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Abstract
In the paper we study the question of solvability and unique solvability of systems of
the higher-order functional differential equations

u(mi)
i (t) = �i(ui+1)(t) + qi(t) (i = 1,n) for t ∈ I := [a,b]

and

u(mi)
i (t) = Fi(u)(t) + q0i(t) (i = 1,n) for t ∈ I

under the periodic boundary conditions

u(j)i (b) – u
(j)
i (a) = cij (i = 1,n, j = 0,mi – 1),

where un+1 = u1,mi ≥ 1, n ≥ 2, cij ∈ R, qi ,q0i ∈ L(I;R), �i : C0
1(I;R)→ L(I;R) are monotone

operators and Fi are the local Caratheodory’s class operators. In the paper in some
sense optimal conditions that guarantee the unique solvability of the linear problem
are obtained, and on the basis of these results the optimal conditions of the
solvability and unique solvability for the nonlinear problem are proved.
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Keywords: Higher-order systems; Periodic problem; Functional differential
equations; Unique solvability

1 Introduction
Consider on the interval I = [a, b] the system of higher-order linear functional differential
equations

u(mi)
i (t) = �i(ui+1)(t) + qi(t) (i = 1, n), (1)
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where un+1 := u1, and the system of higher-order nonlinear functional differential equa-
tions

u(mi)
i (t) = Fi(u)(t) + q0i(t) (i = 1, n), (2)

where mi ≥ 1, qi, q0i ∈ L(I; R), �i : C0
1(I; R) → L(I; R) are linear bounded operators, and

Fi ∈ K(Cm1,...,mn , L) (see Definition 1.1), under the periodic boundary conditions

u(j)
i (b) – u(j)

i (a) = cij (i = 1, n, j = 0, mi – 1). (3)

Throughout the paper we use the following notations: N is the set of the natural num-
bers; R = ]–∞, +∞[, R+ = [0, +∞[; Rn is the space of the nth dimensional column vectors
x := (xi)n

i=1 with the components xi ∈ R (i = 1, n) and the norm ‖x‖ =
∑n

i=1 |xi|; Cn–1
1 (I; R)

(n ∈ N ) is the Banach space of the functions u : I → R which are continuous together with
their (n – 1)th derivatives, with the norm

‖u‖Cn–1
1

= max

{ n∑

j=1

∣
∣u(j–1)(t)

∣
∣ : t ∈ I

}

;

Cm1,...,mn (I; Rn) is the Banach space of the vector-functions u := (ui)n
i=1 : I → Rn, where ui ∈

Cmi–1
1 (I; R) (i = 1, n), with the norm

‖u‖Cm1,...,mn = max

{ n∑

i=1

mi∑

j=1

∣
∣u(j–1)

i (t)
∣
∣ : t ∈ I

}

,

and for the case when mi = 1 (i = 1, n), we will use the notations

C0
n
(
I; Rn) := C1,...,1(I; Rn), ‖u‖C0

n
:= ‖u‖C1,...,1 ;

C̃0(I; R) is the Banach space of the functions u : I → R which are absolutely continu-
ous with the norm ‖u‖C̃0 = ‖u‖C +

∫ b
a |u′(s)|ds; C̃n–1(I; R) (n ∈ N ) is a set of functions

u : I → R which are absolutely continuous together with their (n – 1)th derivatives; L(I; R)
is the Banach space of the Lebesgue integrable functions p : I → R with the norm ‖p‖L =
∫ b

a |p(s)|ds; Mn(I) is the set of the vector-functions τ := (τi)n
i=1 : I → In, with the measurable

components τi : I → I (i = 1, n).
For arbitrary x ∈ R, we assume that

sgn x =

⎧
⎨

⎩

1 if x ≥ 0,

–1 if x < 0.

Definition 1.1 We will say that the operator F : Cm1,...,mn (I; Rn) → L(I; R) belongs to
Caratheodory’s local class K(Cm1,...,mn , L) if F is a continuous operator, and for arbitrary
r > 0, the inclusion

sup
{∣
∣F(x)(·)∣∣ : ‖x‖Cm1,...,mn ≤ r, x ∈ Cm1,...,mn

(
I; Rn)} ∈ L(I; R+)

holds.
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Definition 1.2 We will say that a linear operator � : C0
1(I; R) → L(I; R) is nonnegative

(nonpositive) if, for any nonnegative x ∈ C0
1(I; R), the inequality �(x)(t) ≥ 0 (�(x)(t) ≤ 0)

for t ∈ I is satisfied.
We will say that an operator � is monotone if it is nonnegative or nonpositive.

By a solution of problem (2), (3) we understand a vector-function u := (ui)n
i=1 where

ui ∈ C̃mi–1(I; R) (i = 1, n), which satisfies equation (2) almost everywhere on I and satis-
fies conditions (3).

First of all, we would like to give a historical review which begins with Lasota and Opial’s
article [1] from the year 1964, which became the basis for a lot of interesting studies. In
this article (see Theorems 5 and 6) authors proved that the problem

u(n)(t) = p(t)u(t) + q(t) for t ∈ I,

u(j)(b) – u(j)(a) = cj (j = 0, n – 1),
(4)

is uniquely solvable if
∫ b

a p(s) ds ≤ 0 for n = 2, p(t) ≤ 0 for n ≥ 3, and

∫ b

a

∣
∣p(s)

∣
∣ds <

Ln

(b – a)n–1 , and p 	≡ 0, (5)

where L2 = 16 and the general term Ln can be found by formula (40) from the paper [1], in
which it is also shown that for n = 2 condition (5) is optimal, while for n ≥ 3 it is far from
being optimal.

In the article [2], we announced the Lasota–Opial type optimal results of unique solv-
ability of the periodic problem for second-order linear functional differential equations,
which in a more general form are considered in the paper [3] from 2006. In particular,
in Theorem 1.1 of the paper [3] (see also [4]) it is proved that the functional differential
equation

u(n)(t) =
n–1∑

i=0

�i
(
u(i))(t) + q(t) (6)

under boundary conditions (4) for n = 2 is uniquely solvable if the optimal conditions

∫ b

a
�0(1)(s) ds 	= 0

and

∫ b

a

∣
∣�0(1)(s)

∣
∣ds ≤ 16

b – a

(

1 –
∫ b

a

(
�+

1 (1)(s) + �–
1 (1)(s)

)
ds

)

hold, where �0 : C0
1(I; R) → L(I; R) is a monotone operator, �i = �+

i – �–
i (i = 1, n – 1) and

�±
i : C0

1(I; R) → L(I; R) are nonnegative operators (for n = 3 see [5]). For the general case,
analogous conditions of the unique solvability of problem (6), (4) are proved in [6], for �i =
�+

i – �–
i (i = 0, n – 1), which if �0 is monotone operator and �i ≡ 0 (i = 1, n – 1) transforms
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to the conditions

∫ b

a
�0(1)(s) ds 	= 0 and

∫ b

a

∣
∣�0(1)(s)

∣
∣ds ≤ 4Tn–1

(b – a)n–1 , (7)

where T1 = 4, T2 = 32, T3 = 192, and the general term Tn of this sequence can be found by
formulas (9). In [6] (see also [7]) it is proved that the constants Tn are sharp when n ≤ 7;
for n > 7, the problem of sharpness of the numbers Tn is still opened.

