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1 Introduction
Let (Ω ,T,μ) be a probability measure space. Assume that (T ,BT ) is a Borel measureable
space, in which T is an MB-space and G, H : Ω × T → T are random derivations. In MB-
spaces, first we solve the (additive, additive)–(ω,ν) random operator inequality

ξG(γ ,t+s)–G(γ ,t)–G(γ ,s)
τ ∗ ξH(γ ,t+s)+H(γ ,t–s)–2H(γ ,t)

τ

≥ ξ
ω(2G(γ , t+s

2 )–G(γ ,t)–G(γ ,s))
τ ∗ ξ

ν(2H(γ , t+s
2 )+2H(γ , t–s

2 )–2H(γ ,t))
τ , (1.1)

where ω, ν are fixed nonzero complex numbers. By a stochastic controller we make stable
the pseudo stochastic Lie bracket (derivation, derivation) in complex MB-algebras, associ-
ated to the above (additive, additive)–(ω,ν) random operator inequality and the following
random operator inequality:

ξ [G,H](γ ,ts)–[G,H](γ ,t)s–t[G,H](γ ,s)
τ ∗ ξH(γ ,ts)–H(γ ,t)s–tH(γ ,s)

τ ≥ ϕt,s
τ . (1.2)

The mentioned process is said to show Hyers–Ulam stability for the (additive, additive)–
(ω,ν) random operator inequality (1.1).

2 Preliminaries
Let Ξ+ be the set of distribution mappings, i.e., the set of all mappings ρ : R∪{–∞,∞} →
[0, 1], writing ρτ for ρ(τ ), such that ρ is left continuous and increasing on R. O+ ⊆ Ξ+
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includes all mappings ρ ∈ Ξ+ for which �–ρ+∞ is one and �–ρτ is the left limit of the
mapping ρ at the point τ , i.e., �–ρτ = limσ→τ– ρσ .

In Ξ+, we define “≤” as follows:

ρ ≤  if and only if ρτ ≤ τ

for each τ in R (partially ordered). Note that the function ϑu defined by

ϑu
s =

⎧
⎨

⎩

0, if s ≤ u,

1, if s > u,

is an element of Ξ+ and ϑ0 is the maximal element in this space (for details, see [1–3]).

Definition 2.1 ([1, 4]) Denote by I the interval [0, 1]. A continuous triangular norm
(shortly, a ct-norm) is a continuous binary operation ∗ from I2 to I such that

(a) ς ∗ τ = τ ∗ ς and ς ∗ (τ ∗ υ) = (ς ∗ τ ) ∗ υ for all ς , τ ,υ ∈ [0, 1];
(b) ς ∗ 1 = ς for all ς ∈ I ;
(c) ς ∗ τ ≤ υ ∗ ι whenever ς ≤ υ and τ ≤ ι for all ς , τ ,υ, ι ∈ I .

Some examples of ct-norms are as follows:
(1) ς ∗P τ = ςτ ;
(2) ς ∗M τ = min{ς , τ };
(3) ς ∗L τ = max{ς + τ – 1, 0} (the Lukasiewicz t-norm).

Definition 2.2 ([2]) Suppose that ∗ is a ct-norm, V is a linear space and ξ is a function
from V to O+. The ordered tuple (V , ξ ,∗) is called a Menger normed space (in short, MN-
space) if the following conditions are satisfied:

(MN1) ξ v
t = ϑ0

t for all t > 0 if and only if v = 0;
(MN2) ξαv

t = ξ v
t

|α|
for all v ∈ V and α ∈C with α 
= 0;

(MN3) ξu+v
t+s ≥ ξu

t ∗ ξ v
s for all u, v ∈ V and t, s ≥ 0.

A complete MN-space is called Menger Banach space, in short, MB-space. Let (V ,‖ · ‖)
be a normed space. Then

ξ v
s =

⎧
⎨

⎩

0, if s ≤ 0,

exp(– ‖v‖
s ), if s > 0,

defines a Menger norm and the ordered tuple (V , ξ ,∗M) is an MN-space. Also,

ξ v
s =

⎧
⎨

⎩

0, if s ≤ 0,
s

s+‖v‖ , if s > 0,

defines a Menger norm and the ordered tuple (V , ξ ,∗M) is an MN-space.

Definition 2.3 ([5, 6]) A Menger normed algebra (in short, MN-algebra) (V , ξ ,∗,�) is an
MN-space (V , ξ ,∗) with algebraic structure such that
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(FN-5) ξuv
ts ≥ ξu

t � ξ v
s for all u, v ∈ V and all t, s > 0. in which � is a ct-norm.

