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1 Introduction
In many statistical models, it is not reasonable to assume that random variables are in-
dependent, and so it is very meaningful to extend the concept of independence to de-
pendence cases. One important dependence sequence of these dependences is extended
negatively dependent (END) random variables, we recall the concept of END random vari-
ables as follows.

Definition 1.1 The random variables {Xn, n ≥ 1} are said to be extended negatively de-
pendent (END) random variables if there exists a positive constant M > 0 such that both

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ M
n∏

i=1

P(Xi > xi)

and

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ M
n∏

i=1

P(Xi ≤ xi)

hold for each n ≥ 1 and all real x1, x2, . . . , xn.
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The concept of END random variables was introduced by Liu [2]. Obviously, END ran-
dom variables (M = 1) imply NOD (negatively orthant dependent) random variables (Joag-
Dev and Proschan [3]). Liu [2] pointed out that the END random variables are more com-
prehensive, and they can reflect not only negative dependence random variables but also
positive ones, to some extent. Joag-Dev and Proschan [3] once pointed out that NOD ran-
dom variables imply NA (negatively associated) random variables, but NA random vari-
ables do not imply NOD random variables, so END random variables imply NA random
variables. Thus, it is interesting to investigate convergence properties for END random
variables.

After the appearance of Liu [2], many scholars have focused on the properties of END
random variables, and a lot of results have been gained. For example, Liu [4] studied nec-
essary and sufficient conditions for moderate deviations of dependent random variables
with heavy tails; Chen et al. [5] established strong law of large numbers for END random
variables; Wu and Guan [6] presented convergence properties of the partial sums of END
random variables; Shen [7] presented probability inequalities for END sequence and their
applications; Wang and Wang [8] investigated large deviations for random sums of END
random variables; Wang et al. and Qiu et al. [9–13] studied complete convergence of END
random variables, etc.

The complete convergence plays a very important role in the probability theory and
mathematical statistics. The concept of complete convergence was introduced by Hsu and
Robbins [14] as follows: A sequence {Un, n ≥ 1} of random variables is said to converge
completely to a constant θ if, for ∀ε > 0,

∑∞
n=1 P(|Un – θ | > ε) < ∞. In view of the Borel–

Cantelli lemma, the complete convergence implies that Un → θ almost surely. Therefore,
complete convergence is a very important tool in establishing almost sure convergence for
partial of random variables as well as weighted sums of random variables.

Let {Xn, n ≥ 1} be a sequence of random variables, an > 0, bn > 0, γ > 0. If for ∀ε > 0,
∑∞

n=1 anE{b–1
n |Xn| – ε}γ+ < ∞, then {Xn, n ≥ 1} is called the complete moment convergence

(Chow [15]). It is well known that complete moment convergence implies complete con-
vergence, i.e., the complete moment convergence is more general than complete conver-
gence. The following result is from Chow [15].

Theorem A Let r > 1, 1 ≤ p < 2, {X, Xn, n ≥ 1} be a sequence of independent identically
distributed random variables and EX1 = 0, if E{|X1|rp + |X1| log(1 + |X1|)} < ∞, then

∞∑

n=1

nr–2–1/pE

{∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ – εn1/p

}

+

< ∞, ∀ε > 0.

It should be noted that Theorem A has been extended and improved by many scholars
(see [16–19]).

Recently, Chen and Sung [20] obtained complete and complete moment convergence of
ρ-mixing random variables, and Qiu et al. [1] obtained the following complete moment
convergence for weighted sums of END random variables.
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Theorem B Let r > 1, 1 ≤ p < 2, λ > 0, α > 1, β > 1 with 1/α + 1/β = 1/p. Let {ani, 1 ≤ i ≤
n, n ≥ 1} be an array of constants satisfying

n∑

i=1

|ani|a ≤ Dn, ∀n ≥ 1, (1.1)

where D is a positive constant. {X, Xn, 1 ≤ n} is a sequence of identically distributed END
random variables with EX = 0. If

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E|X|(r–1)β < ∞ if α < rp,λ < (r – 1)β ,

E|X|(r–1)β log(1 + |X|) < ∞ if α = rp,λ < (r – 1)β ,

E|X|(r–1)β log(1 + |X|) < ∞ if α < rp,λ = (r – 1)β ,

E|X|(r–1)β log2(1 + |X|) < ∞ if α = rp,λ = (r – 1)β ,

E|X|rp < ∞ if α > rp,λ < rp,

E|X|rp log(1 + |X|) < ∞ if α > rp,λ = rp,

E|X|λ < ∞ if λ > max{rp, (r – 1)β},
when α > rp, assume λ < α,

then

∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣ – εn1/p

}λ

+

< ∞, ∀ε > 0.