In this brief historical review Bravyi’s original studies of problem (6), (4) cannot be omit-
ted. The method developed in these studies turned out to be very fruitful. Particularly in
[8] the author proved that the condition

Y
1 – Y

≤ X ≤ 2(1 +
√

1 – Y ), (8)

where Y = Nn(b – a)n–1 min(P–, P+), X = Nn(b – a)n–1 max(P–, P+), the numbers Nn are de-
fined by the certain recurrent formula, and ‖�+

0 (1)‖L = P+, ‖�–
0 (1)‖L = P–, is necessary and

sufficient for solvability of problems (6), (4) if �i ≡ 0 (i = 1, n – 1) (Nn = T–1
n–1 for n = 2, 7, but

for n > 7 the validity of the last identity is unknown). For the case �i 	≡ 0 (i = 1, n – 1), these
results are generalized in [9]. It is interesting that the numbers Nn are in some connection
with Favard’s, Bernoulli’s, and Euler’s numbers (see [10] and [11]) and if the operator �0 is
monotone, then condition (8) transforms to the condition 0 <

∫ b
a |�0(1)(s)|ds ≤ 4

Nn(b–a)n–1 .
Other interesting results about problems (6), (4) can be found also in the papers [10–15].

The next stage was the generalization of Lasota–Opial’s results for the systems of linear
functional differential equations. In particular in [16] it is proved that problem (1), (3) with
mi = 1 (i = 1, n) is uniquely solvable if �i are linear monotone operators, ‖�i‖ 	= 0 (i = 1, n),
and the condition

∏n
i=1 ‖�i(1)‖L < 4n (which is optimal) holds. In this connection see also

the papers [17] and [18].
The aims of this article are to establish Lasota–Opial type sufficient efficient optimal

conditions of the solvability of problem (1), (3) and on the basis of these results to find the
optimal efficient sufficient conditions of solvability and unique solvability of the nonlinear
problem (2), (3).

2 Main results
2.1 Linear problem
Let T0 = 1, T1 = 4, T2 = 32, T3 = 192, and

T2m+2 =
1

max{(hm(t)hm(1 – t))1/2 : 0 ≤ t ≤ 1} ,

T2m+3 =
1

max{(fm(t, s)fm(1 – t, 1 – s))1/2 : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}
(9)

for m ≥ 1, where the functions fm : [0, 1] × [0, 1] → R+, hm : [0, 1] → R+ are defined by the
equalities

fm(t, s) =
m–1∑

j=0

αmjt2(j+1) + αmms2m+3, hm(t) =
m∑

j=0

βmjt2(j+1),
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where

αmj =
Aj

3 · 4j+1T2(m–j)+1
, βmj =

Aj

3 · 4j+1T2(m–j)
for j = 0, m – 1,

αmm =
Am

3 · 4m+1 , βmm =
Bm

3 · 4m+1 ,

and

A0 = 1, A1 =
1

15
, Aj = A1

2∑

m1=1

m1+1∑

m2=1

. . .
mj–2+1∑

mj–1=1

1
η(m1) . . .η(mj–1)

,

B1 =
1
8

, Bj = A1

2∑

m1=1

m1+1∑

m2=1

. . .
mj–2+1
∑

mj–1=1

(
1

η(m1) . . .η(mj–1)

mj–1+1
∏

i=1

(

1 +
1
2i

))

for j ≥ 2, with η(t) = (2t + 1)(2t + 3).

Remark 2.1 In Remarks 1.2 and 1.3 of [7] it was shown that

T4 =
211 · 3

5
, T5 = 29 · 3 · 5, T6 =

216 · 32 · 5
61

, T7 =
214 · 32 · 5 · 7

17
,

and

Tn < (2π )n (n ∈ N).

Now we can formulate the first of our main theorems.

Theorem 2.1 Let the operators �i : C0
1(I; R) → L(I; R) (i = 1, n) be monotone,

∫ b

a
�i(1)(s) ds 	= 0 (i = 1, n), (10)

and the condition

n∏

i=1

1
Tmi–1

∫ b

a

∣
∣�i(1)(s)

∣
∣ds ≤ 4n(b – a)n–

∑n
i=1 mi (11)

hold. Then problem (1), (3) is uniquely solvable.

For the system

u(mi)
i (t) = pi(t)ui+1

(
τi(t)

)
+ qi(t) (i = 1, n), (12)

where un+1 := u1, τ := (τi)n
i=1 ∈ Mn(I), and pi, qi ∈ L(I; R), from Theorem 2.1 we have the

following.

Corollary 2.1 Let the function p ∈ L(I; Rn) be such that the conditions

∫ b

a
pi(s) ds 	= 0, 0 ≤ σipi(t) (i = 1, n) for t ∈ I,
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where σi ∈ {–1, 1} (i = 1, n), and

n∏

i=1

1
Tmi–1

∫ b

a

∣
∣pi(s)

∣
∣ds ≤ 4n(b – a)n–

∑n
i=1 mi

hold. Then, for arbitrary τ ∈ Mn(I), problem (12), (3) is uniquely solvable.

Remark 2.2 For some values of the numbers n, m1, . . . , mn, condition (11) is optimal. For
example, if n = 2 and n = 2, m1 = m2 = 1, then problem (1), (3) with �1(u) ≡ u, �2 = �0,
q1 ≡ 0 transforms to problem (6), (4) with �1 ≡ 0, q ≡ q2 and condition (11) transforms
to condition (7) which, as we have already said, is optimal for the unique solvability of
problem (6),(4) with n = 2.

