is positive, monotone and increasing on [0,∞[ and let Ψ ′ be continuous
on [0,∞[ with Ψ (0) = 0. Then the left (GTF)-integral of a function U concerning another
function Ψ in the kernel is defined by

(
Ψ
a J κ ,ξU

)

(ρ) =
1

Γ (κ)

∫ ρ

a
e–ξ (Ψ (ρ)–Ψ (�))(Ψ (ρ) – Ψ (�)

)κ–1
Ψ ′(�)U (�) d�, a < ρ, (2.5)

where ξ > 0, κ ∈C with 	(κ) > 0 and Γ (·) is the well-known gamma function.
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Remark 2.2 The left GTF-integral (2.5) will reduce the following fractional integrals:
i. setting Ψ (ρ) = ρ , then the left tempered fractional integral (2.3) will be obtained,

ii. setting ξ = 0, then the left generalized RL-fractional integral operator defined by [1]
will be obtained,

iii. setting Ψ (ρ) = lnρ , the left Hadamard GTF-integral defined by [42] will be obtained,

(
Ψ
a J κ ,ξU

)

(ρ)

=
1

Γ (κ)

∫ ρ

a
exp

[

–ξ (lnρ – ln�)
]

(lnρ – ln�)κ–1 U (�)
�

d�, a < ρ, (2.6)

iv. setting Ψ (ρ) = ρκ

κ
, κ > 0 and ξ = 0, the left Katugampola [36] fractional integral

operator will be obtained,
v. setting Ψ (ρ) = ρ and ξ = 0, the left Riemann–Liouville fractional integral (2.4) will

be obtained,
vi. setting Ψ (ρ) = ρα+s

α+s and ξ = 0 (where α ∈ (0, 1], s ∈R and μ + s 
= 0), then the
generalized fractional conformable integral given in [43] will be obtained.

In this manuscript, we will consider the following one sided GTF-integral.

Definition 2.6 Let U be an integrable function in the space χ
p
Ψ (0,∞) and assume that

the function Ψ is positive, monotone and increasing on [0,∞[ and let Ψ ′ is continuous
on [0,∞[ with Ψ (0) = 0. Then the one sided (GTF) integral of a function U concerning
another function Ψ in the kernel is defined by

(
ΨJ κ ,ξU

)

(ρ) =
1

Γ (κ)

∫ ρ

0
e–ξ (Ψ (ρ)–Ψ (�))(Ψ (ρ) – Ψ (�)

)κ–1
Ψ ′(�)U (�) d�. (2.7)

One can easily derive the following results.

Theorem 2.1 Let U : [0,ρ] ⊆ [0,∞[ →R be an GTF-integral operator concerning another
function Ψ , then we have

ΨJ κ ,ξ (ΨJ μ,ξU
)

(ρ) =
(
ΨJ κ+μ,ξU

)

(ρ),

where κ ,μ > 0.

Theorem 2.2 The GTF-integral operator ΨJ κ ,ξ : L1[0,ρ] → L1[0,ρ] will satisfy the fol-
lowing linearity property:

ΨJ κ ,ξ (αU1 + βU2) = αΨJ κ ,ξU1 + βΨJ κ ,ξU2

where U1,U2 ∈ L1[0,ρ] and α,β ∈R.

The main goal of this manuscript is to establish certain inequalities such as Grüss-type
and several other inequalities by utilizing the GTF-integral (2.1). Also, certain special and
particular cases of the main result are presented.
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3 Main results
We present generalizations of certain inequalities by utilizing the GTF-integral operator
(2.7) containing another function Ψ in its kernel in this section.

Theorem 3.1 Suppose that we have the function U ∈ χ
p
Ψ (0,∞) and assume that the func-

tion Ψ is positive, monotone and increasing on [0,∞[ and its derivative Ψ ′ is continuous on
[0,∞[ with Ψ (0) = 0. Moreover, let φ1 and φ2 be two integrable functions defined on [0,∞[
such that

φ1(�) ≤ U (�) ≤ φ2(�), � ∈ [0,∞[. (3.1)

Then, for � > 0, κ ,λ > 0, we have

ΨJ κ ,ξφ2(�)ΨJ λ,ξU (�) + ΨJ κ ,ξU (�)ΨJ λ,ξφ1(�)

≥ ΨJ κ ,ξφ2(�)ΨJ λ,ξφ1(�) + ΨJ κ ,ξU (�)ΨJ λ,ξU (�). (3.2)

Proof Applying (3.1) for all ρ ≥ 0 and ζ ≥ 0, we have

(

φ2(ρ) – U (ρ)
)(

U (ζ ) – φ1(ζ )
) ≥ 0.