In this article, our goal is to further study complete moment convergence for weighted
sums of END random variables with suitable conditions. By using the truncated method,
we obtain a novel result, which extends that in Qiu et al. [1] under some weaker conditions.
Our result also improves and extends those in Chen and Sung [20], Sung [21], and Qiu and
Xiao [22].

The layout of this paper is as follows. Main results and some lemmas are provided in
Sect. 2. Proofs of the main results are given in Sect. 3. Throughout the paper, the symbol
C denotes a positive constant, which may take different values in different places. I(A) is
the indicator function of an event A.

2 Main results and some lemmas
Theoremm 2.1 Let r > 1, 1 ≤ p < 2, λ > 0, α > 0, β > 0 with 1/α+1/β = 1/p. Let {ani, 1 ≤ i ≤
n, n ≥ 1} be an array of constants satisfying (1.1). {X, Xn, n ≥ 1} is a sequence of identically
distributed END random variables with EX = 0. Assume that one of the following conditions
holds:

(1) If α < rp, then

⎧
⎪⎪⎨

⎪⎪⎩

E|X|(r–1)β < ∞ if λ < (r – 1)β ,

E|X|(r–1)β log(1 + |X|) < ∞ if λ = (r – 1)β ,

E|X|λ < ∞ if λ > (r – 1)β .

(2.1)
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(2) If α = rp, then

⎧
⎨

⎩
E|X|(r–1)β log(1 + |X|) < ∞ if λ ≤ (r – 1)β = rp,

E|X|λ < ∞ if λ > (r – 1)β = rp.
(2.2)

(3) If α > rp, then

⎧
⎪⎪⎨

⎪⎪⎩

E|X|rp < ∞ if λ < rp,

E|X|rp log(1 + |X|) < ∞ if λ = rp,

E|X|λ < ∞ if λ > rp.

(2.3)

Then

∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣ – εn1/p

}λ

+

< ∞, ∀ε > 0. (2.4)

Conversely, if (2.4) holds for any array {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1), then EX = 0,
E|X|(r–1)β < ∞, E|X|rp < ∞.

Remark 2.1 The Rademacher–Menshov inequality is only used in the proof process of
Theorem 2.1. The results in this paper still hold for random variable satisfying Rosenthal’s
inequality. Therefore, our results improve and extend the result of Chen and Sung [20].

Remark 2.2 In this paper, the conditions of Theorem 2.1 are weaker than those in Theo-
rem 1.1 of Qiu et al. [1], and the condition of “if α > rp, assume λ < α (Qiu et al. [1])” is
not necessary for (2.4) in our paper. Therefore our results improve and extend the result
of Qiu et al. [1]. It is worth pointing out that the method applied in this article is different
from that in Qiu et al. [1].

To prove Theorem 2.1 of the paper, we need the following important lemmas.

Lemma 2.1 (Qiu [22]; Rademacher–Menshov inequality) Let p > 1, {Xn, n ≥ 1} be a se-
quence of END random variables with EXn = 0 and E|Xn|p < ∞. Then there exists a positive
constant Cp only depending on p such that

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

p)
≤ Cp logp n

n∑

i=1

E|Xi|p, 1 < p ≤ 2, (2.5)

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

p)
≤ Cp logp n

{ n∑

i=1

E|Xi|p +

( n∑

i=1

E|Xi|2
)p/2}

, p > 2. (2.6)

Lemma 2.2 (Qiu [22]) Let p ≥ 1, {Xn, n ≥ 1} be a sequence of END random variables with
EXn = 0 and E|Xn|p < ∞. Then there exists a positive constant Cp only depending on p such
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that

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
≤ Cp

n∑

i=1

E|Xi|p, 1 ≤ p < 2, (2.7)

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
≤ Cp

{ n∑

i=1

E|Xi|p +

( n∑

i=1

E(Xi)2

)p/2}
, p ≥ 2. (2.8)

Lemma 2.3 (Liu [2]) Let {Xn, n ≥ 1} be a sequence of END random variables. If f1, f2, . . . , fn

are all nondecreasing (or nonincreasing) functions, then random variables f1(X1), f2(X2), . . . ,
fn(Xn) are still END random variables.