2.2 Nonlinear problem
Definition 2.1 Let hi : C0

1(I; R) → L(I; R) (i = 1, n) be nonnegative linear operators, then
we will say that

h := (hi)n
i=1 ∈ P(I) (13)

if

∫ b

a
hi(1)(s) ds 	= 0 (i = 1, n), (14)

and for arbitrary monotone operators �i : C0
1(I; R) → L(I; R) (i = 1, n) such that the condi-

tions

∫ b

a
�i(1)(s) ds 	= 0, 0 ≤ σi�i(1)(t) ≤ hi(1)(t) (i = 1, n) for t ∈ I (15)

hold, where σi ∈ {–1, 1} (i = 1, n), the homogeneous problem

u(mi)
i (t) = �i(ui+1)(t) (i = 1, n), (16)

u(j)
i (b) – u(j)

i (a) = 0 (i = 1, n, j = 0, mi – 1), (17)

where un+1 := u1, has no nontrivial solution.

Also note that in all our propositions below the functions ηi : I × R+ → R+ (i = 1, n)
are summable in the first argument, nondecreasing in the second one, and admit to the
conditions

lim
ρ→+∞

1
ρ

∫ b

a
ηi(s,ρ) ds = 0 (i = 1, n). (18)

Theorem 2.2 Let the linear nonnegative operators hi : C0
1(I; R) → L(I; R) (i = 1, n), the

function g0 ∈ L(I; Rn), and the numbers σi ∈ {–1, 1} (i = 1, n), r0 > 0, be such that, for all
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i ∈ {1, . . . , n} on I , the conditions

g0i(t) ≤ σiFi(x)(t) sgn hi(xi+1)(t) ≤ ∣
∣hi(xi+1)(t)

∣
∣ + ηi

(
t,‖x‖Cm1,...,mn

)

if ‖x‖Cm1,...,mn ≥ r0, (19)

with x := (xi)n
i=1 ∈ Cm1,...,mn (I; Rn), xn+1 = x1, and inclusion (13) hold. Moreover, let the func-

tion g ∈ L(I; Rn
+) be such that, for all i ∈ {1, . . . , n} on I , the conditions

gi(t) ≤ σiFi(x)(t) sgn hi(xi+1)(t) if min
{∣
∣xi+1(t)

∣
∣ : t ∈ I

} ≥ r0 (20)

are fulfilled, and

∫ b

a
gi(s) ds –

∣
∣
∣
∣

∫ b

a
q0i(s) ds

∣
∣
∣
∣ ≥ |ci mi–1|. (21)

Then problem (2), (3) has at least one solution.

Remark 2.3 From the inequality ‖x‖Cm1,...,mn ≥ min{|xi+1(t)| : t ∈ I} it follows that g0i ≤ gi.
Therefore, if we assume that instead of (21) inequalities

∫ b

a
g0i(s) ds –

∣
∣
∣
∣

∫ b

a
q0i(s) ds

∣
∣
∣
∣ ≥ |ci mi–1| (i = 1, n) (22)

hold, then condition (20) can be omitted.
On the other hand, in the example below we construct the operator F for which con-

ditions (21) hold and (22) do not hold, and therefore condition (20) cannot be omitted
because, as it follows from Remark 2.4, condition (21) is improvable.

Example 2.1 Consider system (2) with

Fi(u)(t) =

⎧
⎨

⎩

σĩhi(t) cos( πy
(xi+1(t)+y)xi+1(t) )xi+1(t) if xi+1(t) 	= 0,

0 if xi+1(t) = 0,

where y := ‖u‖Cm1,...,mn , xi+1 := |ui+1(τi(·))|, un+1 := u1, σi ∈ {–1, 1}, and τ ∈ Mn(I). Let also
the numbers δ1 ∈ (0, 1), ci mi–1 and the functions h̃ ∈ L(I; Rn

+), q0 ∈ L(I; Rn) be such that
inclusion (13) with hi(z)(·) = h̃i(·)z(τi(·)) holds, and

(∫ b

a
h̃i(s) ds

)–1(∣
∣
∣
∣

∫ b

a
q0i(s) ds

∣
∣
∣
∣ + |ci mi–1|

)

≤ δ1 (i = 1, n).

Then, if α(x) = x cos(π/x), in view the facts that

α(2) = 0, α′(x) > 0 if x > 2, and lim
x→+∞α′(x) = 1,

there exist r0 > 2 and δ0 ∈ (0, r0) such that r0 cos(π/r0) = δ1, and the inequalities

δ1 ≤ cos

(
π

xi+1(t)

)

xi+1(t) < cos

(
πy

(xi+1(t) + y)xi+1(t)

)

xi+1(t)

if xi+1(t) ≥ r0, y ≥ r0,
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and

–δ0 ≤ cos

(
πy

(xi+1(t) + y)xi+1(t)

)

xi+1(t) ≤ xi+1(t)

if 0 < xi+1(t) < r0, y ≥ r0,

are valid on I . Therefore, the validity of conditions (19)–(21) with gi ≡ δ1̃hi, g0i ≡ –δ0̃hi,
ηi ≡ 0 is obvious, and from Theorem 2.2 the solvability of problem (2), (3) follows.

Corollary 2.2 Let the linear nonnegative operators hi : C0
1(I; R) → L(I; R) (i = 1, n) be such

that conditions (14) and

n∏

i=1

1
Tmi–1

∫ b

a
hi(1)(s) ds ≤ 4n(b – a)n–

∑n
i=1 mi (23)

hold. Moreover, let the functions g0 ∈ L(I; Rn), g ∈ L(I; Rn
+) and the numbers σi ∈ {–1, 1}

(i = 1, n), r0 > 0 be such that conditions (19)–(21) are fulfilled. Then problem (2), (3) has at
least one solution.

For the case when (2) is the system of higher-order differential equations with the argu-
ment deviation of the form

u(mi)
i (t) = fi

(
t, ui+1

(
τi(t)

))
+ q0i(t) (i = 1, n), (24)

where un+1 := u1 and fi : I × R → R (i = 1, n) are the functions from Caratheodory’s class,
the following corollary is true.

Corollary 2.3 Let the function h̃ ∈ L(I; Rn
+) be such that the conditions

h̃i(t) > 0 (i = 1, n) a.e. on I,
n∏

i=1

1
Tmi–1

∫ b

a
h̃i(s) ds ≤ 4n(b – a)n–

∑n
i=1 mi

(25)

hold. Moreover, let the function g ∈ L(I; Rn
+) and the numbers σi ∈ {–1, 1} (i = 1, n), r0 > 0 be

such that conditions (21) and

gi(t) ≤ σifi(t, x) sgn x ≤ h̃i(t)|x| + ηi
(
t, |x|)

for |x| ≥ r0, t ∈ I (i = 1, n),
(26)

hold. Then, for arbitrary τ ∈ Mn(I), problem (24), (3) has at least one solution.

