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Abstract
Motivated and inspired by the growing contribution with respect to iterative
approximations from some researchers in the literature, we design and investigate
two types of brand-new semi-implicit viscosity iterative approximation methods for
finding the fixed points of nonexpansive operators associated with contraction
operators in complete CAT(0) spaces and for solving related variational inequality
problems. Under some suitable assumptions, strong convergence theorems of the
sequences generated by the approximation iterative methods are devised, and a
numerical example and some applications to related variational inequality problems
are included to verify the effectiveness and practical utility of the convergence
theorems. Our main results presented in this paper do not only improve, extend and
refine some corresponding consequences in the literature, but also show that the
additional variational inequalities, general variational inequality systems and
equilibrium problems can be solved via approximation of the iterative sequences.
Finally, we provide an open question for future research.
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1 Introduction
In this paper, we consider the following two kinds of new semi-implicit viscosity ap-
proximation methods of iterative forms (in short, (TVIM-I) and (TVIM-II), respec-
tively) for nonexpansive operator T associated with contraction operator in CAT(0)
space X:

⎧
⎨

⎩

vn = anf (un) ⊕ (1 – an)T( un⊕vn
2 ),

un+1 = bnun ⊕ (1 – bn)vn, ∀n ≥ 1,
(1.1)
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and
⎧
⎨

⎩

vn = anf (un) ⊕ (1 – an)T( un⊕un+1
2 ),

un+1 = bnun ⊕ (1 – bn)vn, ∀n ≥ 1,
(1.2)

where u1 ∈ E ⊆ X is an arbitrary given element, f : E → E is a contraction operator and
number sequences {an}, {bn} ⊆ (0, 1) satisfy the following conditions:

⎧
⎨

⎩

limn→∞ an = 0,
∑∞

n=1 an = ∞,

0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1.
(1.3)

Remark 1.1 (i) The iterative procedures (TVIM-I) (1.1) and (TVIM-II) (1.2) with the im-
plicit midpoint rule are well-defined. Indeed, defining an operator G1 : E → E by G1(v) =
a1f (u1) ⊕ (1 – a1)T( u1⊕v

2 ) for all v ∈ E, then one has for each x, y ∈ E,

d
(
G1(x), G1(y)

)

= d
(

a1f (u1) ⊕ (1 – a1)T
(

u1 ⊕ x
2

)

, a1f (u1) ⊕ (1 – a1)T
(

u1 ⊕ y
2

))

≤ (1 – a1)d
(

T
(

u1 ⊕ x
2

)

, T
(

u1 ⊕ y
2

))

≤ (1 – a1)d
(

u1 ⊕ x
2

,
u1 ⊕ y

2

)

≤ 1 – a1

2
d(x, y).

This together with 0 < 1–a1
2 < 1 shows that G1 is a contraction. Thus, by the Banach con-

traction principle, we know that G1 has a unique fixed point v1, i.e., v1 = a1f (u1) ⊕ (1 –
a1)T( u1⊕v1

2 ), and so u2 = b1u1 ⊕ (1 – b1)v1. Continuing in the same way, the existence of
un (n ≥ 3) is established. Hence, the iterative process (TVIM-I) (1.1) is well-defined.

Similarly, for given u1 ∈ E, let us address an operator G2 : E → E as follows:

G2(v) = b1u1 ⊕ (1 – b1)
(

a1f (u1) ⊕ (1 – a1)T
(

u1 ⊕ v
2

))

, ∀v ∈ E.

Then we have

d
(
G2(x), G2(y)

) ≤ (1 – a1)(1 – b1)
2

d(x, y), ∀x, y ∈ E,

which implies that G2 is a contraction by 0 < (1–a1)(1–b1)
2 < 1 and so we obtain a unique fixed

point u2 ∈ E of G2. As well, we acquire the iteration variable un from (TVIM-II) (1.2) for
n ≥ 3. That is to say that the definition of (TVIM-II) is well-defined.

(ii) One can easily to see that the iterative process (TVIM-I) (1.1) is different from the
iteration (TVIM-II) (1.2). Further, we note that (TVIM-I) and (TVIM-II) are brand new
and not studied in the literature.

In the last several decades, in order to solve ordinary differential equations, differen-
tial algebraic equations, minimization problems, fixed point problems and other related
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problems, this type of viscosity iterative approximations (TVIM-I) and (TVIM-II) and
many special cases has been widely employed to find fixed points of nonexpansive map-
pings in the setting of Hilbert spaces, Banach spaces and geodesic spaces. And we also
notice that a complete CAT(0) space (i.e., also Hadamard space [1]) has something to do
with the simply connected Riemannian manifold and includes pre-Hilbert space, R-tree,
Euclidean building, and many others as special cases. See, for example, [2–9] and the ref-
erences therein. Actually the equilibrium problem is extension of the fixed point problem
and so the implicit midpoint rule has been extensively used to nonexpansive operators
(see [10]). Thus, it was suggested many much of iteration methods of the explicit and im-
plicit methods, such as Halpern iteration, Mann iteration, Ishikawa iteration, and Noor
iteration. However, by using the theory of cosine families, Xiao et al. [11] revealed that
the explicit, implicit and viscosity iteration processes, respectively, are applicable to the
nonexpansive cosine families, and the results show that implicit and viscosity iterations
are superior the explicit iteration in convergence. Further, as Xu et al. [10] pointed out
“The implicit midpoint rule is one of the powerful methods for solving ordinary differen-
tial equations”. Reviewing the past work, it is particularly worth mentioning that Xu et al.
[10] studied the following viscosity implicit midpoint rule for nonexpansive operator T in
Hilbert space H:

xn+1 = αnf (xn) + (1 – αn)T
(

xn + xn+1

2

)