Lemma 2.4 (Wu [23]) Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be sequences of random variables,
for any q > r > 0, ε > 0, a > 0, then

E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xi + Yi)

∣∣∣∣∣ – εa

)r

+

≤ Cr

(
1
εq +

r
q – r

)
1

aq–r E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

q)

+ CrE

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Yi

∣∣∣∣∣

r)
,

where Cr = 1 if 0 < r ≤ 1 or Cr = 2r–1 if r > 1.

Chen and Sung [20] obtained the following theorems (see Lemmas 2.5–2.7).

Lemma 2.5 (Chen [20]) Let r > 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Let {ani, 1 ≤
i ≤ n, n ≥ 1} be an array of constants satisfying (1.1). X is a random variable, then

∞∑

n=1

nr–2
n∑

i=1

P
(|aniX| > n1/p) ≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

Lemma 2.6 (Chen [20]) Let r > 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Let {ani, 1 ≤
i ≤ n, n ≥ 1} be an array of constants satisfying (1.1). If X is a random variable, then for
any v > max{α, (r – 1)β}

∞∑

n=1

nr–2–v/p
n∑

i=1

E|aniX|vI
(|aniX| ≤ n1/p) ≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

Lemma 2.7 (Chen [20]) Let λ > 0, r > 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Let
{ani, 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying (1.1) and X be a random variable.
Then the following statements hold:
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(1) If α < rp, then

∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniX|λI
(|aniX| > n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if λ < (r – 1)β ,

CE|X|(r–1)β log(1 + |X|) if λ = (r – 1)β ,

CE|X|λ if λ > (r – 1)β .

(2) If α = rp, then

∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniX|λI
(|aniX| > n1/p)

≤
⎧
⎨

⎩
CE|X|(r–1)β log(1 + |X|) if λ ≤ (r – 1)β = rp,

CE|X|λ if λ > (r – 1)β = rp.

(3) If α > rp, then

∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniX|λI
(|aniX| > n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|rp if λ < rp,

CE|X|rp log(1 + |X|) if λ = rp,

CE|X|λ if λ > rp.

3 Proofs of theorems

Proof of Theorem 2.1 Noting α > 0, β > 0, 1/α + 1/β = 1/p, we have

⎧
⎪⎪⎨

⎪⎪⎩

α < rp ⇔ rp < (r – 1)β ,

α = rp ⇔ rp = (r – 1)β ,

α > rp ⇔ rp > (r – 1)β .

For ∀t : 0 < t ≤ α, by the Hölder inequality and (1.1), we have

n∑

i=1

|ani|t ≤
( n∑

i=1

|ani|a
)t/a( n∑

i=1

1

)1–t/a

≤ Cn. (3.1)

For ∀t : t > α, it follows from the Cr inequality and (1.1) that

n∑

i=1

|ani|t ≤
( n∑

i=1

|ani|a
)t/a

≤ Cnt/a. (3.2)

Noting that ani = a+
ni – a–

ni, without loss of generality, we can assume ani > 0.
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Sufficiency. Set θ ∈ ( p
α∧rp , 1) for 1 ≤ i ≤ n, n ≥ 1, and let

X(1)
ni = –nθ/pI

(
aniXi < –nθ/p) + aniXiI

(|aniXi| ≤ nθ/p) + nθ/pI
(
aniXi > nθ/p),

X(2)
ni =

(
aniXi – nθ/p)I

(
nθ/p < aniXi ≤ nθ/p + n1/p) + n1/pI

(
aniXi > nθ/p + n1/p),

X(3)
ni =

(
aniXi + nθ/p)I

(
–nθ/p – n1/p ≤ aniXi < –nθ/p) – n1/pI

(
aniXi < –nθ/p – n1/p),

X(4)
ni =

(
aniXi – nθ/p – n1/p)I

(
aniXi > nθ/p + n1/p),

X(5)
ni =

(
aniXi + nθ/p + n1/p)I

(
aniXi < –nθ/p – n1/p).

Then aniXi =
∑5

l=1 X(l)
ni . It follows from the definition of X(2)

ni , θ ∈ ( p
α∧rp , 1), (3.1), and (2.1)–

(2.3) that

n–1/p max
1≤k≤n

∣∣∣∣∣

k∑

i=1

EX(2)
ni

∣∣∣∣∣ = n–1/p
n∑

i=1

EX(2)
ni

≤ n–1/p
n∑

i=1

E|aniXi|I
(|aniXi| > nθ/p)

≤ n–1/p
n∑

i=1

E|aniXi|
( |aniXi|

nθ/p

)(α∧rp–1)

I
(|aniXi| > nθ/p)

≤ n1–1/p–(α∧rp–1)θ/pE|X|α∧rp → 0, n → ∞.