Remark 2.4 Theorem 2.2 is optimal in the sense that there does not exist such i0 ∈
{1, . . . , n}, for which i0th inequality of condition (21) can be replaced by the inequality

ε +
∫ b

a
gi0 (s) ds –

∣
∣
∣
∣

∫ b

a
q0i0 (s) ds

∣
∣
∣
∣ ≥ |ci0 mi0 –1|, (27)
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no matter how small ε > 0 would be. Indeed, let I = [0, 1],

σi ∈ {–1, 1}, mi = 1, ci0 = 0, τi ≡ t, ηi ≡ 0 (i = 1, n),

h̃i ≡ 1, gi ≡ 1, q0i ≡ 0, fi(t, x) ≡ σix (i = 1, n; i 	= i0),

and

gi0 ≡ 0, q0i0 =
ε

1 + ε
, fi0 (t, x) ≡ 0, h̃i0 ≡ 4n – ε.

Then, for the arbitrary functions pi ∈ L(I; R) such that pi 	≡ 0, 0 ≤ σipi(t) ≤ h̃i(t), it is
clear that

∏n
i=1

∫ b
a |pi(s)|ds ≤ 4n, and due to Corollary 2.1 inclusion (13) with hi(x)(t) =

h̃i(t)x(τi(t)) holds. Also it is not difficult to verify that instead of the i0th inequality of
condition (21) inequality (27) is satisfied, but all the other assumptions of Corollary 2.3
hold with r0 = 1. Nevertheless, in that case problem (24), (3) is not solvable because
ui0 (1) – ui0 (0) = ε/(1 + ε) > 0 = ci00.

Example 2.2 Consider the system of the differential equations

u(mi)
i (t) = σĩhi(t)

∣
∣sin‖u‖Cm1,...,mn

∣
∣ui+1

(
τi(t)

)
+ q0i(t) (i = 1, n), (28)

where un+1 = u1, σi ∈ {–1, 1}, the functions τ ∈ Mn(I), h̃ ∈ L(I; Rn
+) are such that inclu-

sion (13) holds with hi(x)(t) = h̃i(t)x(τi(t)), and
∫ b

a q0i(s) ds = 0 (i = 1, n). Then, from The-
orem 2.2 with g0i ≡ gi ≡ 0, the solvability of problems (28), (3) with ci mi–1 = 0 (i = 1, n)
follows.

Also, on the basis of Corollary 2.3, we can prove the following existence and uniqueness
theorem.

Theorem 2.3 Let the function h̃ ∈ L(I; Rn
+) be such that conditions (25) hold and fi(t, 0) ≡

0 (i = 1, n). Moreover, let the functions h̃0 ∈ L(I; Rn
+), βi : R2 → R+ and the numbers σi ∈

{–1, 1}, r > 0 be such that, for all i ∈ {1, . . . , n}, conditions (21),

h̃0i(t)βi(x, y) ≤ σi
(
fi(t, x) – fi(t, y)

)
sgn(x – y) ≤ h̃i(t)|x – y|

for t ∈ I, x, y ∈ R, (29)

and

h̃0i(t) ≥ 0 for t ∈ I, h̃0i(t) 	≡ 0, βi(x, y) > 0 for x 	= y (30)

hold, where

gi(t) = min
{∣
∣fi(t, r)

∣
∣,

∣
∣fi(t, –r)

∣
∣
}

. (31)

Then, for arbitrary τ ∈ Mn(I), problem (24), (3) is uniquely solvable.
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Example 2.3 As an example, consider the system of differential equations

u(mi)
i (t) = σĩhi(t)

ui+1(τi(t))
(1 + |ui+1(τi(t))|)αi

+ q0i(t) (i = 1, n), (32)

where un+1 = u1, σi ∈ {–1, 1}, and the functions τ ∈ Mn(I), h̃ ∈ L(I; Rn
+) are such that inclu-

sion (13) with hi(x)(t) = h̃i(t)x(τi(t)) holds, αi ∈ (0, 1), and
∫ b

a q0i(s) ds = 0 (i = 1, n). Then
from Theorem 2.3 the unique solvability of problem (32), (17) follows.

3 Auxiliary propositions
First we formulate a result from [7] (see Theorem 1.1, and Remark 1.1) in a suitable for us
form.

Lemma 3.1 Let m ≥ 1, v ∈ C̃m([a, b]), and the conditions

v(t) 	≡ const, v(i)(a) = v(i)(b) (i = 0, m)

hold. Then

�(v) <
(b – a)m

Tm
�(

v(m)), (33)

where the constants Tm are defined by equalities (9) and

�(
v(i)) := max

t∈[a,b]
v(i)(t) – min

t∈[a,b]
v(i)(t) (i = 0, m). (34)

Lemma 3.2 Let σ ∈ {–1, 1}, the operator σ� : C0
1(I; R) → L(I; R) be nonnegative, and w ∈

C0
1(I; R). Then on I the following inequality holds:

min
t∈[a,b]

{
w(t)

} · ∣∣�(1)(t)
∣
∣ ≤ σ�(w)(t) ≤ max

t∈[a,b]

{
w(t)

} · ∣∣�(1)(t)
∣
∣. (35)

Proof Validity of (35) follows from the inequalities maxt∈[a,b]{w(t)} – w(t) ≥ 0, w(t) –
mint∈[a,b]{w(t)} ≥ 0 and the nonnegativity of the linear operator σ�. �

Lemma 3.3 Let the linear monotone operators h,�k : C0
1(I; R) → L(I; R) (k ∈ N ) and the

number σ ∈ {–1, 1} be such that σ�k are nonnegative operators, and

0 ≤ σ�k(1)(t) ≤ h(1)(t) (k ∈ N) for t ∈ I. (36)

Then there exist a subsequence (�kr )∞r=1 of the sequence (�k)∞k=1 and the linear operator �0 :
C0

1(I; R) → L(I; R) such that if the operators �̃k , �̃0 : C0
1(I; R) → C̃0(I; R) are defined as

�̃k(x)(t) :=
∫ t

a
�k(x)(s) ds, �̃0(x)(t) :=

∫ t

a
�0(x)(s) ds,

then

lim
r→+∞‖�̃kr – �̃0‖C0

1→C̃0 = 0, (37)
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σ�0 is a nonnegative linear operator, and