Every normed algebra (V ,‖ · ‖) defines an MN-algebra (V , ξ ,∗M,∗P), where

ξ v
s =

⎧
⎨

⎩

0, if s ≤ 0,

exp(– ‖v‖
s ), if s > 0,

if and only if

‖uv‖ ≤ ‖u‖‖v‖ + s‖v‖ + t‖u‖ (u, v ∈ V ; t, s > 0).

This space is called the induced MN-algebra. A complete MN-algebra is called Menger Ba-
nach algebra, in short, MB-algebra. Let (Γ ,Σ , ξ ) be a probability measure space. Assume
that (T ,BT ) and (S,BS) are Borel measurable spaces, in which T and S are complete MN-
spaces. A mapping F : Γ × T → S is said to be a random operator if {γ : F(γ , t) ∈ B} ∈ Σ

for all t in T and B ∈ BS . Also, F is a random operator if F(γ , t) = s(γ ) is an S-valued
random variable for all t in T . A random operator F : Γ × T → S is called linear if
F(γ ,αt1 + βt2) = αF(γ , t1) + βF(γ , t2) almost everywhere for t1, t2 ∈ T and α, β scalars,
and bounded if there is a nonnegative random variable M(γ ) such that

ξ
F(γ ,t)–F(γ ,s)
M(γ )τ ≥ ξ t–s

τ

almost everywhere for each t, s ∈ T and τ > 0.
Let T be an MB-algebra. A linear random operator π : Γ × T → T that satisfies

π (γ , ts) = π (γ , t)s + tπ (γ , s)

for all t, s ∈ T and γ ∈ Γ , is called stochastic derivation.
We denote by Π (Γ , T) the set of C-linear bounded stochastic derivations on Γ ×T . For

π1,π2 ∈ Π (Γ , T),

π1oπ2(γ , ts) = π1oπ2(γ , t)s + π2(γ , t)π1(γ , s) + π1(γ , t)π2(γ , s) + tπ1oπ2(γ , s),

π2oπ1(γ , ts) = π2oπ1(γ , t)s + π1(γ , t)π2(γ , s) + π2(γ , t)π1(γ , t) + tπ2oπ1(γ , s),

for all t, s ∈ T and γ ∈ Γ . Assume that [π1,π2] = π1oπ2 – π2oπ1. Then

[π1,π2](γ , ts) = [π1,π2](γ , t)s + t[π1,π2](γ , s)

for all t, s ∈ T and γ ∈ Γ . The C-linearity of [π1,π2] implies that [π1,π2] ∈ Π (Γ , T) for
all π1,π2 ∈ Π (Γ , T). Then Π (Γ , T) is a stochastic Lie algebra with stochastic Lie bracket
[π1,π2], π1 + π2 and βπ1 are C-linear stochastic derivations in which β ∈C.

Definition 2.4 Consider an MB-algebra T and linear random operators Θ ,Φ : Γ ×
T → T . Set [Θ ,Φ](γ , t) = Θ(γ ,Φ(γ , t)) – Φ(γ ,Θ(γ , t)) for every t ∈ T and γ ∈ Γ . The
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linear operator [Θ ,Φ] : Γ × T → T is said a stochastic Lie bracket (derivation, deriva-
tion) when

[Θ ,Φ](γ , ts) = [Θ ,Φ](γ , t)s + t[Θ ,Φ](γ , s),

Φ(γ , ts) = Φ(γ , t)s + tΦ(γ , s),

for all t, s ∈ T and γ ∈ Γ .

Recently, some authors have published some papers on approximation of functional
equations in various spaces by the direct technique and the fixed point technique, for ex-
ample, fuzzy Menger normed algebras [5], fuzzy metric spaces [7], fuzzy normed spaces
[8], non-Archimedian random Lie C∗-algebras [9], random multi-normed space [10], non-
Archimedean random normed spaces [6]; see also [11–30].

Note that a [0,∞]-valued metric is called a generalized metric.

Theorem 2.5 ([31–33]) Consider a complete generalized metric space (T , δ) and a strictly
contractive function Λ : T → T with Lipschitz constant β < 1. Then, for every given element
t ∈ T , either

δ
(
Λnt,Λn+1t

)
= ∞

for each n ∈ N or there is an n0 ∈N such that
(1) δ(Λnt,Λn+1t) < ∞, for all n ≥ n0;
(2) the sequence {Λnt} converges to a fixed point s∗ of Λ;
(3) s∗ is the unique fixed point of Λ in the set V = {s ∈ T | δ(Λn0 t, s) < ∞};
(4) (1 – β)δ(s, s∗) ≤ δ(s,Λs) for every s ∈ V .