By the definition X(4)
ni and (3.1), from the above proof process, we have

n–1/p max
1≤k≤n

∣∣∣∣∣

k∑

i=1

EX(4)
ni

∣∣∣∣∣ = n–1/p
n∑

i=1

EX(4)
ni

≤ n–1/p
n∑

i=1

E|aniXi|I
(|aniXi| > nθ/p + n1/p)

≤ n–1/p
n∑

i=1

E|aniXi|I
(|aniXi| > nθ/p) → 0, n → ∞.

Similarly, we can obtain

lim
n→∞ n–1/p max

1≤k≤n

∣∣∣∣∣

k∑

i=1

EX(3)
ni

∣∣∣∣∣ = lim
n→∞ –n–1/p

n∑

i=1

EX(3)
ni = 0

and

lim
n→∞ n–1/p max

1≤k≤n

∣∣∣∣∣

k∑

i=1

EX(5)
ni

∣∣∣∣∣ = lim
n→∞ –n–1/p

n∑

i=1

EX(5)
ni = 0.

Noting that EXi = 0, it follows from Lemma 2.4 and the Cr inequality that, for v > λ ≥ 1,

∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣ – εn1/p

}λ

+
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=
∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

5∑

l=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣ – εn1/p

}λ

+

≤
∞∑

n=1

nr–2–λ/pE

{ 5∑

l=1

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣ – εn1/p

}λ

+

≤
∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(1)

ni – EX(1)
ni

)
∣∣∣∣∣ +

5∑

l=2

∣∣∣∣∣

n∑

i=1

X(l)
ni

∣∣∣∣∣ – 3εn1/p/4

}λ

+

≤
∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(1)

ni – EX(1)
ni

)
∣∣∣∣∣ +

5∑

l=2

∣∣∣∣∣

n∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣ – εn1/p/2

}λ

+

≤ C
∞∑

n=1

nr–2–v/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(1)

ni – EX(1)
ni

)
∣∣∣∣∣

v}

+ C
3∑

l=2

∞∑

n=1

nr–2–v/pE

∣∣∣∣∣

n∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣

v

+ C
5∑

l=4

∞∑

n=1

nr–2–λ/pE

∣∣∣∣∣

n∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣

λ

=: I1 + I2 + I3 + I4 + I5. (3.3)

Similarly, for v > λ, 0 < λ < 1, we have

∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣ – εn1/p

}λ

+

≤
∞∑

n=1

nr–2–λ/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(1)

ni – EX(1)
ni

)
∣∣∣∣∣ +

3∑

l=2

∣∣∣∣∣

n∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣

+
5∑

l=4

∣∣∣∣∣

n∑

i=1

X(l)
ni

∣∣∣∣∣ – εn1/p/2

}λ

+

≤ C
∞∑

n=1

nr–2–v/pE

{
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(
X(1)

ni – EX(1)
ni

)
∣∣∣∣∣

v}

+ C
3∑

l=2

∞∑

n=1

nr–2–v/pE

∣∣∣∣∣

n∑

i=1

(
X(l)

ni – EX(l)
ni

)
∣∣∣∣∣

v

+ C
5∑

l=4

∞∑

n=1

nr–2–λ/pE

∣∣∣∣∣

n∑

i=1

X(l)
ni

∣∣∣∣∣

λ

=: I1 + I2 + I3 + I4 + I5. (3.4)

In order to prove Theorem 2.1, we need to prove Ii < ∞, i = 1, 2, . . . , 5.
Taking v > max{2, 2rp/[(2 – p)(1 – θ )], 2pr/(a – p), 2pr/(2 – p), a, (r – 1)β ,λ}, it follows

from Lemmas 2.1 and 2.3 that

I1 ≤ C
∞∑

n=1

nr–2–v/p logv n
n∑

i=1

{
E
∣∣X(1)

ni
∣∣v +

( n∑

i=1

E
∣∣X(1)

ni
∣∣2

)v/2}

:= I11 + I12.
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By the definition of X(1)
ni and v > 2rp/[(2 – p)(1 – θ )] > rp/(1 – θ ), we have