, (1.4)

where αn ∈ (0, 1) for n ≥ 1 and f : H → H is a contraction operator. It follows that (1.4) is
a special case of (1.1) or (1.2) with bn ≡ 0. Under certain assumptions to the sequence of
parameters, the authors proved that the sequence {xn} decided by (1.4) converges strongly
to a point q ∈ F(T) := {x ∈ H : x = T(x)} denote the set of fixed point of operator T , which
is also the unique solution of the following variational inequality:

〈
(I – f )q, x – q

〉 ≥ 0, x ∈ F(T), (1.5)

where I is the identity operator of H. In connection with of (modified) viscosity implicit
rules have been studied by many authors. See, for example, [5, 8, 12, 13] and the refer-
ences therein. On the other hand, Kaewkhao et al. [6] thought out the following two-step
explicit viscosity iteration method (in short, (TSVIM)) for the nonexpansive operator T
in complete CAT(0) space X:

⎧
⎨

⎩

yn = αnf (xn) ⊕ (1 – αn)T(xn),

xn+1 = βnxn ⊕ (1 – βn)yn, ∀n ≥ 1,
(1.6)

where x1 ∈ E is an arbitrary fixed element and {αn}, {βn} ⊆ [0, 1] under some appropriate
conditions, and the contraction coefficient of f is k ∈ [0, 1/2).

Remark 1.2 We note that aiming at the open question 2 presented in [6], Chang et al.
[14] also investigated (TSVIM) (1.6) changing the contraction coefficient k ∈ [0, 1/2) by
k ∈ [0, 1) and satisfying some suitable conditions such as (1.3). Further, it is easy to see
that (1.6) is explicit viscosity iteration and can not be reduced from our iterative processes
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(TVIM-I) (1.1) and (TVIM-II) (1.2). Furthermore, the one-step explicit viscosity iteration
process is achieved when βn ≡ 0 in (1.6), but that is not possible for (1.1) and (1.2) under
normal circumstances.

One also note that under some certain conditions imposed on parameters {αn} and {βn},
Kaewkhao et al. [6] analyzed the convergence of the sequence {xn} generated by (TSVIM)
for a fixed point q ∈ F(T), which meets the variational inequality as follows:

〈−−→
qf (q),−→xq

〉 ≥ 0, x ∈ F(T), (1.7)

and the result presented in [6] gives a positive answer to the open question (that is, can the
nice projection property N be omitted) due to Piatek [15]. Very recently, we [3, 4] further
extended and improved some corresponding results of Kaewkhao et al. [6], Piatek [15],
Chang et al. [14] and so on.

At the end of this section, the arrangement for rest of this article is emerged as follows:
We shall give some required concepts and lemmas as preliminaries in Sect. 2. In Sect. 3,
we show that the sequences {un} generated by (TVIM-I) or (TVIM-II) converges strongly
to a fixed point q ∈ F(T) in complete CAT(0) spaces, where q satisfies the variational in-
equality (1.7). To reflect the validity and significance of (TVIM-I) and (TVIM-II) in regard
to (TSVIM) and other relevant viscosity iterative approximation methods for nonexpan-
sive operators associated with contraction operators in the literature, we also display a
numerical example and some applications to related variational inequality problems, i.e.,
a general system of variational inequalities and equilibrium problems in Hilbert spaces in
Sect. 4. Finally, concluding remarks are made and an open question for future research is
proposed.

2 Preliminaries
To prove our main results, the task of this section is to present some very important
and highly necessary concepts and lemmas. For more detailed property of CAT(0) and
�-convergence, one can refer to [16] and our recent work in [3, 4, 8].

Throughout this paper, letting (X, d) be a CAT(0) space and E ⊆ X a nonempty closed
convex subset, then [17, Lemma 2.1] implies that there exists a unique point z ∈ [x, y] such
that

d(x, z) = (1 – t)d(x, y) and d(y, z) = td(x, y), ∀x, y ∈ X, t ∈ [0, 1], (2.1)

and the unique point z in (2.1) is denoted by tx ⊕ (1 – t)y.

Lemma 2.1 ([17]) For all x, y, z ∈ X and any t ∈ [0, 1], the following two statements hold:
(i) d(tx ⊕ (1 – t)y, z) ≤ td(x, z) + (1 – t)d(y, z);

(ii) d2(tx ⊕ (1 – t)y, z) ≤ td2(x, z) + (1 – t)d2(y, z) – t(1 – t)d2(x, y).

Lemma 2.2 ([18]) For each x, y ∈ X and every t, s ∈ [0, 1], we have

d
(
tx ⊕ (1 – t)y, sx ⊕ (1 – s)y

) ≤ |t – s|d(x, y).
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Lemma 2.3 ([19]) Assume that {xn}, {yn} ⊂ X are two bounded sequences and {βn} ⊂ [0, 1]
is a sequence with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. If

xn+1 = βnxn ⊕ (1 – βn)yn, ∀n ∈N,

lim sup
n→∞

(
d(yn+1, yn) – d(xn+1, xn)

) ≤ 0,

then limn→∞ d(xn, yn) = 0.

By [16, Proposition 2.4], one knows that, for any x ∈ X, there is a unique point x0 ∈ E,
i.e., unique nearest point of x in E, such that

d(x, x0) = inf
{

d(x, y) : y ∈ E
}

.

We recall that the metric projection of X onto E is an operator PE : X → E defined by

PE(x) = x0 : the unique nearest point of x in E.