3 Stability of (additive, additive) (ω,ν)-random operator inequality: direct
technique

Hereinafter we suppose that ∗ = ∗M .

Lemma 3.1 Assume that random operators G, H : Γ ×T → T satisfy G(γ , 0) = H(γ , 0) = 0
and

ξG(γ ,t+s)–G(γ ,t)–G(γ ,s)
τ ∗ ξH(γ ,t+s)+H(γ ,t–s)–2H(γ ,t)

τ

≥ ξ
ω(2G(γ , t+s

2 )–G(γ ,t)–G(γ ,s))
τ ∗ ξ

ν(2H(γ , t+s
2 )+2H(γ , t–s

2 )–2H(γ ,t))
τ (3.1)

for all t, s ∈ T , γ ∈ Γ and τ > 0 in which |ν| < 1 and |ω| < 1. Then the random operators
G, H : Γ × T → T are additive.

Proof Putting s = t in (3.1), we get

ξG(γ ,2t)–2G(γ ,t)
τ ∗ ξH(γ ,2t)–2H(γ ,t)

τ ≥ ϑ0
τ
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for all t ∈ T and γ ∈ Γ . Then G(γ , 2t) = 2G(γ , t) and H(γ , 2t) = 2H(γ , t) for all t ∈ T and
γ ∈ Γ . By (3.1) we have

ξG(γ ,t+s)–G(γ ,t)–G(γ ,s)
τ ∗ ξH(γ ,t+s)+H(γ ,t–s)–2H(γ ,t)

τ

≥ ξω(G(γ ,t+s)–G(γ ,t)–G(γ ,s))
τ ∗ ξν(H(γ ,t+s)+H(γ ,t–s)–2H(γ ,t))

τ

for all t, s ∈ T , γ ∈ Γ and τ > 0. So |ν| < 1 and |ω| < 1 imply that G(γ , t + s) – G(γ , t) –
G(γ , s) = 0 and H(γ , t + s) + H(γ , t – s) – 2H(γ , t) = 0 for all t ∈ T and γ ∈ Γ . Thus the
random operators G, H : Γ × T → T are additive. �

Lemma 3.2 ([34, Theorem 2.1]) Assume that a random operator F : Γ ×T → T is additive
and

F(γ , dt) = dF(γ , t)

for all d ∈ D
1 := {c ∈ C : |c| = 1} and each t ∈ T and γ ∈ Γ . Then the random operator

F : Γ × T → T is C-linear.

Theorem 3.3 Let (T , ξ ,∗,∗) be an MB-algebra. Let ϕ : T2 → O+ be a distribution function
such that there exists a β ∈ (0, 1) with

ϕ
t
2 , s

2
β
2 τ

≥ ϕ
t
2 , s

2
β
4 τ

≥ ϕt,s
τ (3.2)

for all t, s ∈ T and τ > 0. Suppose that random operators G, H : Γ ×T → T satisfy G(γ , 0) =
H(γ , 0) = 0 and

ξG(γ ,d(t+s))–dG(γ ,t)–dG(γ ,s)
τ ∗ ξH(γ ,d(t+s))+H(γ ,d(t–s))–2dH(γ ,t)

τ

≥ ξ
ω(2G(γ ,d t+s

2 )–dG(γ ,t)–dG(γ ,s))
τ

∗ ξ
ν(2H(γ ,d t+s

2 )+2H(γ ,d t–s
2 )–2dH(γ ,t))

τ ∗ ϕt,s
τ (3.3)

for all d ∈D
1, t, s ∈ T , γ ∈ Γ and τ > 0. Assume that the random operators G, H : Γ ×T →

T satisfy

ξ [G,H](γ ,ts)–[G,H](γ ,t)s–t[G,H](γ ,s)
τ ∗ ξH(γ ,ts)–H(γ ,t)s–tH(γ ,s)

τ ≥ ϕt,s
τ (3.4)

for all t, s ∈ T , γ ∈ Γ and τ > 0. Then there are a unique C-linear random operator Θ : Γ ×
T → T and a unique stochastic derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T
is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ ϕ
t,t
2(1–β)

β
τ

(3.5)

for all t ∈ T , γ ∈ Γ and τ > 0.
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Proof In (3.3), putting d = 1 and s = t, one obtains

ξG(γ ,2t)–2G(γ ,t)
τ ∗ ξH(γ ,2t)–2H(γ ,t)

τ ≥ ϕt,t
τ (3.6)

and so

ξ
G(γ ,t)–2G(γ , t

2 )
τ ∗ ξ

H(γ ,t)–2H(γ , t
2 )