It follows that

φ2(ρ)U (ζ ) + φ1(ζ )U (ρ) ≥ φ2(ρ)φ1(ζ ) + U (ρ)U (ζ ). (3.3)

Multiplying both sides of (3.3) with 1
Γ (κ) e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ))κ–1Ψ ′(ρ) and integrat-

ing the resulting estimate with respect to ρ from 0 to �, we get

U (ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)φ2(ρ) dρ

+ φ1(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ) dρ

≥ φ1(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)φ2(ρ) dρ

+ U (ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ) dρ,

which with the aid of (2.7) becomes

U (ζ )ΨJ κ ,ξφ2(ρ) + φ1(ζ )ΨJ κ ,ξU (�)

≥ φ1(ζ )ΨJ κ ,ξφ2(�) + U (ζ )ΨJ κ ,ξU (�). (3.4)

Again, multiplying both sides of (3.4) with 1
Γ (λ) e–ξ (Ψ (�)–Ψ (ζ ))(Ψ (�) – Ψ (ζ ))λ–1Ψ ′(ζ ) and in-

tegrating the resulting estimate with respect to ζ from 0 to �, we obtain

ΨJ κ ,ξφ2(ρ)ΨJ λ,ξU (�) + ΨJ κ ,ξU (�)ΨJ λ,ξφ1(�)

≥ ΨJ κ ,ξφ2(�)ΨJ λ,ξφ1(�) + ΨJ κ ,ξU (�)ΨJ λ,ξU (�), (3.5)

which proves the desired assertion (3.2). �
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Theorem 3.2 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. Assume that (3.1) holds and let ψ1, ψ2 be two
integrable functions defined on [0,∞[ such that

ψ1(�) ≤ V(�) ≤ ψ2(�), � ∈ [0,∞[. (3.6)

Then, for � > 0 and κ ,λ > 0, the following four inequalities hold:

ΨJ κ ,ξφ2(�)ΨJ λ,ξV(�) + ΨJ λ,ξU (�)ΨJ κ ,ξψ1(�)

≥ ΨJ κ ,ξφ2(�)ΨJ λ,ξψ1(�) + ΨJ κ ,ξU (�)ΨJ λ,ξV(�), (3.7)

ΨJ λ,ξφ1(�)ΨJ κ ,ξV(�) + ΨJ κ ,ξψ2(�)ΨJ λ,ξU (�)

≥ ΨJ κ ,ξφ1(�)ΨJ λ,ξψ2(�) + ΨJ κ ,ξU (�)ΨJ λ,ξV(�), (3.8)

ΨJ κ ,ξφ2(�)ΨJ λ,ξψ2(�) + ΨJ κ ,ξU (�)ΨJ λ,ξV(�)

≥ ΨJ κ ,ξφ2(�)ΨJ λ,ξV(�) + ΨJ κ ,ξU (�)ΨJ λ,ξψ2(�), (3.9)

ΨJ κ ,ξφ1(�)ΨJ λ,ξψ1(�) + ΨJ κ ,ξU (�)ΨJ λ,ξV(�)

≥ ΨJ κ ,ξφ1(�)ΨJ λ,ξV(�) + ΨJ κ ,ξU (�)ΨJ λ,ξψ1(�). (3.10)

Proof To prove inequality (3.7), using (3.1) and (3.6) for ρ, ζ ∈ [0,∞[ yields

(

φ2(ρ) – U (ρ)
)(

V(ζ ) – ψ1(ζ )
) ≥ 0.

It follows that

φ2(ρ)V(ζ ) + U (ρ)ψ1(ζ ) ≥ φ2(ρ)ψ1(ζ ) + U (ρ)V(ζ ). (3.11)

Multiplying both sides of inequality (3.11) with 1
Γ (κ) e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ))κ–1Ψ ′(ρ)

and integrating the resulting estimate with respect to ρ from 0 to �, we get

V(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)φ2(ρ) dρ

+ ψ1(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ) dρ

≥ ψ1(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)φ2(ρ) dρ

+ V(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ) dρ,

which with the aid of (2.7) becomes

V(ζ )ΨJ κ ,ξφ2(�) + ψ1(ζ )ΨJ κ ,ξU (�) ≥ ψ1(ζ )ΨJ κ ,ξφ2(�) + V(ζ )ΨJ κ ,ξU (�). (3.12)
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Again, multiplying both sides of (3.12) with 1
Γ (λ) e–ξ (Ψ (�)–Ψ (ζ ))(Ψ (�) – Ψ (ζ ))λ–1Ψ ′(ζ ), inte-

grating the resulting estimate with respect to ζ from 0 to � and using (2.7), we obtain

ΨJ κ ,ξφ2(�)ΨJ λ,ξV(�) + ΨJ κ ,ξU (�)ΨJ λ,ξψ1(�)