0 ≤ σ�0(1)(t) ≤ h(1)(t) for t ∈ I. (38)

Proof Assume that P := {p1, p2, . . .} is a set of all polynomials with rational coefficients,
then from (36) it is clear that, for the monotone linear operators �̃k (k ∈ N ) and arbitrary
pj ∈ P, the inequalities

∣
∣�̃k(pj)(t)

∣
∣ ≤

∫ t

a

∣
∣h(1)(s)

∣
∣ds‖pj‖C0

1
for t ∈ I,

∣
∣�̃k(pj)(t2) – �̃k(pj)(t1)

∣
∣ ≤

∫ t2

t1

∣
∣h(1)(s)

∣
∣ds‖pj‖C0

1
for a ≤ t1 ≤ t2 ≤ b,

and

‖�̃k‖C0
1→C̃0 ≤ 2

∥
∥h(1)

∥
∥

L (39)

hold. Then by the Arzela–Ascoli lemma, from the sequence (�̃k)∞k=1 we can choose the
subsequence (�̃km1

)∞m1=1 convergent on the polynomial p1 ∈ P, and if the subsequence of the
operators (�̃kmr )∞mr=1 convergent on the polynomial pr ∈ P is already chosen, then we can
choose its subsequence (�̃kmr+1

)∞mr+1=1 of the operators convergent on the polynomial pr+1 ∈
P. Therefore it is clear that the sequence (�̃kmr )∞r=1 is convergent for the all polynomials
from P. Consequently, without loss of generality, we can assume that the first subsequence
(�̃kr )∞r=1 is convergent for arbitrary pj ∈ P, and then in view of (39) and the fact that P is
dense in C0

1(I; R), from the Banach–Steinhaus theorem (see [19], Theorem 3, p. 203), there
follows the existence of linear operator �̃0 : C0

1(I; R) → C̃0(I; R) such that condition (37)
holds, where �0(x)(t) := d�̃0(x)(t)

dt .
From the monotonicity of the operators �k and conditions (36) it follows that σ�k are

the nonnegative operators, and for arbitrary x ∈ C0
1(I; R+) we have

σ

∫ t2

t1

�0(x)(s) ds = σ

∫ t2

t1

(
�0(x)(s) – �k(x)(s)

)
ds + σ

∫ t2

t1

�k(x)(s) ds

≥ –
∫ b

a

∣
∣�̃′

0(x)(s) – �̃′
k(x)(s)

∣
∣ds

≥ –‖�̃k – �̃0‖C0
1→C̃0 · ‖x‖C0

1
for a ≤ t1 ≤ t2 ≤ b,

and
∫ t2

t1

(
σ�0(1)(s) – h(1)(s)

)
ds

=
∫ t2

t1

(
σ�0(1)(s) – �k(1)(s)

)
ds +

∫ t2

t1

(
�k(1)(s) – h(1)(s)

)
ds

≤
∫ b

a

∣
∣�̃′

0(1)(s) – �̃′
k(1)(s)

∣
∣ds ≤ ‖�̃k – �̃0‖C0

1→C̃0 for a ≤ t1 ≤ t2 ≤ b.

From the last inequalities by (37) it is clear that σ�0 is a nonnegative linear operator and
inequality (38) holds. �
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Now consider the problem

u(mi)
i (t) = λσihi(ui+1)(t) + (1 – λ)

[
Fi(u)(t) + q0i(t)

]
(i = 1, n), (40)

u(j)
i (b) – u(j)

i (a) = λcij (i = 1, n, j = 0, mi – 1), (41)

where u := (ui)n
i=1 and un+1 = u1. It is not difficult to verify that the following proposition

is true.

Proposition 3.1 Let m =
∑n

j=1 mj, α0 = 0, and αi =
∑i

j=1 mj (i = 1, n). Then, for arbitrary
λ ∈ (0, 1), problems (40), (41) and (16), (17) are equivalent respectively to the problems

w′
i(t) = λσ̃ĩhi(ui+1)(t) + (1 – λ)

[
F̃i(w)(t) + q̃0i(t)

]
(i = 1, m),

wi(b) – wi(a) = λ̃ci (i = 1, m),

and

w′
i(t) = �̃i(wi+1)(t), wi(b) – wi(a) = 0 (i = 1, m),

where w := (wj)m
j=1, wm+1 = w1 = u1. For all i ∈ 1, n, the following identities hold:

c̃αi–1+j+1 = cij (j = 0, mi – 1), wαi–1+1 ≡ ui, q̃0αi ≡ q0i,

F̃αi (w) ≡ Fi(u), h̃αi ≡ hi, �̃αi ≡ �i, σ̃αi = σi,

and

σ̃j̃hj ≡ σ̃j�̃j ≡ Ĩ, F̃j(w) ≡ wj+1, q̃0j ≡ 0 if j /∈ {α1,α2, . . . ,αn},

where Ĩ : C0
1(I, R) → L(I, R) is the identical operator. Moreover, it is clear that ‖w‖C0

m
=

‖u‖Cm1,...,mn .

Taking into account Proposition 3.1 we get the following modification of Corollary 2 of
paper [20], which is formulated for the system of first-order equations.

Proposition 3.2 Let the linear nonnegative operators hi : C0
1(I; R) → L(I; R) (i = 1, n) be

such that inclusion (13) holds, and there exists a positive number ρ1 such that, for arbitrary
λ ∈ (0, 1), every solution u of problem (40), (41) admits the estimate

‖u‖Cm1,...,mn ≤ ρ1. (42)

Then problem (2), (3) has at least one solution.

Lemma 3.4 Let inclusion (13) hold and λ ∈ (0, 1). Then there exists the number ρ0 > 0 such
that an arbitrary solution u = (ui)n

i=1 of problem (1), (41) admits to the estimate

‖u‖Cm1,...,mn ≤ ρ0

n∑

i=1

(

μ(ui) +
mi–1∑

j=0

|cij| + ‖qi‖L

)

, (43)
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where μ(ui) = min{|ui(t)| : t ∈ I}, provided that inequalities (15) hold for given σi ∈ {–1, 1}
(i = {1, n}).