τ ≥ ϕ
t
2 , t

2
τ

≥ ϕ
t,t
2
β

τ
(3.7)

for all t ∈ T , γ ∈ Γ and τ > 0. Replacing t by t
2n in (3.7), we get

ξ
2nG(γ , t

2n )–2n+1G(γ , t
2n+1 )

τ ∗ ξ
2nH(γ , t

2n )–2n+1H(γ , t
2n+1 )

τ ≥ ϕ
t

2n+1 , t
2n+1

2
β

τ

≥ ϕ
t,t

2
βn+1 τ

(3.8)

for all t ∈ T , γ ∈ Γ , τ > 0 and n ∈ N. Since

2nG
(

γ ,
t

2n

)

– G(γ , t) =
n∑

k=1

2kG
(

γ ,
t

2k

)

– 2k–1G
(

γ ,
t

2k–1

)

,

we have

ξ
2nG(γ , t

2n )–G(γ ,t)
∑n

k=1
1
2 βkτ

∗ ξ
2nH(γ , t

2n )–H(γ ,t)
∑n

k=1
1
2 βkτ

≥
n∏

k=1

[
ξ

2k G(γ , t
2k )–2k–1G(γ , t

2k–1 )
1
2 βkτ

∗ ξ
2kH(γ , t

2k )–2k–1H(γ , t
2k–1 )

1
2 βkτ

]

≥ ϕt,t
τ (3.9)

and so

ξ
2nG(γ , t

2n )–G(γ ,t)
τ ∗ ξ

2nH(γ , t
2n )–H(γ ,t)

τ ≥ ϕ
t,t

τ
∑n

k=1
1
2 βk

(3.10)

for all t ∈ T , γ ∈ Γ , τ > 0 and n ∈ N.
Replacing t by t

2m in (3.10), we get

ξ
2n+mG(γ , t

2n+m )–2mG(γ , t
2m )

τ ∗ ξ
2n+mH(γ , t

2n+m )–2mH(γ , t
2n+m )

τ ≥ ϕ
t

2m , t
2m

2mτ
∑n

k=1
1
2 βk

≥ ϕ
t,t

τ
∑n+m

k=m+1
1
2 βk

, (3.11)

for all t ∈ T , γ ∈ Γ , τ > 0 and n, m ∈N.
Let m, n → ∞ in (3.11), since β ∈ (0, 1), we conclude that ϕ

t,t
τ

∑n+m
k=m+1

1
2 βk

tends to 1 for all

τ > 0. Thus this shows that {2nG(γ , t
2n )} and {2nH(γ , t

2n )} are Cauchy sequences for each
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t ∈ T , γ ∈ Γ . Since T is complete, the mentioned sequences converge. Now we define the
random operators Θ ,π : Γ × T → T by

Θ(γ , t) := lim
n→+∞ 2nG

(

γ ,
t

2n

)

, π (γ , t) := lim
n→+∞ 2nH

(

γ ,
t

2n

)

(3.12)

for each t ∈ T , γ ∈ Γ . Putting m = 0 and n → +∞ in (3.11), we obtain (3.5).
Using (3.3), (3.12) and letting n tend to +∞, we have

ξΘ(γ ,d(t+s))–dΘ(γ ,t)–dΘ(γ ,s)
τ ∗ ξπ (γ ,d(t+s))+π (γ ,d(t–s))–2dπ (γ ,s)

τ

= ξ
G(γ ,d( t+s

2n ))–dG(γ , t
2n )–dG(γ , t

2n )
τ

2n
∗ ξ

H(γ ,d( t+s
2n ))+H(γ ,d( t–s

2n ))–2dH(γ , s
2n )

τ
2n

≥ ξ
ω(2G(γ ,d t+s

2n+1 )–dG(γ , t
2n )–dG(γ , s

2n ))
τ

2n
∗ ξ

ν(2H(γ ,d t+s
2n+1 )+2H(γ ,d t–s

2n+1 )–2dH(γ , t
2n ))

τ
2n

∗ ϕ
t

2n , s
2n

τ
2n

≥ ξ
ω(2Θ(γ ,d t+s

2 )–dΘ(γ ,t)–dΘ(γ ,s))
τ ∗ ξ

ν(2π (γ ,d t+s
2 )+2π (γ ,d t–s

2 )–2dπ (γ ,s))
τ

for all d ∈ D
1, t, s ∈ T , γ ∈ Γ and τ > 0. Then

ξΘ(γ ,d(t+s))–dΘ(γ ,t)–dΘ(γ ,s)
τ ∗ ξπ (γ ,d(t+s))+π (γ ,d(t–s))–2dπ (γ ,s)