I11 ≤ C
∞∑

n=1

nr–2–v/p logv n

[ n∑

i=1

E|aniXi|vI
(|aniXi| ≤ nθ/p) +

n∑

i=1

nvθ/pP
(|aniXi| > nθ/p)

]

≤ C
∞∑

n=1

nr–2–v/p logv n

( n∑

i=1

nvθ/p

)

≤ C
∞∑

n=1

nr–1–(1–θ )v/p logv n < ∞. (3.5)

Since r > 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, then p < α ∧ rp. By (3.1) and
(2.1)–(2.3), we obtain

I12 ≤ C
∞∑

n=1

nr–2–v/p logv n

[ n∑

i=1

E|aniXi|2I
(|aniXi| ≤ nθ/p)

+
n∑

i=1

n2θ/pP
(|aniXi| > nθ/p)

]v/2

≤ C
∞∑

n=1

nr–2–v/p logv n

( n∑

i=1

E|aniXi|pn(2–p)θ/p

)v/2

≤ C
∞∑

n=1

nr–2–(2–p)(1–θ )v/2p logv n
(
E|X|p)v/2 < ∞. (3.6)

Then it follows from (3.5) and (3.6) that I1 < ∞ holds.
By the definition of X(2)

ni , Lemmas 2.2 and 2.3, we get

I2 ≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E
∣∣X(2)

ni
∣∣v +

( n∑

i=1

E
∣∣X(2)

ni
∣∣2

)v/2]

≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|vI
(|aniXi| ≤ 2n1/p) +

n∑

i=1

nv/pP
(|aniXi| > n1/p)

]

+ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|2I
(|aniXi| ≤ 2n1/p) +

n∑

i=1

n2/pP
(|aniXi| > n1/p)

]v/2

:= I21 + I22.

Combining Lemmas 2.5 and 2.6, we obtain I21 < ∞.
The proof of I22 < ∞ will mainly be conducted under the following four cases.
Case 1: 1 < α < 2, α ≤ rp. Noting that p < α, by (2.1)–(2.2), we have E|X|α < ∞, then

I22 ≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|2I
(|aniXi| ≤ 2n1/p)

]v/2

+ C
∞∑

n=1

nr–2

[ n∑

i=1

P
(|aniXi| > n1/p)

]v/2
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≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|α
(
2n1/p)2–α

]v/2

+ C
∞∑

n=1

nr–2

[ n∑

i=1

E|aniXi|α
(
n–α/p)

]v/2

≤ C
∞∑

n=1

nr–2–[(α/p)–1]v/2(E|X|α)v/2 < ∞. (3.7)

Case 2: 1 < α < 2, α > rp. Noting that rp < 2, by (2.3), we obtain E|X|rp < ∞, then

I22 ≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|rp(2n1/p)2–rp
]v/2

+ C
∞∑

n=1

nr–2

[ n∑

i=1

E|aniXi|rpn–rp/p)

]v/2

≤ C
∞∑

n=1

nr–2–(r–1)v/2(E|X|rp)v/2 < ∞. (3.8)

Case 3: α ≥ 2, α ≤ rp. Noting that rp ≥ 2, by (2.1)–(2.2), we get E|X|2 < ∞, and then

I22 ≤ C
∞∑

n=1

nr–2–v/p

[ n∑

i=1

E|aniXi|2
]v/2

+ C
∞∑

n=1

nr–2

[ n∑

i=1

E|aniXi|2n–2/p

]v/2

≤ C
∞∑

n=1

nr–2–[(2/p)–1]v/2(E|X|2)v/2 < ∞. (3.9)

Case 4: α ≥ 2, α > rp, then E|X|rp < ∞. If rp < 2, the proof is the same as that of Case 2.
If rp ≥ 2, the proof is the same as that of Case 3.

Then it follows from (3.7)–(3.9) that I2 < ∞ holds.
The proof of I4 < ∞ will mainly be conducted under the following three cases.
Case 1: 0 < λ < 1. By (3.4), the Cr inequality, Lemma 2.7, and (2.1)–(2.3), we have

I4 =
∞∑

n=1

nr–2–λ/pE

∣∣∣∣∣

n∑

i=1

X(4)
ni

∣∣∣∣∣

λ

≤
∞∑

n=1

nr–2–λ/p
n∑

i=1

E
∣∣X(4)

ni
∣∣λ

≤ C
∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniXi|λI
(|aniXi| > n1/p) < ∞. (3.10)

Case 2: 1 ≤ λ ≤ 2. It follows from (3.3), the Cr inequality, Jensen’s inequality, Lem-
mas 2.2–2.3, 2.7, and (2.1)–(2.3) that