Proof Assume that Lemma 3.4 is not true. Then, for all k ∈ N , there exist the monotone
operators �ik : C0

1(I; R) → L(I; R) (i = 1, n), the functions qk := (qik)n
i=1 ∈ L(I; Rn), and the

numbers cijk ∈ R (i = 1, n, j = 0, mi – 1) such that

0 ≤ σi�ik(1)(t) ≤ hi(1)(t),
∫ b

a
�ik(1)(s) ds 	= 0 (i = 1, n), (44)

and the problem

u(mi)
ik (t) = �ik(ui+1k)(t) + qik(t) (i = 1, n),

u(j)
ik (b) – u(j)

ik (a) = λcijk (i = 1, n, j = 0, mi – 1),

where un+1k := u1k , has such a solution uk := (uik)n
i=1 that

‖uk‖Cm1,...,mn ≥ k
n∑

i=1

(

μ(uik) +
mi–1∑

j=0

|cijk| + ‖qik‖L

)

.

Then, if we suppose that vk := (vik)n
i=1, where vik(t) = uik(t)/‖uik‖Cm1,...,mn , q̃ik(t) = qik(t)/

‖uik‖Cm1,...,mn , and c̃ijk = cijk/‖uik‖Cm1,...,mn , we obtain

‖vk‖Cm1,...,mn = 1,
n∑

i=1

(

μ(vik) +
mi–1∑

j=0

|̃cijk| + ‖̃qik‖L

)

≤ 1
k

, (45)

and almost everywhere on I the equalities

v(mi)
ik (t) = �ik(vi+1k)(t) + q̃ik(t) (i = 1, n),

v(j)
ik (b) – v(j)

ik (a) = λ̃cijk (i = 1, n, j = 0, mi – 1)
(46)

hold where vn+1k := v1k , from which due to (44) and (45) we obtain

∣
∣v(mi)

ik (t)
∣
∣ ≤ hi(1)(t) +

∣
∣̃qik(t)

∣
∣ (i = 1, n) for t ∈ I. (47)

According to ‖vk‖Cm1,...,mn = 1, (45), and (47), for arbitrarily fixed i0 ∈ 1, n, sequences
(v(j)

i0k)+∞
k=1 (j = 0, mi0 – 1) are uniformly bounded and equicontinuous on I . By the Arzela–

Ascoli lemma, without loss of generality, it can be assumed that these sequences are uni-
formly convergent on I . Therefore, for arbitrary i0 ∈ {1, . . . , n}, there exists such a function
vi0 ∈ C̃mi0–1 (I; R) that v(j)

i0 = limk→+∞ v(j)
i0k (j = 0, mi – 1). Then from (45) and (46) it follows

that the function v := (vi)n
i=1 ∈ Cm1,...,mn (I; Rn) admits to conditions (17),

lim
k→+∞

‖vk – v‖Cm1,...,mn = 0, ‖v‖Cm1,...,mn = 1, (48)

and

μ(vi) = 0 (i = 1, n). (49)
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Also due to (44) all the assumptions of Lemma 3.3 hold, and then without loss of generality
we can assume that the sequence of operators (�ik)∞k=1 is convergent for arbitrary fixed
i ∈ {1, . . . , n}, and there exist the monotone operators �i : C0

1(I; R) → L(I; R) such that if the
operators �̃ik , �̃i : C0

1(I; R) → C̃0(I; R) are defined as

�̃ik(x)(t) :=
∫ t

a
�ik(x)(s) ds, �̃i(x)(t) :=

∫ t

a
�i(x)(s) ds,

then

lim
k→+∞

‖�̃ik – �̃i‖C0
1→C̃0 = 0 (i = 1, n), (50)

σi�i is a nonnegative linear operator, and

0 ≤ σi�i(1)(t) ≤ hi(1)(t) (i = 1, n) for t ∈ I. (51)

Thus from the inequalities

∣
∣
∣
∣

∫ t

a

(
�i(vi+1)(s) – �ik(vi+1k)(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

a

(
�i(vi+1)(s) – �ik(vi+1)(s)

)
ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ t

a
�ik(vi+1 – vi+1k)(t) ds

∣
∣
∣
∣

≤ ‖�̃ik – �̃i‖C0
1→C̃0 · ‖vi+1‖C0

1
+

∥
∥hi(1)

∥
∥

L · ‖vi+i – vi+1k‖C0
1
,

by (48) and (50) it follows that

lim
k→+∞

∫ t

a
�ik(vi+1k)(s) ds =

∫ t

a
�i(vi+1)(s) ds (i = 1, n) (52)

uniformly on I .
Therefore if we integrate the equations of system (46) from a to t and pass to the limit

as k → +∞, due to conditions (45), (46), (48), and (52), we find that v is a solution of
problem (16), (17). On the other hand, from the inclusion h ∈ P(I) and conditions (51), it
follows that problem (16), (17) has only the zero solution v ≡ 0 if �i(1) 	≡ 0 (i = 1, n). But if
there exists i0 ∈ {1, . . . , n} such that �i0 (1) ≡ 0, then from the i0th equation of system (16) it
follows that v

(mi0 )
i0 ≡ 0. Then from (17) we have vi0 ≡ Const, and due to (49) it is clear that

vi0 ≡ 0, and from the (i0 – 1)th equation of system (16), it follows that v
(mi0–1)
i0–1 ≡ 0. After

analogous n – 1 steps we get that vi ≡ 0 (i = 1, n). Therefore we get the contradiction with
the second equality of (48), i.e., our assumption is invalid and estimation (43) holds. �

4 Proof of main results

Proof of Theorem 2.1 It is known from the general theory of boundary value problems
for the functional differential equations that problem (1), (3) has Fredholm’s property (see
[14]), and therefore our problem is uniquely solvable iff the homogeneous problem (16),
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(17) has only the trivial solution. Assume to the contrary that problem (16), (17) has the
nontrivial solution (vi)n

i=1, and introduce the notations:

mn+1 := m1, vn+1 := v1, �n+1 := �1. (53)

Let there exist r ∈ {1, n} such that vr+1 ≡ Const. Then from (16) and (17) we get
vr+1(t)

∫ b
a �r(1)(s) ds ≡ 0. From the last equality and conditions (10), (16), it is obvious that

vr+1 ≡ 0 and v(mr)
r ≡ 0. But from the identity v(mr)

r ≡ 0, due to conditions (17), we get that
vr ≡ Const. After analogous n – 1 steps we get that vi ≡ 0 for all i ∈ 1, n, which is the
contradiction with our assumption, i.e.,

vi 	≡ Const (i = 1, n). (54)

Now define for all i ∈ 1, n the numbers αi,βi, t1i, t2i, t′
1i, t′

2i ∈ [a, b] and σi ∈ {–1, 1} by the
equalities

v(mi–1)
i (t1i) = min

t∈[a,b]
v(mi–1)

i (t), v(mi–1)
i (t2i) = max

t∈[a,b]
v(mi–1)

i (t),

vi
(
t′
1i
)

= min
t∈[a,b]

vi(t), vi
(
t′
2i
)

= max
t∈[a,b]

vi(t),

αi := min{t1i, t2i}, βi := max{t1i, t2i},
σi = sgn

(
v(mi–1)

i (αi) – v(mi–1)
i (βi)

)
,

(55)

and notice that due to (17) and (54) the functions v(mi–1)
i (i = 1, n) change the sign, and then

in view of (34) we have

0 < 
(
v(mi–1)

i
)

=
∣
∣v(mi–1)

i (αi) – v(mi–1)
i (βi)

∣
∣ (i = 1, n).