τ

≥ ξ
ω(2Θ(γ ,d t+s

2 )–dΘ(γ ,t)–dΘ(γ ,s))
τ ∗ ξ

ν(2π (γ ,d t+s
2 )+2π (γ ,d t–s

2 )–2dπ (γ ,s))
τ (3.13)

for all d ∈ D
1 and t, s ∈ T , γ ∈ Γ , τ > 0. Putting d = 1 in (3.13) and using Lemma 3.1, we

see that the random operators Θ ,π : Γ × T → T are additive.
The additivity of Θ and π and (3.13) imply that

ξΘ(γ ,d(t+s))–dΘ(γ ,t)–dΘ(γ ,s)
τ ∗ ξπ (γ ,d(t+s))+π (γ ,d(t–s))–2dπ (γ ,s)

τ

≥ ξω(Θ(γ ,d(t+s))–dΘ(γ ,t)–dΘ(γ ,s))
τ ∗ ξν(π (γ ,d(t+s))+π (γ ,d(t–s))–2dπ (γ ,s))

τ (3.14)

for all d ∈ D
1 and t, s ∈ T , γ ∈ Γ , τ > 0, which implies that

Θ
(
γ , d(t + s)

)
– dΘ(γ , t) – dΘ(γ , s) = 0,

π
(
γ , d(t + s)

)
+ π

(
γ , d(t – s)

)
– 2dπ (γ , s) = 0.

Then Θ(γ , dt) = dΘ(γ , t) and π (γ , dt) = dπ (γ , t) for all d ∈ D
1 and t ∈ T , γ ∈ Γ . Now,

Lemma 3.2 implies that the additive mappings Θ and π are C-linear.
The additivity of Θ and π and (3.4) imply that

ξ [Θ ,φ](γ ,ts)–[Θ ,φ](γ ,t)s–t[Θ ,φ](γ ,s)
τ ∗ ξπ (γ ,ts)–π (γ ,t)s–tπ (γ ,s)

τ

≥ ξ
[G,H](γ , ts

4n )–[G,H](γ , t
2n ) s

2n – t
2n [G,H](γ , s

2n )
τ

4n
∗ ξ

H(γ , ts
4n )–H(γ , t

2n ) s
2n – t

2n H(γ , s
2n )

τ
4n

≥ ϕ
t

2n , s
2n

τ
4n

≥ ϕ
t,t
τ

βn
, (3.15)

which tends to 1 as n → +∞. Then

[Θ ,φ](γ , ts) – [Θ ,φ](γ , t)s – t[Θ ,φ](γ , s) = 0,
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π (γ , ts) – π (γ , t)s – tπ (γ , s) = 0,

for all t, s ∈ T , γ ∈ Γ . Thus [Θ ,φ] and π are stochastic derivations. �

Corollary 3.4 Let (T , ξ ,∗,∗) be an MB-algebra. Assume that q > 0 and p > 1. Suppose that
random operators G, H : Γ × T → T satisfy G(γ , 0) = H(γ , 0) = 0 and

ξG(γ ,d(t+s))–dG(γ ,t)–dG(γ ,s)
τ ∗ ξH(γ ,d(t+s))+H(γ ,d(t–s))–2dH(γ ,t)

τ

≥ ξ
ω(2G(γ ,d t+s

2 )–dG(γ ,t)–dG(γ ,s))
τ

∗ ξ
ν(2H(γ ,d t+s

2 )+2H(γ ,d t–s
2 )–2dH(γ ,t))

τ ∗ τ

τ + q(‖t‖p + ‖s‖p)
(3.16)

for all d ∈D
1, t, s ∈ T , γ ∈ Γ and τ > 0. Let

ξ [G,H](γ ,ts)–[G,H](γ ,t)s–t[G,H](γ ,s)
τ ∗ ξH(γ ,ts)–H(γ ,t)s–tH(γ ,s)

τ ≥ τ

τ + q(‖t‖p + ‖s‖p)
(3.17)

for all t, s ∈ T , γ ∈ Γ and τ > 0. Then there are a unique C-linear random operator Θ : Γ ×
T → T and a unique stochastic derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T
is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ τ

τ + q( 2
2p–2‖t‖p)

(3.18)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof In Theorem 3.3, putting

ϕt,s
τ =

τ

τ + q(‖t‖p + ‖s‖p)

and letting β = 21–p, we get the desired result. �

Theorem 3.5 Let (T , ξ ,∗,∗) be an MB-algebra. Let ϕ : T2 → O+ be a distribution function
such that there exists a β ∈ (0, 1) with