≥ ΨJ κ ,ξφ2(�)ΨJ λ,ξψ1(�) + ΨJ κ ,ξU (�)ΨJ λ,ξV(�),

which completes the desired assertion (3.7). Inequalities (3.8)–(3.10) can be proved by
using the following identities:

(

ψ2(ρ) – V(ρ)
)(

U (ζ ) – φ1(ζ )
) ≥ 0,

(

φ2(ρ) – U (ρ)
)(

V(ζ ) – ψ2(ζ )
) ≤ 0,

and

(

φ1(ρ) – U (ρ)
)(

V(ζ ) – ψ1(ζ )
) ≤ 0,

respectively. �

4 Certain other inequalities via GTF-integral concerning another function
Certain other types of inequalities which involving generalized tempered fractional (GTF)
integral (2.7) are presented in this section.

Theorem 4.1 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. If p1, q1 > 1 are such that 1

p1
+ 1

q1
= 1, then, for

� > 0, the following inequalities hold:

1
p1

ΨJ κ ,ξUp1 (�)ΨJ λ,ξVp1 (�) +
1
q1

ΨJ κ ,ξVq1 (�)ΨJ λ,ξUq1 (�)

≥ ΨJ κ ,ξU (�)V(�)ΨJ λ,ξV(�)U (�), (4.1)

1
p1

ΨJ κ ,ξUp1 (�)ΨJ λ,ξVq1 (�) +
1
q1

ΨJ κ ,ξVq1 (�)ΨJ λ,ξUp1 (�)

≥ ΨJ λ,ξVq1–1(�)Up1–1(�)ΨJ κ ,ξU (�)V(�), (4.2)

1
p1

ΨJ κ ,ξUp1 (�)ΨJ λ,ξV2(�) +
1
q1

ΨJ κ ,ξVq1 (�)ΨJ λ,ξU2(�)

≥ ΨJ λ,ξU
2

p1 (�)V
2

q1 (�)ΨJ κ ,ξU (�)V(�), (4.3)

and

1
p1

ΨJ κ ,ξU2(�)ΨJ λ,ξVq1 (�) +
1
q1

ΨJ κ ,ξV2(�)ΨJ λ,ξUp1 (�)

≥ ΨJ λ,ξUp1–1(�)Vq1–1(�)ΨJ κ ,ξU
2

p1 (�)V
2

q1 (�). (4.4)
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Proof Consider the well-known Young’s inequality [44]:

1
p1

a
p1 +

1
q1

b
q1 ≥ ab, a,b > 0,

1
p1

+
1
q1

= 1. (4.5)

Applying (4.5) for a = U (ρ)V(ζ ) and b = U (ζ )V(ρ), ρ, ζ > 0, we have

1
p1

(

U (ρ)V(ζ )
)p1 +

1
q1

(

U (ζ )V(ρ)
)q1 ≥ (

U (ρ)V(ζ )
)(

U (ζ )V(ρ)
)

. (4.6)

Multiplying both sides of inequality (4.6) with 1
Γ (κ) e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) –Ψ (ρ))κ–1Ψ ′(ρ) and

integrating the resulting estimate with respect to ρ from 0 to �, we get

Vp1 (ζ )
p1Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)Up1 (ρ) dρ

+
Uq1 (ζ )
q1Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)Vq1 (ρ) dρ

≥ U (ζ )V(ζ )
Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ)V(ρ) dρ,

which in view of (2.7) becomes

Vp1 (ζ )
p1

ΨJ κ ,ξUp1 (�) +
Uq1 (ζ )

q1

ΨJ κ ,ξVq1 (�) ≥ U (ζ )V(ζ )ΨJ κ ,ξU (�)V(�). (4.7)

Now, multiplying both sides of (4.7) with 1
Γ (λ) e–ξ (Ψ (�)–Ψ (ζ ))(Ψ (�) –Ψ (ζ ))λ–1Ψ ′(ζ ), integrat-

ing the resulting estimate with respect to ζ from 0 to � and using (2.7), we obtain

1
p1

ΨJ κ ,ξUp1 (�)ΨJ λ,ξVp1 (�) +
1
q1

ΨJ λ,ξUq1 (�)ΨJ κ ,ξVq1 (�)

≥ ΨJ κ ,ξU (�)V(�)ΨJ λ,ξU (�)V(�),

which is the desired assertion (4.1). The inequalities (4.2), (4.3) and (4.4) can be obtained
by employing the similar procedure and setting the following parameters in (4.5), respec-
tively:

a =
U (ρ)
U (ζ )

, b =
V(ρ)
V(ζ )