Since it is impossible to formulate the concept of demi-closedness in a CAT(0) space, as
represented in linear spaces, let us officially say that “I – T is demi-closed at zero” when
the conditions satisfy E ⊃ {xn} �-converges to q ∈ X and d(xn, Txn) → 0 yield q ∈ F(T).

Lemma 2.4 ([2]) Every bounded sequence containing in a complete CAT(0) space always
has a �-convergent subsequence.

Lemma 2.5 ([17]) Suppose that E is a closed convex subset of a complete CAT(0) space
(X, d) and {xn} ⊂ E is a bounded sequence. Then the asymptotic center A({xn}) ∈ E, where
A({xn}) := arg infx∈X lim supn→∞ d(x, xn) = {z ∈ X : d(z, xn) = infx∈X lim supn→∞ d(x, xn)}.

Denote a pair (i.e., a vector) (a, b) ⊂ X × X by
−→
ab. In 2008, Berg and Nikolaev [20] intro-

duced a map 〈·, ·〉: (X × X) × (X × X) →R defined by

〈−→ab,
−→
cd〉 =

1
2
[
d2(a, d) + d2(b, c) – d2(a, c) – d2(b, d)

]
, ∀a, b, c, d ∈ X,

which is the concept of quasi-linearization. By [20, Corollary 3], one can easily to see that a
geodesic space X is a CAT(0) space if and only if X satisfies the Cauchy–Schwarz inequality,

∣
∣〈−→ab,

−→
cd〉∣∣ ≤ d(a, b)d(c, d), ∀a, b, c, d ∈ X.

Further, Wangkeeree and Preechasilp [21] proved the following results on quasi-linear-
ization.

Lemma 2.6 ([21, Lemma 2.10]) If for all t ∈ [0, 1], ut := tu ⊕ (1 – t)v, where u, v ∈ X, then,
for all x, y ∈ X, one has the following presentations:

(i) 〈−→utx,−→uty〉 ≤ t〈−→ux,−→uty〉 + (1 – t)〈−→vx ,−→uty〉;
(ii) 〈−→utx,−→uy〉 ≤ t〈−→ux,−→uy〉 + (1 – t)〈−→vx ,−→uy〉 and 〈−→utx,−→vy〉 ≤ t〈−→ux,−→vy〉 + (1 – t)〈−→vx ,−→vy〉.



Xiong and Lan Journal of Inequalities and Applications        (2020) 2020:145 Page 6 of 18

3 Main results
In this section, we will prove our main theorems for solving variational inequality systems,
equilibrium problems, fixed point problems and other correlative differential equations.
Firstly, we investigate the strong convergence of the iteration (TVIM-I). The following
lemma is required.

Lemma 3.1 ([22, Lemma 2.1]) Let {sn} be a non-negative real number sequence with

sn+1 ≤ (1 – γn)sn + δn, ∀n ≥ 1,

where {γn} ⊂ (0, 1) and {δn} ⊂R satisfy
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then sn → 0 as n → ∞.

Theorem 3.1 Let E be a nonempty closed convex subset of a complete CAT(0) space (X, d).
If T : E → E is a nonexpansive operator with F(T) �= ∅, f : E → E is a contraction with
coefficient k ∈ [0, 1), and (1.3) holds, then, for any given u1 ∈ E, the sequence {un} generated
by (TVIM-I) converges strongly to q ∈ F(T) such that q = PF(T)f (q), which is also a unique
solution of the variational inequality (1.7).

Proof The proof will be presented by the following five steps:
Step (I). We show that {un} is bounded. Indeed, take p ∈ F(T) arbitrarily. Then from

Lemma 2.1, it follows that

d(vn, p) ≤ and
(
f (un), p

)
+ (1 – an)d

(

T
(

un ⊕ vn

2

)

, T(p)
)

≤ an
[
d
(
f (un), f (p)

)
+ d

(
f (p), p

)]
+ (1 – an)d

(
un ⊕ vn

2
, p

)

≤ ankd(un, p) + and
(
f (p), p

)
+

1 – an

2
[
d(un, p) + d(vn, p)

]

≤ 1 – (1 – 2k)an

2
d(un, p) +

1 – an

2
d(vn, p) + and

(
f (p), p

)
.

That is,

d(vn, p) ≤ 1 – (1 – 2k)an

1 + an
d(un, p) +

2an

1 + an
d
(
f (p), p

)
. (3.1)

Further, from (TVIM-I) and (3.1), we know that

d(un+1, p)

≤ bnd(un, p) + (1 – bn)d(vn, p)

≤
[

1 –
2(1 – k)(1 – bn)an

1 + an

]

d(un, p) +
2(1 – k)(1 – bn)an

1 + an

d(f (p), p)
1 – k

≤ max

{

d(un, p),
d(f (p), p)

1 – k

}

.
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By induction, one also has

d(un, p) ≤ max

{

d(u1, p),
d(f (p), p)

1 – k

}

.

Hence, {un} is bounded and so are {vn}, {f (un)} and {T( un⊕vn
2 )}.