I4 =
∞∑

n=1

nr–2–λ/pE

∣∣∣∣∣

n∑

i=1

(
X(4)

ni – EX(4)
ni

)
∣∣∣∣∣

λ



Song and Zhu Journal of Inequalities and Applications        (2020) 2020:150 Page 11 of 13

≤
∞∑

n=1

nr–2–λ/p
n∑

i=1

E
∣∣X(4)

ni
∣∣λ

≤ C
∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniXi|λI
(|aniXi| > n1/p) < ∞. (3.11)

Case 3. λ > 2. By (3.3), the Cr inequality, Jensen’s inequality, Lemmas 2.2, 2.7, and (2.1)–
(2.3), we have

I4 =
∞∑

n=1

nr–2–λ/pE

∣∣∣∣∣

n∑

i=1

(
X(4)

ni – EX(4)
ni

)
∣∣∣∣∣

λ

≤ C
∞∑

n=1

nr–2–λ/p

{ n∑

i=1

E
∣∣X(4)

ni
∣∣λ +

( n∑

i=1

E
∣∣X(4)

ni
∣∣2

)λ/2}

≤ C
∞∑

n=1

nr–2–λ/p
n∑

i=1

E|aniXi|λI
(|aniXi| > n1/p)

+ C
∞∑

n=1

nr–2–λ/p

[ n∑

i=1

E|aniXi|2I
(|aniXi| > n1/p)

]λ/2

:= I41 + I42.

From Lemma 2.7 and (2.1)–(2.3), we obtain I41 < ∞.
The proof of I42 < ∞ will mainly be conducted under the following two cases.
Case a: α ≤ rp. Taking q = max{(r – 1)β ,λ} > 2, by (2.1)–(2.2), (3.2), we have E|X|q < ∞

and

I42 ≤ C
∞∑

n=1

nr–2–λ/p

[ n∑

i=1

E|aniXi|qn(2–q)/pI
(|aniXi| > n1/p)

]λ/2

≤ C
∞∑

n=1

nr–2–λ/p[nq/αE|X|qn(2–q)/p]λ/2

= C
∞∑

n=1

nr–2–qλ/2β
[
E|X|q]λ/2 < ∞. (3.12)

Case b: α > rp. Letting q = max{rp,λ} > 2, it follows from (2.3) that E|X|q < ∞. If α ≥ q,
by (3.1), we have

I42 ≤ C
∞∑

n=1

nr–2–λ/p

[ n∑

i=1

E|aniXi|qn(2–q)/pI
(|aniXi| > n1/p)

]λ/2

≤ C
∞∑

n=1

nr–2–λ/p[nE|X|qn(2–q)/p]λ/2

= C
∞∑

n=1

nr–2–(q–p)λ/2p[E|X|q]λ/2 < ∞. (3.13)
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If α < q, then (r – 1)β < rp < α < q, by (3.2), we have

I42 ≤ C
∞∑

n=1

nr–2–λ/p

[ n∑

i=1

E|aniXi|qn(2–q)/pI
(|aniXi| > n1/p)

]λ/2

≤ C
∞∑

n=1

nr–2–λ/p[nq/αE|X|vn(2–q)/p]λ/2

= C
∞∑

n=1

nr–2–qλ/2β
[
E|X|q]λ/2 < ∞. (3.14)

Then it follows from (3.10)–(3.14) that I4 < ∞.
Similar to the proof of I2 < ∞ and I4 < ∞, we can get I3 < ∞ and I5 < ∞, too.
Necessity. By (2.4), we have

∞∑

n=1

nr–2P

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣ > εn1/p

)
< ∞, ∀ε > 0. (3.15)

Set ani = 1 for {1 ≤ i ≤ n, n ≥ 1}, then (3.15) can be rewritten as follows:

∞∑

n=1

nr–2P

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣ > εn1/p

)
< ∞, ∀ε > 0, (3.16)

which implies that EX = 0, E|X|rp < ∞ (see Theorem 2 in Peligard and Gut [24]). Take
ani = 0 for 1 ≤ i ≤ n – 1, n ≥ 1, and ann = n1/α , then (3.15) can be rewritten as follows:

∞∑

n=1

nr–2P
(|Xn| > εn1/β)

< ∞, ∀ε > 0, (3.17)

which is equivalent to E|X|(r–1)β < ∞. The proof is completed. �
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