, U (ζ ),V(ζ ) 
= 0, (4.8)

a = U (ρ)V
2

p1 (ζ ), b = U
2

q1 (ζ )V(ρ), (4.9)

and

a = U
2

p1 (ρ)U (ζ ), b = V
2

q1 (ρ)V(ζ ). (4.10)�

Theorem 4.2 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. If p1, q1 > 1 are such that 1

p1
+ 1

q1
= 1, then, for
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� > 0, the following inequalities hold:

p1
ΨJ κ ,ξU (�)ΨJ λ,ξV(�) + q1

ΨJ κ ,ξV(�)ΨJ λ,ξU (�)

≥ ΨJ κ ,ξ (Up1 (�)Vq1 (�)
)
ΨJ λ,ξ (Uq1 (�)Vp1 (�)

)

, (4.11)

p1
ΨJ κ ,ξUp1–1(�)ΨJ λ,ξ (U (�)Vq1 (�)

)

+ q1
ΨJ κ ,ξVq1–1(�)ΨJ λ,ξ (Uq1 (�)V(�)

)

≥ ΨJ λ,ξVq(�)ΨJ κ ,ξUp(�), (4.12)

p1
ΨJ κ ,ξU (�)ΨJ λ,ξV

2
p1 (�) + q1

ΨJ κ ,ξVq1 (�)ΨJ λ,ξU
2

q1 (�)

≥ ΨJ λ,ξUp1 (�)V(�)ΨJ κ ,ξVq1 (�)U2(�), (4.13)

and

p1
ΨJ κ ,ξU

2
p1 (�)Vq1 (�)ΨJ λ,ξVq1–1(�) + q1

ΨJ κ ,ξVq1–1(�)ΨJ λ,ξU
2

q1 (�)Vp1 (�)

≥ ΨJ λ,ξU2(�)ΨJ κ ,ξV2(�). (4.14)

Proof Consider the following well-known AM – GM inequality:

p1a + q1b≥ a
p1b

q1 , ∀a,b ≥ 0, p1 + q1 = 1. (4.15)

Applying (4.15) for a = U (ρ)V(ζ ) and b = U (ζ )V(ρ), ρ, ζ > 0, we have

p1U (ρ)V(ζ ) + q1U (ζ )V(ρ) ≥ (

U (ρ)V(ζ )
)p1(U (ζ )V(ρ)

)q1 . (4.16)

Multiplying both sides of inequality (4.16) with 1
Γ (κ) e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ))κ–1Ψ ′(ρ)

and integrating the resulting estimate with respect to ρ from 0 to �, we get

p1V(ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)U (ρ) dρ

+ q1U (ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)V(ρ) dρ

≥ Vp1 (ζ )Uq1 (ζ )
1

Γ (κ)

∫ �

0
e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ)

)κ–1
Ψ ′(ρ)Up1 (ρ)Vq1 (ρ) dρ,

which in view of (2.7) becomes

p1V(ζ )ΨJ κ ,ξU (�) + q1U (ζ )ΨJ κ ,ξV(�) ≥ Vp1 (ζ )Uq1 (ζ )ΨJ κ ,ξ (Up1 (�)Vq1 (�)
)

. (4.17)

Again, multiplying both sides of (4.17) with 1
Γ (λ) e–ξ (Ψ (�)–Ψ (ζ ))(Ψ (�) – Ψ (ζ ))λ–1Ψ ′(ζ ), inte-

grating the resulting estimate with respect to ζ from 0 to � and using (2.7), we obtain the
desired assertion (4.11),

p1
ΨJ κ ,ξU (�)ΨJ λ,ξV(�) + q1

ΨJ κ ,ξV(�)ΨJ λ,ξU (�)

≥ ΨJ κ ,ξ (Up1 (�)Vq1 (�)
)
ΨJ λ,ξ (Vp1 (�)Uq1 (�)

)

.
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The inequalities (4.12), (4.13) and (4.14) can be easily obtained by following the same pro-
cedure and using the following parameters in (4.15), respectively. We have

a =
U (ζ )
U (ρ)

, b =
V(ρ)
V(ζ )

, U (ρ),V(ζ ) 
= 0, (4.18)

a = U (ρ)U
2

p1 (ζ ), b = U
2

q1 (ζ )V(ρ), (4.19)

and

a =
U

2
p1 (ρ)
V(ζ )

, b =
U

2
q1 (ζ )
V(ρ)

, V(ρ),V(ζ ) 
= 0. (4.20)�

Theorem 4.3 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. Let p1, q1 > 1 be such that 1

p1
+ 1

q1
= 1. Suppose

K = min
0≤ρ≤�

U (ρ)
V(ρ)

and H = max
0≤ρ≤�

U (ρ)
V(ρ)

. (4.21)

Then, for � > 0, the following inequalities hold:

0 ≤ ΨJ κ ,ξU2(�)ΨJ κ ,ξV2(�) ≤ (K + H)2

4KH
(
ΨJ κ ,ξU (�)V(�)

)2, (4.22)

0 ≤ √
ΨJ κ ,ξU2(�)ΨJ κ ,ξV2(�) –

(
ΨJ κ ,ξU (�)V(�)

)

≤
√
H –

√
K

2
√
KH

(
ΨJ κ ,ξU (�)V(�)

)

, (4.23)

and

0 ≤ ΨJ κ ,ξU2(�)ΨJ κ ,ξV2(�) –
(
ΨJ κ ,ξU (�)V(�)

)2

≤ H – K
4KH

(
ΨJ κ ,ξU (�)V(�)

)2. (4.24)

Proof From (4.21), we have

(U (ρ)
V(ρ)

– K
)(

H –
U (ρ)
V(ρ)

)

V2(ρ) ≥ 0, 0 ≤ ρ ≤ �.

It follows that

U2(ρ) + KHU2(ρ) ≤ (K + H)U (ρ)V(ρ). (4.25)

Multiplying both sides of inequality (4.25) with 1
Γ (κ) e–ξ (Ψ (�)–Ψ (ρ))(Ψ (�) – Ψ (ρ))κ–1Ψ ′(ρ)

and integrating the resulting estimate with respect to ρ from 0 to � and using (2.7), we
obtain

ΨJ κ ,ξU2(�) + KHΨJ κ ,ξV2(�) ≤ (K + H)ΨJ κ ,ξU (�)V(�). (4.26)
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Now, since KH > 0 and

(√
ΨJ κ ,ξU2(�)

√

KHΨJ κ ,ξV2(�)
)2 ≥ 0,

it follows that

2
√

ΨJ κ ,ξU2(�)
√

KHΨJ κ ,ξV2(�) ≤ ΨJ κ ,ξU2(�) + KHΨJ κ ,ξV2(�). (4.27)

Hence, by using (4.26) and (4.27), we have

4KHΨJ κ ,ξU2(�)ΨJ κ ,ξV2(�) ≤ (K + H)2(ΨJ κ ,ξU (�)V(�)
)2, (4.28)

which gives the desired assertion (4.22).
Now, from (4.28), we have

√
ΨJ κ ,ξU2(�)ΨJ κ ,ξV2(�) ≤ K + H

2
√
KH

(
ΨJ κ ,ξU (�)V(�)

)

. (4.29)

Subtraction of (ΨJ κ ,ξU (�)V(�)) from (4.29) yields the desired assertion (4.23). Similarly,
we can easily prove the assertion (4.24) from (4.22). �

5 Special cases
This section is devoted to certain special cases of the main result obtained in Sects. 3 and 4.

(I) Applying Theorem 3.1 for Ψ (�) = �, we attain the following result for a one sided
tempered fractional integral.

Corollary 5.1 Suppose that we have the function U ∈ L1[0,∞[ and let φ1 and φ2 be two
integrable functions defined on [0,∞[ such that

φ1(�) ≤ U (�) ≤ φ2(�), � ∈ [0,∞[.

Then, for � > 0, κ ,λ > 0, we have

J κ ,ξφ2(�)J λ,ξU (�) + J κ ,ξU (�)J λ,ξφ1(�)

≥ J κ ,ξφ2(�)J λ,ξφ1(�) + J κ ,ξU (�)J λ,ξU (�).

(II) Applying Theorem 3.1 for ξ = 1, we attain the following result for the one sided
generalized Riemann–Liouville fractional integral proved earlier by Kacar et al. [37].

Corollary 5.2 Suppose that the function U ∈ χ
p
Ψ (0,∞) and assume that the function Ψ is

positive, monotone and increasing on [0,∞[ and its derivative Ψ ′ is continuous on [0,∞[
with Ψ (0) = 0. Moreover, let φ1 and φ2 be two integrable functions defined on [0,∞[ such
that

φ1(�) ≤ U (�) ≤ φ2(�), � ∈ [0,∞[.



Rahman et al. Journal of Inequalities and Applications        (2020) 2020:147 Page 12 of 18

Then, for � > 0, κ ,λ > 0, we have

ΨJ κφ2(�)ΨJ λU (�) + ΨJ κU (�)ΨJ λφ1(�)

≥ ΨJ κφ2(�)ΨJ λφ1(�) + ΨJ κU (�)ΨJ λU (�).

(III) Applying Theorem 3.1 for Ψ (�) = � and ξ = 1, we attain the following result for one
sided Riemann–Liouville fractional integral proved earlier by Tariboon et al. [45].

Corollary 5.3 Suppose that the function U ∈ L1[0,∞[ and let φ1 and φ2 be two integrable
functions defined on [0,∞[ such that

φ1(�) ≤ U (�) ≤ φ2(�), � ∈ [0,∞[.