Step (II). limn→∞ d(un, T(un)) = 0 is proposed. Combining [23, Lemma 3] and Lem-
ma 2.2, we know that

d(vn, vn+1) ≤ d
(

anf (un) ⊕ (1 – an)T
(

un ⊕ vn

2

)

,

anf (un) ⊕ (1 – an)T
(

un+1 ⊕ vn+1

2

))

+ d
(

anf (un) ⊕ (1 – an)T
(

un+1 ⊕ vn+1

2

)

,

anf (un+1) ⊕ (1 – an)T
(

un+1 ⊕ vn+1

2

))

+ d
(

anf (un+1) ⊕ (1 – an)T
(

un+1 ⊕ vn+1

2

)

,

an+1f (un+1) ⊕ (1 – an+1)T
(

un+1 ⊕ vn+1

2

))

≤ and
(
f (un), f (un+1)

)
+ (1 – an)d

(
un ⊕ vn

2
,

un+1 ⊕ vn+1

2

)

+ |an – an+1|d
(

f (un+1), T
(

un+1 ⊕ vn+1

2

))

≤ ankd(un, un+1) +
1 – an

2
[
d(un, un+1) + d(vn, vn+1)

]

+ |an – an+1|d
(

f (un+1), T
(

un+1 ⊕ vn+1

2

))

≤ 1 – an(1 – 2k)
1 + an

d(un, un+1)

+
2|an – an+1|

1 + an
d
(

f (un+1), T
(

un+1 ⊕ vn+1

2

))

,

that is,

d(vn, vn+1) – d(un, un+1)

≤ 2|an – an+1|
1 + an

d
(

f (un+1), T
(

un+1 ⊕ vn+1

2

))

–
2(1 – k)an

1 + an
d(un, un+1).

This together with limn→∞ an = 0 implies that

lim sup
n→∞

[
d(vn+1, vn) – d(un+1, un)

] ≤ 0.
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By Lemma 2.3, one has limn→∞ d(un, vn) = 0. Thus,

d
(
un, T(un)

)

≤ d(un, vn) + d
(

vn, T
(

un ⊕ vn

2

))

+ d
(

T
(

un ⊕ vn

2

)

, T(un)
)

≤ d(un, vn) + and
(

f (un), T
(

un ⊕ vn

2

))

+ d
(

un ⊕ vn

2
, un

)

≤ 3
2

d(un, vn) + and
(

f (un), T
(

un ⊕ vn

2

))

→ 0 as n → ∞. (3.2)

Step (III). The following result should be proved:

ω�{un} :=
⋃

{ζn}⊆{un}

{
A

({ζn}
)} ⊆ F(T), (3.3)

where A({ζn}) is the asymptotic center of {ζn}. In fact, if ζ ∈ ω�{un}, then there is a sub-
sequence {ζn} of {un} such that A({ζn}) = {ζ }. Further, by Lemma 2.4, we know that there
exists a subsequence {νn} of {ζn} such that �-limn→∞ νn = ν . It follows from (3.2) that
limn→∞ d(νn, T(νn)) = 0. From Lemma 2.5 and the demi-closedness of I – T at zero, it fol-
lows that ν ∈ E and ν ∈ F(T). Afterwards, ζ = ν will be given. If not, by the uniqueness of
the asymptotic centers ζ , ν of {ζn}, {νn}, respectively, we get

lim sup
n→∞

d(ζn, ζ ) < lim sup
n→∞

d(ζn,ν) ≤ lim sup
n→∞

d(un,ν)

= lim sup
n→∞

d(νn,ν) < lim sup
n→∞

d(νn, ζ )

≤ lim sup
n→∞

d(ζn, ζ ),

a contradiction. Hence, we get ζ = ν ∈ F(T).

Step (IV). Now, we obtain lim supn→∞〈−−→
f (q)q,−→vnq〉 ≤ 0, where q ∈ F(T) is a unique solu-

tion of the variational inequality (1.7). It follows from [24, Theorem 2.4] that PF(T)f is a
contraction operator, and there is unique fixed point q ∈ F(T) such that q = PF(T)f (q) sat-

isfying 〈−−→
qf (q),−→pq〉 ≥ 0 for any p ∈ F(T). Since {un} is bounded, there exists a subsequence

{uni} ⊆ {un} such that {uni} �-converges to a point p ∈ F(T). By [25, Theorem 2.6] and
(3.3), one knows that

lim sup
n→∞

〈−−→
f (q)q,−→unq

〉
= lim

i→∞
〈−−→
f (q)q,−−→uni q

〉
=

〈−−→
f (q)q,−→pq

〉 ≤ 0.

Thus, we have

lim sup
n→∞

〈−−→
f (q)q,−→vnq

〉
= lim sup

n→∞

(〈−−→
f (q)q,−−→vnun

〉
+

〈−−→
f (q)q,−→unq

〉)

≤ lim sup
n→∞

(
d
(
f (q), q

)
d(vn, un) +

〈−−→
f (q)q,−→unq

〉)

≤ 0. (3.4)
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Step (V). We prove that {un} converges strongly to q which satisfies q = PF(T)f (q) and

〈−−→
qf (q),−→pq

〉 ≥ 0, ∀p ∈ F(T).

For any n ∈ Z+, take zn = anq ⊕ (1 – an)T( un⊕vn
2 ). Then it follows from [21, Lemma 2.9],

Lemmas 2.6 and 2.1 that

d2(vn, q) ≤ d2(zn, q) + 2〈−−→vnzn,−→vnq〉

≤ (1 – an)2d2
(

T
(

un ⊕ vn

2

)

, q
)

+ 2
[

an
〈−−−−→
f (un)zn,−→vnq

〉
+ (1 – an)

〈−−−−−−−−−−→
T

(
un ⊕ vn

2

)

zn,−→vnq
〉]

≤ (1 – an)2d2
(

T
(

un ⊕ vn

2

)

, T(q)
)

+ 2
[

a2
n
〈−−−→
f (un)q,−→vnq

〉
+ an(1 – an)

〈−−−−−−−−−−−−→
f (un)T

(
un ⊕ vn

2

)