ϕ
t,s
4βτ ≥ ϕ

t
2 , s

2
τ (3.19)

for all t, s ∈ T and τ > 0. Suppose that the random operators G, H : Γ × T → T satisfy
G(γ , 0) = H(γ , 0) = 0, (3.3) and (3.4). Then there are a unique C-linear random operator
Θ : Γ × T → T and a unique stochastic derivation π : Γ × T → T such that [Θ ,π ] :
Γ × T → T is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ ϕ
t,t
2(1–β)τ (3.20)

for all t ∈ T , γ ∈ Γ and τ > 0.
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Proof Using (3.6), we get

ξ
G(γ ,t)– 1

2 G(γ ,2t)
τ ∗ ξ

H(γ ,t)– 1
2 H(γ ,2t)

τ ≥ ϕ
2t,2t
2τ ≥ ϕ

t,t
τ

2β
(3.21)

for all t ∈ T , γ ∈ Γ and τ > 0.
Replacing t by 2nt in (3.21), we get

ξ
1

2n G(γ ,2nt)– 1
2n+1 G(γ ,2n+1t)

τ ∗ ξ
1

2n H(γ ,2nt)– 1
2n+1 H(γ ,2n+1t)

τ ≥ ϕ
2n+1t,2n+1t
2n+1τ

≥ ϕ
t,t
2n+1
(4β)n τ

(3.22)

for all t ∈ T , γ ∈ Γ , τ > 0 and n ∈ N. Since

1
2n G

(
γ , 2nt

)
– G(γ , t) =

n–1∑

k=0

1
2k+1 G

(
γ , 2k+1t

)
–

1
2k G

(
γ , 2kt

)
,

we have

ξ
1

2n G(γ ,2nt)–G(γ ,t)
∑n–1

k=0
(4β)k
2k+1 τ

∗ ξ
1

2n H(γ ,2nt)–H(γ ,t)
∑n–1

k=0
(4β)k
2k+1 τ

≥
n–1∏

k=0

[
ξ

1
2k+1 G(γ ,2k+1t)– 1

2k G(γ ,2kt)

(4β)k
2k+1 τ

∗ ξ

1
2k+1 H(γ ,2k+1t)– 1

2k H(γ ,2kt)

(4β)k
2k+1 τ

]

≥ ϕt,t
τ (3.23)

and so

ξ
1

2n G(γ ,2nt)–G(γ ,t)
τ ∗ ξ

1
2n H(γ ,2nt)–H(γ ,t)
τ ≥ ϕ

t,t
τ

∑n–1
k=0

(4β)k
2k+1

(3.24)

for all t ∈ T , γ ∈ Γ , τ > 0 and n ∈ N.
Replacing t by 2mt in (3.24), we get

ξ
1

2n+m G(γ ,2n+mt)– 1
2m G(γ ,2mt)

τ ∗ ξ
1

2n+m H(γ ,2n+mt)– 1
2m H(γ ,2mt)

τ ≥ ϕ
2mt,2mt

1
2m τ

∑n–1
k=0

(4β)k
2k+1

≥ ϕ
t,t

τ
∑n+m

k=m
(4β)k
2k+1

(3.25)

for all t ∈ T , γ ∈ Γ , τ > 0 and n, m ∈N.
Letting m, n → +∞ in (3.25), since β ∈ (0, 1), we conclude that ϕ

t,t
τ

∑n+m
k=m

(4β)k
2k+1

tends to 1 for

all τ > 0. This shows that { 1
2n G(γ , 2nt)} and { 1

2n H(γ , 2nt)} are Cauchy sequences for each
t ∈ T , γ ∈ Γ . Since T is complete, the mentioned sequences converge. Now we define the
random operators Θ ,π : Γ × T → T by

Θ(γ , t) := lim
n→+∞

1
2n G

(
γ , 2nt

)
, π (γ , t) := lim

n→+∞
1
2n G

(
γ , 2nt

)
, (3.26)
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for each t ∈ T , γ ∈ Γ . Putting m = 0 and n → ∞ in (3.25), we get (3.5). By the same method
in the proof of Theorem 3.3, the random operators Θ ,π : Γ × T → T are C-linear.