Then, for � > 0, κ ,λ > 0, we have

J κφ2(�)J λU (�) + J κU (�)J λφ1(�)

≥ J κφ2(�)J λφ1(�) + J κU (�)J λU (�).

The special cases of Theorem 3.2 are presented by the following corollaries.
(I) Setting Ψ (�) = �, we attain the following result for one sided tempered fractional

integral.

Corollary 5.4 Suppose that the two positive functions U and V are defined on [0,∞[. As-
sume that (3.1) holds and ψ1, ψ2 are two integrable functions on [0,∞[ such that

ψ1(�) ≤ V(�) ≤ ψ2(�), � ∈ [0,∞[.

Then, for � > 0 and κ ,λ > 0, the following four inequalities hold:

J κ ,ξφ2(�)J λ,ξV(�) + J λ,ξU (�)J κ ,ξψ1(�)

≥ J κ ,ξφ2(�)J λ,ξψ1(�) + J κ ,ξU (�)J λ,ξV(�),

J λ,ξφ1(�)J κ ,ξV(�) + J κ ,ξψ2(�)J λ,ξU (�)

≥ J κ ,ξφ1(�)J λ,ξψ2(�) + J κ ,ξU (�)J λ,ξV(�),

J κ ,ξφ2(�)J λ,ξψ2(�) + J κ ,ξU (�)J λ,ξV(�)

≥ J κ ,ξφ2(�)J λ,ξV(�) + J κ ,ξU (�)J λ,ξψ2(�),

J κ ,ξφ1(�)J λ,ξψ1(�) + J κ ,ξU (�)J λ,ξV(�)

≥ J κ ,ξφ1(�)J λ,ξV(�) + J κ ,ξU (�)J λ,ξψ1(�).

(II) Applying Theorem 3.2 for ξ = 1, we attain the following result for the one sided
generalized Riemann–Liouville fractional integral proved earlier by Kacar et al. [37].

Corollary 5.5 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
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Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. Assume that (3.1) holds and ψ1, ψ2 are two
integrable functions defined on [0,∞[ such that

ψ1(�) ≤ V(�) ≤ ψ2(�), � ∈ [0,∞[.

Then, for � > 0 and κ ,λ > 0, the following four inequalities hold:

ΨJ κφ2(�)ΨJ λV(�) + ΨJ λU (�)ΨJ κψ1(�)

≥ ΨJ κφ2(�)ΨJ λψ1(�) + ΨJ κU (�)ΨJ λV(�),

ΨJ λφ1(�)ΨJ κV(�) + ΨJ κψ2(�)ΨJ λU (�)

≥ ΨJ κφ1(�)ΨJ λψ2(�) + ΨJ κU (�)ΨJ λV(�),

ΨJ κφ2(�)ΨJ λψ2(�) + ΨJ κU (�)ΨJ λV(�)

≥ ΨJ κφ2(�)ΨJ λV(�) + ΨJ κU (�)ΨJ λψ2(�),

ΨJ κφ1(�)ΨJ λψ1(�) + ΨJ κU (�)ΨJ λV(�)

≥ ΨJ κφ1(�)ΨJ λV(�) + ΨJ κU (�)ΨJ λψ1(�).

(III) Applying Theorem 3.2 for Ψ (�) = � and ξ = 1, we attain the following result for the
one sided Riemann–Liouville fractional integral proved earlier by Tariboon et al. [45].

Corollary 5.6 Suppose that the functions U and V are two positive functions defined on
[0,∞[. Assume that (3.1) holds and ψ1, ψ2 are two integrable functions defined on [0,∞[
such that

ψ1(�) ≤ V(�) ≤ ψ2(�), � ∈ [0,∞[.

Then, for � > 0 and κ ,λ > 0, then the following four inequalities hold:

J κφ2(�)J λV(�) + J λU (�)J κψ1(�)

≥ J κφ2(�)J λψ1(�) + J κU (�)J λV(�),

J λφ1(�)J κV(�) + J κψ2(�)J λU (�)

≥ J κφ1(�)J λψ2(�) + J κU (�)J λV(�),

J κφ2(�)J λψ2(�) + J κU (�)J λV(�)

≥ J κφ2(�)J λV(�) + J κU (�)J λψ2(�),

J κφ1(�)J λψ1(�) + J κU (�)J λV(�)

≥ J κφ1(�)J λV(�) + J κU (�)J λψ1(�).