,−→vnq
〉

+ (1 – an)an

〈−−−−−−−−−→
T

(
un ⊕ vn

2

)

q,−→vnq
〉

+ (1 – an)2
〈−−−−−−−−−−−−−−−−−−→
T

(
un ⊕ vn

2

)

T
(

un ⊕ vn

2

)

,−→vnq
〉]

≤ (1 – an)2d2
(

un ⊕ vn

2
, q

)

+ 2
[

a2
n
〈−−−→
f (un)q,−→vnq

〉
+ an(1 – an)

〈−−−−−−−−−−−−→
f (un)T

(
un ⊕ vn

2

)

,−→vnq
〉

+ an(1 – an)
〈−−−−−−−−−→
T

(
un ⊕ vn

2

)

q,−→vnq
〉]

≤ (1 – an)2d2
(

un ⊕ vn

2
, q

)

+ 2an
〈−−−→
f (un)q,−→vnq

〉

≤ (1 – an)2
[

1
2

d2(un, q) +
1
2

d2(vn, q) –
1
4

d2(un, vn)
]

+ 2an
〈−−−−−→
f (un)f (q),−→vnq

〉
+ 2an

〈−−→
f (q)q,−→vnq

〉

≤ (1 – an)2

2
[
d2(un, q) + d2(vn, q)

]

+ 2and
(
f (un), f (q)

)
d(vn, q) + 2an

〈−−→
f (q)q,−→vnq

〉

≤ 1 – 2(1 – k)an

2
[
d2(un, q) + d2(vn, q)

]
+ Ma2

n + 2an
〈−−→
f (q)q,−→vnq

〉
,

where M > 0 is a constant such that

max
{

sup
n∈Z+

{
d2(un, q)

}
, sup

n∈Z+

{
d2(vn, q)

}} ≤ M.
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It follows that

d2(vn, q) ≤ 1 – 2(1 – k)an

1 + 2(1 – k)an
d2(un, q)

+
2a2

n
1 + 2(1 – k)an

M +
4an

1 + 2(1 – k)an

〈−−→
f (q)q,−→vnq

〉
. (3.5)

By (TVIM-I) and Lemma 2.1, we have

d2(un+1, q)

≤ bnd2(un, q) + (1 – bn)d2(vn, q) – bn(1 – bn)d2(un, vn)

≤ bnd2(un, q) + (1 – bn)d2(vn, q). (3.6)

Substituting (3.5) into (3.6), we get

d2(un+1, q) ≤ (1 – γn)d2(un, q) + δn, ∀n ≥ 1, (3.7)

where γn = 4(1–k)an(1–bn)
1+2(1–k)an

and

δn =
2a2

n(1 – bn)
1 + 2(1 – k)an

M +
4an(1 – bn)

1 + 2(1 – k)an

〈−−→
f (q)q,−→vnq

〉
.

By (1.3) and (3.4), now we know that γn ∈ (0, 1),
∑∞

n=1 γn = ∞ and

lim sup
n→∞

δn

γn
= lim sup

n→∞

[
an

2(1 – k)
M +

1
1 – k

〈−−→
f (q)q,−→vnq

〉
]

≤ 0.

The conclusion follows by Lemma 3.1 and (3.7). This completes the proof. �

In the next moment, we investigate the strong convergence of the iterative approxima-
tion method (TVIM-II).

Theorem 3.2 Suppose that T , f , E and X are the same as in Theorem 3.1. If (1.3) and
the following condition (C∗) holds: limn→∞ |bn – bn+1| = 0, then, for any chosen u1 ∈ E, the
sequence {un} defined by (TVIM-II) converges strongly to a unique solution q = PF(T)f (q) ∈
F(T) of the variational inequality (1.7).

Proof Above all, we show that {un} is bounded. Indeed, for any given p ∈ F(T), by
Lemma 2.1, one has

d(un+1, p)

≤ bnd(un, p) + (1 – bn)d
(

anf (un) ⊕ (1 – an)T
(

un ⊕ un+1

2

)

, p
)

≤ bnd(un, p) + (1 – bn)an
[
d
(
f (un), f (p)

)
+ d

(
f (p), p

)]

+ (1 – bn)(1 – an)d
(

T
(

un ⊕ un+1

2

)

, T(p)
)



Xiong and Lan Journal of Inequalities and Applications        (2020) 2020:145 Page 11 of 18

≤ bnd(un, p) + (1 – bn)an
[
kd(un, p) + d

(
f (p), p

)]

+ (1 – bn)(1 – an)d
(

un ⊕ un+1

2
, p

)

≤ bnd(un, p) + k(1 – bn)and(un, p) + (1 – bn)and
(
f (p), p

)

+
(1 – bn)(1 – an)

2
[
d(un, p) + d(un+1, p)

]

≤ 1 + bn – (1 – 2k)an(1 – bn)
2

d(un, p)

+
(1 – an)(1 – bn)

2
d(un+1, p) + an(1 – bn)d

(
f (p), p

)

and so

d(un+1, p)

≤
(

1 –
2an(1 – bn)(1 – k)
1 + bn + an(1 – bn)

)

d(un, p) +
2an(1 – bn)(1 – k)
1 + bn + an(1 – bn)

· d(f (p), p)
1 – k

≤ max

{

d(un, p),
d(f (p), p)

1 – k

}

.

By induction, we obtain d(un, p) ≤ max{d(u1, p), d(f (p),p)
1–k }. Hence, {un} is bounded.