The additivity of Θ and π and (3.4) imply that

ξ [Θ ,φ](γ ,ts)–[Θ ,φ](γ ,t)s–t[Θ ,φ](γ ,s)
τ ∗ ξπ (γ ,ts)–π (γ ,t)s–tπ (γ ,s)

τ

≥ ξ
[G,H](γ ,4nts)–[G,H](γ ,2nt)2ns–2nt[G,H](γ ,2ns)
4nτ ∗ ξ

H(γ ,4nts)–H(γ ,2nt)2ns–2ntH(γ ,2ns)
4nτ

≥ ϕ
2nt,2ns
4nτ

≥ ϕ
t,t
τ

βn
, (3.27)

which tends to 1 as n → +∞. Then

[Θ ,φ](γ , ts) – [Θ ,φ](γ , t)s – t[Θ ,φ](γ , s) = 0,

π (γ , ts) – π (γ , t)s – tπ (γ , s) = 0

for all t, s ∈ T , γ ∈ Γ . Thus [Θ ,φ] and π are stochastic derivations. �

Corollary 3.6 Let (T , ξ ,∗,∗) be an MB-algebra. Assume that q > 0 and p < 1. Suppose that
random operators G, H : Γ × T → T satisfy G(γ , 0) = H(γ , 0) = 0, (3.16) and (3.17). Then
there are a unique C-linear random operator Θ : Γ × T → T and a unique stochastic
derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ τ

τ + q( 2
2–2p ‖t‖p)

(3.28)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof In Theorem 3.5, putting

ϕt,s
τ =

τ

τ + q(‖t‖p + ‖s‖p)
,

and letting β = 2p–1, we get the desired result. �

4 Stability of (additive, additive) (ω,ν)-random operator inequality (1.1) via
fixed point technique

Theorem 4.1 Let (T , ξ ,∗,∗) be an MB-algebra. Let ϕ : T2 → O+ be a distribution function
such that there exists a β ∈ (0, 1) with

ϕ
t
2 , s

2
β
2 τ

≥ ϕ
t
2 , s

2
β
4 τ

≥ ϕt,s
τ (4.1)

for all t, s ∈ T and τ > 0. Suppose that random operators G, H : Γ ×T → T satisfy G(γ , 0) =
H(γ , 0) = 0, (3.3) and (3.4). Then there are a unique C-linear random operator Θ : Γ ×
T → T and a unique stochastic derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T
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is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ ϕ
t,t
2(1–β)

β
τ

(4.2)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof By Theorem 3.3, there exist a unique C-linear random operator Θ : Γ ×T → T and
a unique stochastic derivation π : Γ ×T → T such that [Θ ,π ] : Γ ×T → T is a stochastic
a derivation.

In (3.3), putting d = 1 and s = t, we get

ξG(γ ,2t)–2G(γ ,t)
τ ∗ ξH(γ ,2t)–2H(γ ,t)

τ ≥ ϕt,t
τ (4.3)

and so

ξ
G(γ ,t)–2G(γ , t

2 )
τ ∗ ξ

H(γ ,t)–2H(γ , t
2 )

τ ≥ ϕ
t
2 , t

2
τ

≥ ϕ
t,t
2
β

τ

for all t ∈ T , γ ∈ Γ and τ > 0.
On the set

S :=
{

(G, H) | G, H : Γ × T → T , G(γ , 0) = H(γ , 0) = 0
}

,

we define the following generalized metric on S:

δ
(
(G, H), (G1, H1)

)

= inf
{
μ ∈R+ : ξG(γ ,t)–G1(γ ,t)

τ ∗ ξH(γ ,t)–H1(γ ,t)
τ ≥ ϕ

t,t
τ
μ

,∀t ∈ T ,γ ∈ Γ , τ > 0
}

.

In [35], Miheţ and Radu proved that (S, δ) is complete (see also [36]).
Now, we consider the linear mapping Λ : S → S such that

Λ(G, H)(γ , t) :=
(

2G
(

γ ,
t
2

)

, 2H
(

γ ,
t
2

))

for all t ∈ T , γ ∈ Γ .
Let (G, H), (G1, H1) ∈ S be given such that δ((G, H), (G1, H1)) = ε. Then

ξG(γ ,t)–G1(γ ,t)
τ ∗ ξH(γ ,t)–H1(γ ,t)

τ ≥ ϕ
t,t
τ
ε

for all t ∈ T , γ ∈ Γ and τ > 0. So

ξ
2G(γ , t

2 )–2G1(γ , t
2 )

τ ∗ ξ
2H(γ , t

2 )–H1(γ , t
2 )

τ ≥ ϕ
t
2 , t

2
τ
ε

≥ ϕ
t,t
τ
βε

for all t ∈ T , γ ∈ Γ , τ > 0 and δ(Λ(G, H),Λ(G1, H1)) ≤ βε. This means that

δ
(
Λ(G, H),Λ(G1, H1)

) ≤ βδ
(
(G, H), (G1, H1)

)

for all (G, H), (G1, H1) ∈ S.
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It follows from (3.3) that