The following corollaries represent special cases of Theorem 4.1.
(I) Setting Ψ (�) = �, we attain the following result for a one sided tempered fractional

integral.
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Corollary 5.7 Suppose that the functions U and V are two positive functions defined on
[0,∞[ and let p1, q1 > 1 be such that 1

p1
+ 1

q1
= 1. Then, for � > 0, the following inequalities

hold:

1
p1

J κ ,ξUp1 (�)J λ,ξVp1 (�) +
1
q1

J κ ,ξVq1 (�)J λ,ξUq1 (�)

≥ J κ ,ξU (�)V(�)J λ,ξV(�)U (�),

1
p1

J κ ,ξUp1 (�)J λ,ξVq1 (�) +
1
q1

J κ ,ξVq1 (�)J λ,ξUp1 (�)

≥ J λ,ξVq1–1(�)Up1–1(�)J κ ,ξU (�)V(�),

1
p1

J κ ,ξUp1 (�)J λ,ξV2(�) +
1
q1

J κ ,ξVq1 (�)J λ,ξU2(�)

≥ J λ,ξU
2

p1 (�)V
2

q1 (�)J κ ,ξU (�)V(�),

and

1
p1

J κ ,ξU2(�)J λ,ξVq1 (�) +
1
q1

J κ ,ξV2(�)J λ,ξUp1 (�)

≥ J λ,ξUp1–1(�)Vq1–1(�)J κ ,ξU
2

p1 (�)V
2

q1 (�).

(II) Applying Theorem 4.1 for ξ = 1, we attain the following new result for a one sided
generalized Riemann–Liouville fractional integral.

Corollary 5.8 Suppose that the functions U and V are two positive functions defined on
[0,∞[ and assume that the function Ψ is positive, monotone and increasing on [0,∞[ and
its derivative Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. If p1, q1 > 1 are such that 1

p1
+ 1

q1
= 1,

then, for � > 0, the following inequalities hold:

1
p1

ΨJ κUp1 (�)ΨJ λVp1 (�) +
1
q1

ΨJ κVq1 (�)ΨJ λUq1 (�)

≥ ΨJ κU (�)V(�)ΨJ λV(�)U (�),

1
p1

ΨJ κUp1 (�)ΨJ λVq1 (�) +
1
q1

ΨJ κVq1 (�)ΨJ λUp1 (�)

≥ ΨJ λVq1–1(�)Up1–1(�)ΨJ κU (�)V(�),

1
p1

ΨJ κUp1 (�)ΨJ λV2(�) +
1
q1

ΨJ κVq1 (�)ΨJ λU2(�)

≥ ΨJ λU
2

p1 (�)V
2

q1 (�)ΨJ κU (�)V(�),

and

1
p1

ΨJ κU2(�)ΨJ λVq1 (�) +
1
q1

ΨJ κV2(�)ΨJ λUp1 (�)

≥ ΨJ λUp1–1(�)Vq1–1(�)ΨJ κU
2

p1 (�)V
2

q1 (�).
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In a similar way, we can obtain the special cases of Theorems 4.2 and 4.3 by applying
similar procedures.

6 Particular cases
Here, we present certain new particular cases of our main result by employing the con-
nection of GTF-integral (2.7) with the classical Riemann–Liouville expression containing
another function in the kernel.

Li et al. [39] defined the connection of a tempered fractional integral (2.3) with the
Riemann–Liouville fractional integral by

aJ κ ,ξU (�) = e–ξ�
aJ κ

[

eξ�U (�)
]

.

Here, we propose the following connection of the GTF-integral (2.7) with the generalized
Riemann–Liouville fractional integral as

ΨJ κ ,ξU (�) = e–ξΨ (�)ΨJ κ
[

eξΨ (�)U (�)
]

, (6.1)

where ΨJ κ [eξΨ (�)U (�)] is the generalized Riemann–Liouville fractional integral concern-
ing another function.

Applying the above connection (6.1) to Theorem 3.1, one can get the following new
result in terms of the generalized Riemann–Liouville fractional integral in the sense of
another function.

Theorem 6.1 Suppose that the function U ∈ χ
p
Ψ (0,∞) and assume that the function Ψ is

positive, monotone and increasing on [0,∞[ and its derivative Ψ ′ is continuous on [0,∞[
with Ψ (0) = 0. Moreover, let φ1 and φ2 be two integrable functions defined on [0,∞[ such
that

φ1(�) ≤ U (�) ≤ φ2(�), � ∈ [0,∞[. (6.2)

Then, for � > 0, κ ,λ > 0, we have

ΨJ λ
(

eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)U (�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)φ1(�)
)

≥ ΨJ λ
(

eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)φ1(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)U (�)
)

.

Applying (6.1) to Theorem 3.2, one can obtain easily the following new results.