After calculation, we get

d(vn, vn+1) – d(un, un+1)

≤ an(2k – 1)
1 + bn

d(un, un+1) +
|bn – bn+1|

1 + bn
d(un+1, vn+1)

+
2|an – an+1|

1 + bn
d
(

f (un+1), T
(

un+1 ⊕ un+2

2

))

.

Similarly, by the condition (C∗), we have

lim sup
n→∞

[
d(vn+1, vn) – d(un+1, un)

] ≤ 0

and

lim sup
n→∞

δn

γn
= lim sup

n→∞

[
αn

2(1 – k)
M′ +

1
1 – k

〈−−→
f (q)q,−→vnq

〉
]

≤ 0,

where

δn =
2α2

n(1 – βn)M′

1 + 2(1 – k)αn + βn – 2αnβn
+

4αn(1 – βn)〈−−→
f (q)q,−→ynq〉

1 + 2(1 – k)αn + βn – 2αnβn
,

M′ > 0 is a constant with supn∈Z+{d2(xn, q)} ≤ M′, and

γn =
4(1 – k)αn(1 – βn)

1 + 2(1 – k)αn + βn – 2αnβn
.



Xiong and Lan Journal of Inequalities and Applications        (2020) 2020:145 Page 12 of 18

Thus, in a similar way to Steps (II)–(V) of the proof in Theorem 3.1, the rest of the proof
can be completed and it is omitted. �

Remark 3.1 In order to show limn→∞ d(un, vn) = 0 via Lemma 2.3, one can easily see that
the condition (C∗) in Theorem 3.2 is very important and prerequisite for the new semi-
implicit viscosity iterative approximation (TVIM-II) (1.2). It is worth noting that the con-
dition (C∗) is not needed for the explicit viscosity iteration (TSVIM) (1.6), and one can
refer to the last section in this paper for more discussion on the existence value of the
condition (C∗).

4 Numerical simulation and applications
To verify the effectiveness of our main results, we shall propose a numerical example and
some applications to more general variational inequality systems and equilibrium prob-
lems in this section.

4.1 Numerical example
In the sequel, a numerical example is given to show the effectiveness of Theorems 3.1 and
3.2.

Let two iteration processes {xn} and {yn} both converge to a certain fixed point p of an
operator T . If

lim
n→∞

|xn – p|
|yn – p| = 0, (4.1)

then it can be recalled that the convergence rate of {xn} is faster than that of {yn} (see [26]).

Example 4.1 Let f , T : R → R be defined by f (u) = u
6 and T(u) = u

2 for any u ∈ R, respec-
tively. It is easy to see that F(T) = {0}. Let an = 1

n and bn = 1
3 for n ∈ Z

+. Let {u(1)
n }, {u(2)

n }
and {u(3)

n } be three sequences generated by (TSVIM), (TVIM-I) and (TVIM-II), respec-
tively. One can clearly see that {u(k)

n } converges to 0 for k = 1, 2, 3, and can easily rewrite
(TSVIM), (TVIM-I), and (TVIM-II), respectively, as follows:

u(1)
n+1 =

6n – 2
9n

u(1)
n , (TSVIM)

u(2)
n+1 =

13n + 1
9(3n + 1)

u(2)
n , (TVIM-I)

u(3)
n+1 =

9n – 1
3(5n + 1)

u(3)
n . (TVIM-II)

Taking u(k)
1 = 1 for k = 1, 2, 3, then one can easily check that

lim
n→∞

|u(2)
n – 0|

|u(3)
n – 0| = lim

n→∞
3[13(n – 1) + 1][5(n – 1) + 1]
9[3(n – 1) + 1][9(n – 1) – 1]

· u(2)
n–1

u(3)
n–1

,

that is,

lim
n→∞

|u(2)
n – 0|

|u(3)
n – 0|

/ |u(2)
n–1 – 0|

|u(3)
n–1 – 0| = lim

n→∞
65 + 112

n + 48
n2

81 + 144
n – 60

n2
=

65
81

∈ (0, 1),
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Table 1 Numerical results for (TSVIM), (TVIM-I) and (TVIM-II)

No. (TSVIM) (TVIM-I) (TVIM-II)

1 1.00000 1.00000 1.00000
2 0.44444 0.38889 0.44444
3 0.24691 0.16667 0.22900
4 0.14632 0.07407 0.12402
5 0.08942 0.03355 0.06890
6 0.05564 0.01538 0.03887
7 0.03503 0.00711 0.02215
8 0.02224 0.00330 0.01272
9 0.01421 0.00154 0.00734
10 0.00912 0.00072 0.00425
11 0.00588 0.00034 0.00248

No. (TSVIM) (TVIM-I) (TVIM-II)

12 0.00380 0.00016 0.00144
13 0.00246 0.00008 0.00084
14 0.00160 0.00004 0.00049
15 0.00104 0.00002 0.00029
16 0.00068 0.00001 0.00017
17 0.00044 0.00000 0.00010
18 0.00029 0.00000 0.00006
19 0.00019 0.00000 0.00003
20 0.00012 0.00000 0.00002
21 0.00008 0.00000 0.00001
22 0.00005 0.00000 0.00000

and the series of positive term
∑∞

n=2
|u(2)

n –0|
|u(3)

n –0| , is convergent. Thus, one has

lim
n→∞

|u(2)
n – 0|

|u(3)
n – 0| = lim

n→∞
7
8

· 99
119

· 32
39

· · · (13n + 1)(5n + 1)
3(3n + 1)(9n – 1)

= 0.

Similarly,

lim
n→∞

|u(3)
n – 0|

|u(1)
n – 0|

/ |u(3)
n–1 – 0|

|u(1)
n–1 – 0| =

9
10

∈ (0, 1) �⇒ lim
n→∞

|u(3)
n – 0|

|u(1)
n – 0| = 0.