Therefore in view of (16) and (55) we get

0 < 
(
v(mi–1)

i
)

= σi
(
v(mi–1)

i (αi) – v(mi–1)
i (βi)

)

= σi
(
v(mi–1)

i (αi) – v(mi–1)
i (a)

)
+ σi

(
v(mi–1)

i (b) – v(mi–1)
i (βi)

)

= σi

∫ αi

a
�i(vi+1)(s) ds + σi

∫ b

βi

�i(vi+1)(s) ds,

0 < 
(
v(mi–1)

i
)

= σi
(
v(mi–1)

i (αi) – v(mi–1)
i (βi)

)

= –σi

∫ βi

αi

�i(vi+1)(s) ds.

(56)

Assume that σi�i is a nonnegative operator, then from equalities (56) by Lemma 3.2 with
� = σi�i, σ = 1, we have

0 < 
(
v(mi–1)

i
) ≤ vi+1

(
t′
2i+1

)
(∫ αi

a

∣
∣�i(1)(s)

∣
∣ds +

∫ b

βi

∣
∣�i(1)(s)

∣
∣ds

)

,

0 < 
(
v(mi–1)

i
) ≤ –vi+1

(
t′
1i+1

)
∫ βi

αi

∣
∣�i(1)(s)

∣
∣ds.
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Now if we multiply the least two expressions by the well-known inequality A · B ≤ (A +
B)2/4 if A ≥ 0, B ≥ 0, and (34), we obtain

0 < 
(
v(mi–1)

i
) ≤ 1

4

∫ b

a

∣
∣�i(1)(s)

∣
∣ds(vi+1). (57)

It is not difficult to verify that inequality (57) holds even when the operator σi�i is non-
positive. On the other hand, due to (17) and (54), all the assumptions of Lemma 3.1 hold
for the functions vi with m = mi+1 – 1; and consequently, (57) by (33) implies

0 < 
(
v(mi–1)

i
)

<
(b – a)mi+1–1

4Tmi+1–1

∫ b

a

∣
∣�i(1)(s)

∣
∣ds

(
v(mi+1–1)

i+1
)
. (58)

Finally, if we multiply inequalities (58) for all i ∈ 1, n and take into account notations (53),
we get the contradiction to condition (11). Therefore our assumption is invalid and vi ≡ 0
(i = 1, n), which definitely proves our theorem. �

Proof of Theorem 2.2 First of all, notice that in view of inclusion (13) inequalities (14) hold,
and then there exists r1 > r0 such that

r1
∥
∥hi(1)

∥
∥

L > |ci mi–1| (i = 1, n). (59)

Let now λ ∈ (0, 1) be an arbitrary fixed number and u := (ui)n
i=1 be a solution of problem

(40), (41) and show that

μ(ui) = min
{∣
∣ui(t)

∣
∣ : t ∈ I

} ≤ r1 (i = 1, n). (60)

Assume to the contrary that there exists i ∈ {1, . . . , n} such that |ui+1(t)| > r1 on I . Then
there exist σ̃i ∈ {–1, 1} such that

σ̃i sgn hi(xi+1)(t) ≥ 0 on I,

and due to (20), (21), (40), (41), and (59), we obtain the contradiction

|ci mi–1| ≥ λci mi–1σiσ̃i = σiσ̃i
(
u(mi–1)

i (b) – u(mi–1)
i (a)

)

= σi

∫ b

a
u(mi)

i (s)̃σi ds = λ

∫ b

a

∣
∣hi(ui+1)(s)

∣
∣ds

+ (1 – λ)σi

∫ b

a

[
Fi(u)(s) + q0i(s)

]
σ̃i ds ≥ λr1

∥
∥hi(1)

∥
∥

L

+ (1 – λ)
(∫ b

a
gi(s) ds –

∣
∣
∣
∣

∫ b

a
q0i(s) ds

∣
∣
∣
∣

)

> λ|ci mi–1| + (1 – λ)|ci mi+1| = |ci mi–1|,

which proves (60).



Mukhigulashvili and Půža Journal of Inequalities and Applications        (2020) 2020:155 Page 17 of 20

Let ρ0 be a number defined in Lemma 3.4, then due to condition (18) there exists such
a constant ρ1 > r0 that

ρ0

n∑

i=1

(

μ(ui) +
mi–1∑

j=0

|cij| + 3‖α‖L + ‖q0i‖L +
∫ b

a
ηi(s,ρ) ds

)

< ρ for ρ ≥ ρ1, (61)

where α(t) = 1+
∑n

i=1 |g0i(s)|. Now assume that ‖u‖Cm1,...,mn ≥ ρ1 and introduce the notation

νi(t) :=
σiFi(u)(t) sgn hi(ui+1)(t) + α(t)

|hi(ui+1)(t)| + ηi(t,‖u‖Cm1,...,mn ) + 2α(t)
for t ∈ I.

Then, in view of conditions (19), we have

0 < νi(t) < 1 (i = 1, n) on I. (62)

On the other hand it is not difficult to verify that u is a solution also of the system (1), with

�i(x)(t) = σi
[
λ + (1 – λ)νi(t)

]
hi(x)(t),

qi(t) = (1 – λ)
[(

νi(t)
[
2α(t) + ηi

(
t,‖u‖Cm1,...,mn

)]
– α(t)

)
σi sgn hi(ui+1)(t) + q0i(t)

]
,

where due to inequalities (62) the following estimations are valid:

0 ≤ σi�i(1)(t) ≤ hi(1)(t),
∣
∣qi(t)

∣
∣ ≤ 3α(t) +

∣
∣q0i(t)

∣
∣ + ηi

(
t,‖u‖Cm1,...,mn

)

on I . Then, for the function u, as for a solution of problem (1), (41), by Lemma 3.4 we get
the estimation