ξ
G(γ ,t)–2G1(γ , t

2 )
τ ∗ ξ

H(γ ,t)–H1(γ , t
2 )

τ ≥ ϕ
t
2 , t

2
τ ≥ ϕ

t,t
2τ
β

for all t ∈ T , γ ∈ Γ and τ > 0. So δ((G, H),Λ(G, H)) ≤ β

2 . By Theorem 2.5, there exist
random operators Θ ,π : Γ × T → T satisfying the following:

(1) There is a fixed point (Θ ,π ) for the function Λ such that

Θ(γ , t) := 2Θ

(

γ ,
t
2

)

, π (γ , t) := 2π

(

γ ,
t
2

)

(4.4)

for all t ∈ T , γ ∈ Γ . The random operator (Θ ,π ) is a unique fixed point of Λ in the set

M =
{

(G, H) ∈ S : δ
(
(G, H), (G1, H1)

)
< ∞}

.

(2) δ(Λn(G, H), (Θ ,π )) → 0 as n → +∞. which implies

Θ(γ , t) := lim
n→+∞ 2nG

(

γ ,
t

2n

)

, π (γ , t) := lim
n→+∞ 2nH

(

γ ,
t

2n

)

.

(3) δ((G, H), (Θ ,π )) ≤ 1
1–β

δ((G, H),Λ(G, H)), which implies

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ ϕ
t,t
2(1–β)

β
τ

for all t ∈ T , γ ∈ Γ and τ > 0. �

Corollary 4.2 Let (T , ξ ,∗,∗) be an MB-algebra. Assume that q > 0 and p > 1. Suppose that
random operators G, H : Γ × T → T satisfy G(γ , 0) = H(γ , 0) = 0, (3.16) and (3.17). Then
there are a unique C-linear random operator Θ : Γ × T → T and a unique stochastic
derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ exp

(

–
q( 2

2p–2‖t‖p)
τ

)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof In Theorem 4.1, putting

ϕt,s
τ = exp

(

–
q( 2

2p–2‖t‖p)
τ

)

,

and letting β = 21–p, we get the desired result. �

Theorem 4.3 Let (T , ξ ,∗,∗) be an MB-algebra. Let ϕ : T2 → O+ be a distribution function
such that there exists a β ∈ (0, 1) with

ϕ
t,s
4βτ ≥ ϕ

t
2 , s

2
τ (4.5)
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for all t, s ∈ T and τ > 0. Suppose that random operators G, H : Γ ×T → T satisfy G(γ , 0) =
H(γ , 0) = 0, (3.3) and (3.4). Then there are a unique C-linear random operator Θ : Γ ×
T → T and a unique stochastic derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T
is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ ϕ
t,t
2(1–β)τ (4.6)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof By Theorem 3.5, there exist a unique C-linear random operator Θ : Γ ×T → T and
a unique stochastic derivation π : Γ ×T → T such that [Θ ,π ] : Γ ×T → T is a stochastic
a derivation.

Let (S, δ) be the generalized metric space defined in the proof of Theorem 4.1. Now, we
consider the linear mapping Λ : S → S such that

Λ(G, H)(γ , t) :=
(

1
2

G(γ , 2t),
1
2

H(γ , 2t)
)

for all t ∈ T , γ ∈ Γ . It follows from (4.3) that

ξ
G(γ ,t)– 1

2 G(γ ,2t)
τ ∗ ξ

H(γ ,t)– 1
2 H(γ ,2t)

τ ≥ ϕ
2t,2t
2τ

≥ ϕ
t,t
τ

2β

for all t ∈ T , γ ∈ Γ and τ > 0. The proof will be finished by a similar method to the one
used in the proofs of Theorems 3.3 and 4.1. �

Corollary 4.4 Let (T , ξ ,∗,∗) be an MB-algebra. Assume that q > 0 and p < 1. Suppose that
random operators G, H : Γ × T → T satisfy G(γ , 0) = H(γ , 0) = 0, (3.16) and (3.17). Then
there are a unique C-linear random operator Θ : Γ × T → T and a unique stochastic
derivation π : Γ × T → T such that [Θ ,π ] : Γ × T → T is a stochastic derivation and

ξG(γ ,t)–Θ(γ ,t)
τ ∗ ξH(γ ,t)–π (γ ,t)

τ ≥ exp

(

–
q( 2

2–2p ‖t‖p)
τ

)

for all t ∈ T , γ ∈ Γ and τ > 0.

Proof In Theorem 4.3, putting

ϕt,s
τ = exp

(

–
q( 2

2–2p ‖t‖p)
τ

)

,

and letting β = 2p–1, we get the desired result. �
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