Thus, it follows from the notion of convergence rate with respect to (4.1) that (TVIM-I)
converges faster than (TVIM-II), and the iterative number (in short, No.) of arriving at the
convergence point for (TVIM-II) is smaller than that of (TSVIM), which are also listed in
Table 1.

Remark 4.1 The numerical results in Table 1 show that Theorems 3.1 and 3.2, respec-
tively, corresponding to the iterative forms (TVIM-I) and (TVIM-II) extend and improve
corresponding work of Kaewkhao et al. [6] and Chang et al. [14] and many others in the
literature, which are associated with the iteration (TSVIM) (1.6).

4.2 More general variational inequality systems
Let C be a nonempty closed convex subset of the real Hilbert space H and {Ai}N

i=1 :
C → H be a family of operators. In [27], Cai and Bu considered the problem of finding
(u∗

1, u∗
2, . . . , u∗

N ) ∈ C × C × · · · × C such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈λN AN u∗
N + u∗

1 – x∗
N , x – x∗

1〉 ≥ 0, ∀u ∈ C,

〈λN–1AN–1u∗
N–1 + u∗

N – x∗
N–1, x – x∗

N 〉 ≥ 0, ∀u ∈ C,

. . . ,

〈λ2A2u∗
2 + u∗

3 – x∗
2, x – x∗

3〉 ≥ 0, ∀u ∈ C,

〈λ1A1u∗
1 + u∗

2 – x∗
1, x – x∗

2〉 ≥ 0, ∀u ∈ C.

(4.2)

Equation (4.2) is a more general variational inequality system in Hilbert spaces, where
λi > 0 for any i ∈ {1, 2, . . . , N}.



Xiong and Lan Journal of Inequalities and Applications        (2020) 2020:145 Page 14 of 18

Lemma 4.1 ([27]) Let C be a nonempty closed convex subset of the real Hilbert spaceH, For
i = 1, 2, . . . , N , let Ai : C →H be δi-inverse strongly monotone for some positive real number
δi, i.e.,

〈Aix – Aiy, x – y〉 ≥ δi‖Aix – Aiy‖2, ∀x, y ∈ C.

If 0 < λi < 2δi for any i ∈ {1, 2, . . . , N}, then, for all x ∈ C, the operator G : C → C defined as

G(x) = PC(I – λN AN )PC(I – λN–1AN–1) · · ·PC(I – λ1A1)x (4.3)

is nonexpansive.

Lemma 4.2 ([28]) Let C be a nonempty closed convex subset of the real Hilbert space H, Let
Ai : C → H be a nonlinear operator, where i = 1, 2, . . . , N . For given u∗

k ∈ C, i = 1, 2, . . . , N ,
(u∗

1, u∗
2, . . . , u∗

N ) is a solution of the problem (4.2) if and only if

u∗
1 = PC(I – λN AN )u∗

N ,

u∗
k = PC(I – λk–1Ak–1)u∗

k–1, k = 2, 3, . . . , N ,
(4.4)

that is,

u∗
1 = PC(I – λN AN )PC(I – λN–1AN–1) · · ·PC(I – λ2A2)PC(I – λ1A1)u∗

1.

By Lemmas 4.1 and 4.2, one knows that u∗
1 = G(u∗

1), that is, u∗
1 is a fixed point of the

operator G defined by (4.3). Further, if we find the fixed point u∗
1 of G, it is easy to get the

other points by (4.4), and one can solve (4.2). From Lemmas 4.1 and 4.2, and Theorems 3.1
and 3.2, now we have the following two results.

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. For i =
1, 2, . . . , N , let Ai : C → H be a δi-inverse strongly monotone for some positive real number
δi with F(G) �= ∅, where G : C → C is defined by (4.3), and f : C → C be a contraction with
coefficient k ∈ [0, 1). Then the sequence {un}, defined as follows:

vn = anf (un) + (1 – an)G
(

un + vn

2

)

,

un+1 = bnun + (1 – bn)vn, ∀n ≥ 1,

converges strongly to a fixed point u∗
1 of the nonexpansive operator G, where u1 ∈ C is any

given element, 0 < λi < 2δi for any i = 1, 2, . . . , N , and {an}, {bn} ⊆ (0, 1) satisfy (1.3). That
is, it follows from (4.4) that (u∗

1, u∗
2, . . . , u∗

N ) is a solution of the variational inequality system
(4.2), and u∗

1 satisfies u∗
1 = PF(G)f (u∗

1), which is also a unique solution of the variational
inequality

〈
u1 – f (u1), u – u1

〉 ≥ 0, ∀u ∈ F(G). (4.5)
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Theorem 4.2 Assume that Ai (i = 1, 2, . . . , N ), G, f , C and H are the same as in Theo-
rem 4.1. Choosing any u1 ∈ C, define a sequence {un} by

vn = anf (un) + (1 – an)G
(

un + un+1

2

)

,

un+1 = bnun + (1 – bn)vn, ∀n ≥ 1,

where 0 < λi < 2δi for any i ∈ {1, 2, . . . , N}, and {an}, {bn} ⊆ (0, 1) satisfy (1.3) and the con-
dition (C∗) in Theorem 3.2. Then the sequence {un} converges strongly to a fixed point u∗

1

of the nonexpansive operator G. Further, a solution (u∗
1, u∗

2, . . . , u∗
N ) of more general system

of variational inequalities problem (4.2) is obtained by (4.4), and u∗
1 = PF(G)f (u∗

1) is also a
unique solution of (4.5).