Theorem 6.2 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. Assume that (6.2) holds and ψ1, ψ2 are two
integrable functions defined on [0,∞[ such that

ψ1(�) ≤ V(�) ≤ ψ2(�), � ∈ [0,∞[. (6.3)

Then, for � > 0 and κ ,λ > 0, the following four inequalities hold:

ΨJ λ
(

eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)ψ1(�)
)

≥ ΨJ λ
(

eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)ψ1(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

,
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ΨJ λ
(

eξΨ (�)φ1(�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

+ ΨJ λ
(

eξΨ (�)ψ2(�)
)
ΨJ λ

(

eξΨ (�)U (�)
)

≥ ΨJ λ
(

eξΨ (�)φ1(�)
)
ΨJ λ

(

eξΨ (�)ψ2(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

,
ΨJ λ

(

eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)ψ2(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

≥ ΨJ κ ,ξ (eξΨ (�)φ2(�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)ψ2(�)
)

,

and

ΨJ λ
(

eξΨ (�)φ1(�)
)
ΨJ λ

(

eξΨ (�)ψ1(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

≥ ΨJ λ
(

eξΨ (�)φ1(�)
)
ΨJ λ

(

eξΨ (�)V(�)
)

+ ΨJ λ
(

eξΨ (�)U (�)
)
ΨJ λ

(

eξΨ (�)ψ1(�)
)

.

One can obtain the following new result of Theorem 4.1 in terms of the generalized
Riemann–Liouville fractional integral in the sense of another function by utilizing (6.1).

Theorem 6.3 Suppose that the two positive functions U and V are defined on [0,∞[ and
assume that the function Ψ is positive, monotone and increasing on [0,∞[ and its derivative
Ψ ′ is continuous on [0,∞[ with Ψ (0) = 0. If p1, q1 > 1 is such that 1

p1
+ 1

q1
= 1, then, for � > 0,

the following inequalities hold:

1
p1

ΨJ λ
(

eξΨ (�)Up1 (�)
)
ΨJ λ

(

eξΨ (�)Vp1 (�)
)

+
1
q1

ΨJ λ
(

eξΨ (�)Vq1 (�)
)
ΨJ λ

(

eξΨ (�)Uq1 (�)
)

≥ ΨJ λ
(

eξΨ (�)U (�)V(�)
)
ΨJ λ

(

eξΨ (�)V(�)U (�)
)

,

1
p1

ΨJ λ
(

eξΨ (�)Up1 (�)
)
ΨJ λ

(

eξΨ (�)Vq1 (�)
)

+
1
q1

ΨJ λ
(

eξΨ (�)Vq1 (�)
)
ΨJ λ

(

eξΨ (�)Up1 (�)
)

≥ ΨJ λ
(

eξΨ (�)Vq1–1(�)Up1–1(�)
)
ΨJ λ

(

eξΨ (�)U (�)V(�)
)

,

1
p1

ΨJ λ
(

eξΨ (�)Up1 (�)
)
ΨJ λ

(

eξΨ (�)V2(�)
)

+
1
q1

ΨJ λ
(

eξΨ (�)Vq1 (�)
)
ΨJ λ

(

eξΨ (�)U2(�)
)

≥ ΨJ λ
(

eξΨ (�)U
2

p1 (�)V
2

q1 (�)
)
ΨJ λ

(

eξΨ (�)U (�)V(�)
)

,

and

1
p1

ΨJ κ
(

eξΨ (�)U2(�)
)
ΨJ λ

(

eξΨ (�)Vq1 (�)
)

+
1
q1

ΨJ λ
(

eξΨ (�)V2(�)
)
ΨJ λ

(

eξΨ (�)Up1 (�)
)

≥ ΨJ λ
(

eξΨ (�)Up1–1(�)Vq1–1(�)
)
ΨJ λ

(

eξΨ (�)U
2

p1 (�)V
2

q1 (�)
)

.

Similarly, we can obtain particular new results of Theorems 4.2 and 4.3 in terms of the
generalized Riemann–Liouville fractional integral in the sense of another function by uti-
lizing (6.1). Also, one can easily obtain certain new results of Theorems presented in Sect. 6
by utilizing the special cases discussed in Remark 2.2.

7 Conclusion
In this paper, we presented various types of inequalities such as Grüss-type inequalities
and certain other inequalities by employing a generalized tempered fractional (GTF)-
integral in the sense of another function Ψ . Furthermore, we have discussed several spe-
cial cases by using Remark 2.2. Also, we proposed a connection between the GTF-integral
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with the classical Riemann–Liouville fractional integral and derived certain new results
in terms of the Riemann–Liouville fractional integral concerning another function. One
can easily obtain several other types of inequalities, such as Hadamard fractional integral
inequalities and generalized fractional conformable inequalities by utilizing Remark 2.2.
Moreover, certain new inequalities can be derived by utilizing the inequalities discussed
in Sect. 6.
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