‖u‖Cm1,...,mn

≤ ρ0

n∑

i=1

(

μ(ui) +
mi–1∑

j=0

|cij| + 3‖α‖L + ‖q0i‖L +
∫ b

a
ηi

(
s,‖u‖Cm1,...,mn

)
ds

)

,

which due to the assumption ‖u‖Cm1,...,mn ≥ ρ1 contradicts (61). Therefore our assump-
tion is invalid and estimation (42) holds, and then from Proposition 3.2 the solvability of
problem (2), (3) follows. �

Proof of Corollary 2.2 In view of Corollary 2.1, from conditions (14) and (23), it follows
that, for arbitrary monotone operators �i : C(I; R) → L(I; R) (i = 1, n) which admit to in-
equalities (15), problem (16), (17) has only the zero solution, and then inclusion (13) holds.
Therefore all the assumptions of Theorem 2.2 are fulfilled, and then problem (2), (3) is
solvable. �

Proof of Corollary 2.3 Let hi(x)(t) = h̃i(t)x(τi(t)), then from conditions (25) and Theo-
rem 2.1 it follows that inclusion (13) holds, and

sgn hi(x)(t) = sgn x
(
τi(t)

)
(i = 1, n) a.e. on I.
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Also, it is clear that due to (26), for arbitrary x ∈ Cm1,...,mn (I; Rn), the conditions

gi(t) ≤ σifi
(
t, xi+1

(
τi(t)

))
sgn xi+1

(
τi(t)

)

for t ∈ {
s ∈ I :

∣
∣xi+1

(
τi(s)

)∣
∣ ≥ r0

}
(i = 1, n)

are fulfilled. On the other hand, if

g̃i(t) := max
{∣
∣fi(t, y)

∣
∣ : |y| ≤ r0

}
, g0i(t) := min

{
–̃gi(t), gi(t)

}
(i = 1, n),

then, in view of (26) and the fact that the functions ηi are nondecreasing in the second
argument, we obtain

g0i(t) ≤ σifi
(
t, xi+1

(
τi(t)

))
sgn xi+1

(
τi(t)

) ≤ h̃i(t)
∣
∣xi+1

(
τi(t)

)∣
∣ + g̃i(t) + ηi

(
t,‖x‖Cm1,...,mn

)

for ‖x‖Cm1,...,mn ≥ r0, t ∈ I (i = 1, n),

and due to (18) the following equalities hold:

lim
ρ→+∞

1
ρ

∫ b

a

(
g̃i(s) + ηi

(
s,‖x‖Cm1,...,mn

))
ds = 0 (i = 1, n).

Consequently, if we introduce the notations Fi(x)(t) = fi(t, xi+1(τi(t))), we get that all the
assumptions of Theorem 2.2 are valid, from which the validity of our corollary immediately
follows. �

Proof of Theorem 2.3 First note that from conditions (25), analogously as in the proof of
previous Corollary 2.3, validity of inclusion (13) with hi(x) = h̃i(t)x(τi(·)) follows.

Also, for arbitrary r ≥ 0, from condition (29), (30) and the fact that

sgn
(
x – (–1)jr

)
= sgn x if (–1)jx > r (j = 0, 1),

we have

σifi
(
t, (–1)jr

)
sgn x ≤ h̃0i(t)βi(x, r) + σifi

(
t, (–1)jr

)
sgn x ≤ σifi(t, x) sgn x

≤ h̃i(t)
(|x| + r

)
+ σifi

(
t, (–1)jr

)
sgn x for t ∈ I, (–1)jx > r.

On the other hand, due to the conditions fi(t, 0) ≡ 0 (i = 1, n) and (30), from (29) it follows
that

σifi
(
t, (–1)jr

)
sgn x ≥ 0 for t ∈ I, (–1)jx > r.

From the last two inequalities and (21) it is clear that all the assumptions of Corollary 2.3
hold when the functions gi are defined by (31) and ηi(t, x) = h̃i(t)r + max{|f (t, r)|, |f (t, –r)|}
for t ∈ I , |x| > r. Therefore it remains to prove that problem (24), (3) has no more than one
solution.
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Let ũ1 := (u1i)n
i=1 and ũ2 := (u2i)n

i=1 be the arbitrary solutions of problem (24), (3), and
u := ũ1 – ũ2. Then the function u admits to conditions (17), and from (29) we obtain that,
for all i = 1, n, the inequalities

h̃0i(t)βi
(
ũ1i+1(t), ũ2i+1(t)

)

≤ σiu
(mi)
i (t) sgn ui+1

(
τi(t)

) ≤ h̃i(t)
∣
∣ui+1

(
τi(t)

)∣
∣ (63)

hold on I . Now, if we assume that there exists i0 ∈ {1, . . . , n} such that |ui0+1(t)| > 0 on I ,
then sgn ui0+1(τi0 (t)) = sgn ui0+1(a), and also due to (30) we obtain β0i0 := min{βi0 (̃u1i0+1(t),
ũ2i0+1(t)) : t ∈ I} > 0, ‖̃h0i0‖L > 0. Therefore from (17) and (63) we get the contradiction

0 = σi0
(
u

(mi0 –1)
i0 (b) – u

(mi0 –1)
i0 (a)

)
sgn ui0+1(a)

= σi0

∫ b

a
u

(mi0 )
i0 (s) sgn ui0+1

(
τi0 (s)

)
ds ≥ β0i0 ‖̃h0i0‖L > 0 a.e. on I,

which shows that

min
{∣
∣ui(t)

∣
∣ : t ∈ I

}
= 0 (i = 1, n). (64)

Suppose that

pi(t) =

⎧
⎨

⎩

u(mi)
i (t)/ui+1(τi(t)) if ui+1(τi(t)) 	= 0,

0 if ui+1(τi(t)) = 0,

then u is a solution of the linear homogeneous problem (16), (17) with �i(x)(t) =
pi(t)x(τi(t)), which due to condition (63) admits to the inequalities

0 ≤ σi�i(1)(t) ≤ hi(1)(t) (i = 1, n) for t ∈ I.

Let pi 	≡ 0 (i = 1, n), then in view of the inclusion h ∈ P(I) we obtain u ≡ 0. Now assume
that there exists i0 ∈ {1, . . . , n} such that pi0 ≡ 0. Then from (16) the identity u

(mi0 )
i0 ≡ 0

follows, and in view of conditions (17) and (64) we get ui0 ≡ 0, from which on the basis of
(16) it follows that u

(mi0–1)
i0–1 ≡ 0. After analogous n – 1 steps we get that u ≡ 0, and therefore

ũ1 ≡ ũ2. �
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