4.3 Equilibrium problems
Let X be a real topological vector space with the topological dual space X∗, 〈·, ·〉 be a pair of
X and X∗, and C ⊂ X be a closed convex subset. The equilibrium problem for the function
φ : C × C →R is to find a point u∗ ∈ C such that

φ
(
u∗, v

) ≥ 0, ∀y ∈ C, (4.6)

where R is the set of real numbers. The set of solutions of (4.6) is denoted by EP(φ).
If φ(u, v) = 〈T(u), v – u〉 for a given operator T : C → X∗, then the problem (4.6) is equiv-

alent to finding u∗ ∈ X such that

u∗ ∈ C,
〈
T

(
u∗), v – u∗〉 ≥ 0, ∀v ∈ C,

which is called a variational inequality of the topological vector space X.
To find solutions of the equilibrium problem (4.6), we assume that the bifunction φ

satisfies the following conditions (see [29]):
(H1) φ(x, x) = 0, for any x ∈ C;
(H2) φ is monotone, i.e., φ(x, y) + φ(y, x) ≤ 0, for any x, y ∈ C;
(H3) φ is upper-hemicontinuous, i.e., for any x, y, z ∈ C,

lim sup
t→0+

φ
(
tz + (1 – t)x, y

) ≤ φ(x, y);

(H4) φ(x, ·) is convex and lower semicontinuous for any x ∈ C.
Based on [29, Corollary 1] and [30, Lemma 2.12], and Theorems 3.1 and 3.2, the follow-

ing results can be established.

Theorem 4.3 Let H be a real Hilbert space, C ⊂ H be a nonempty. If (1.3) meets, φ :
C × C → R is a bifunction satisfying (H1)–(H4), f : C → C is a contraction with coefficient
k ∈ [0, 1) and for any x ∈ H, Tr : H→ C is defined as

Tr(x) =
{

z ∈ C : φ(z, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}
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with F(Tr) �= ∅, then, for any given u1 ∈ C, the sequence {un} generated by

vn = anf (un) + (1 – an)Tr

(
un + vn

2

)

,

un+1 = bnun + (1 – bn)vn,

converges strongly to a fixed point u∗ of the nonexpansive operator Tr such that u∗ =
PF(Tr )f (u∗), which is a solution of the equilibrium problem (4.6), and is also a unique solu-
tion of the variational inequality

〈
u∗ – f

(
u∗), u – u∗〉 ≥ 0, ∀u ∈ F(Tr). (4.7)

Theorem 4.4 Suppose that φ, Tr , f , C and H are the same as in Theorem 4.3. If (1.3) and
(C∗) in Theorem 3.2 hold, then, for any chosen u1 ∈ C, the sequence {un} defined by

un+1 = bnun + (1 – bn)
[

anf (un) + (1 – an)Tr

(
un + un+1

2

)]

converges strongly to a fixed point u∗ of Tr , where u∗ = PF(Tr )f (u∗) is a solution of the equi-
librium problem (4.6), and is also a unique solution of the variational inequality (4.7).

5 Concluding remarks
Motivated and inspired by the recent work of Kaewkhao et al. [6], Xu et al. [10], and Chang
et al. [14] on (viscosity) iterative approximation methods for the implicit midpoint rule of
nonexpansive operators, in this paper, we introduced and studied the following brand-new
semi-implicit viscosity iteration approximation methods involving nonexpansive operator
T and contraction operator f in complete CAT(0) spaces X:

⎧
⎨

⎩

vn = anf (un) ⊕ (1 – an)T( un⊕vn
2 ),

un+1 = bnun ⊕ (1 – bn)vn, ∀n ≥ 1,

and
⎧
⎨

⎩

vn = anf (un) ⊕ (1 – an)T( un⊕un+1
2 ),

un+1 = bnun ⊕ (1 – bn)vn, ∀n ≥ 1,
(5.1)

where u1 ∈ E ⊆ X is an arbitrary fixed element and {an}, {bn} ⊆ (0, 1). Under some cer-
tain assumptions to the sequences, we proved strong convergence theorems of the two
kinds of two-step viscosity approximation with the implicit midpoint rule, which show
that the limit solves an additional variational inequality, variational inequality systems,
equilibrium problems, differential equations and other related fixed point problems.

Further, on behalf of verifying effectiveness for our main convergence results presented
in this paper, we gave a numerical example and some applications to related variational
inequality problems, such as more general variational inequality systems and equilibrium
problems. Our results presented in this paper extend and improve corresponding work
due to Kaewkhao et al. [6] and Chang et al. [14] and many other researchers.
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However, choosing the sequence {bn} as follows:

bn =
2 + (–1)n

4
,

then one easily see that {bn} ⊆ (0, 1), and the inequality

0 < lim inf
n→∞ bn ≤ lim sup

n→∞
bn < 1

holds, but the condition (C∗) in Theorem 3.2 is not met. Indeed, (C∗) in Theorem 3.2
is an extra condition compared to Theorem 3.1. If the condition (C∗) is not added, does
Theorem 3.2 hold? This remains an open question for future work of research: Let E be a
nonempty closed convex subset of a complete CAT(0) space (X, d). Assume that T : E → E
is a nonexpansive operator with F(T) �= ∅, f : E → E is a contraction with coefficient k ∈
[0, 1), the sequences {an}, {bn} ⊆ (0, 1) satisfy (1.3), and for an arbitrary initial point u1 ∈ E,
{un} is a sequence generated by (5.1). Will the conclusion of Theorem 3.2 be correct? This
is usually presented as an important and big problem in future research.
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