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1 Introduction
We first say that there exists a continuous function K(x, y) defined on Ω = {(x, y) ∈R×R :
x �= y} and C > 0 if K admits the following representation:

∣
∣K(x, y)

∣
∣ ≤ C

|x – y| , ∀(x, y) ∈ Ω , (1)

and for all x, x0, y ∈R with |x – y| > 2|x – x0|

∣
∣K(x, y) – K(x0, y)

∣
∣ +

∣
∣K(y, x) – K(y, x0)

∣
∣

≤ C
|x – y|

( |x – x0|
|x – y|

)β

, (2)

where 1 > β > 0. Then K is said to be a Calderón–Zygmund standard kernel.
Suppose that K satisfies (1) and (2). Then Zhang and Wu [12] considered the family of

operators T := {Tε}ε>0 and a related the family of commutator operators Tb := {Tε,b}ε>0

generated by Tε and b which are given by

Tε f (x) =
∫

|x–y|>ε

K(x, y)f (y) dy (3)
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and

Tε,bf (x) =
∫

|x–y|>ε

(

b(x) – b(y)
)

K(x, y)f (y) dy. (4)

In this sense, following [12], the definition of the oscillation operator of T is given by

O(Tf )(x) :=

( ∞
∑

i=1

sup
ti+1≤εi+1<εi≤ti

∣
∣Tεi+1 f (x) – Tεi f (x)

∣
∣
2
) 1

2

,

where {ti} is a decreasing fixed sequence of positive numbers converging to 0 and a related
ρ-variation operator is defined by

Vρ(Tf )(x) := sup
εi↘0

( ∞
∑

i=1

∣
∣Tεi+1 f (x) – Tεi f (x)

∣
∣
ρ

) 1
ρ

, ρ > 2,

where the supremum is taken over all sequences of real number {εi} decreasing to 0. We
also take into account the operator

O′(Tf )(x) :=

( ∞
∑

i=1

sup
ti+1<ηi<ti

∣
∣Tti+1 f (x) – Tηi f (x)

∣
∣
2
) 1

2

.

On the other hand, it is obvious that

O′(Tf ) ≈O(Tf ).

That is,

O′(Tf ) ≤O(Tf ) ≤ 2O′(Tf ).

Recently, Campbell et al. in [1] proved the oscillation and variation inequalities for the
Hilbert transform in Lp (1 < p < ∞) and then following [1], we denote by E the mixed
norm Banach space of the two-variable function h defined on R×N such that

‖h‖E ≡
(

∑

i

(

sup
s

∣
∣h(s, i)

∣
∣

)2
)1/2

< ∞.

Given T := {Tε}ε>0 is a family operators such that limε→0 Tε f (x) = Tf (x) exists almost ev-
erywhere for certain class of functions f , where Tε defined as (3). For a fixed decreasing se-
quence {ti} with ti ↘ 0, let Ji = (ti+1, ti] and define the E-valued operator U(T) : f → U(T)f
given by

U(T)f (x) =
{

Tti+1 f (x) – Tsf (x)
}

s∈Ji ,i∈N =
{∫

{ti+1<|x–y|<s}
K(x, y)f (y) dy

}

s∈Ji ,i∈N
.
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Then

O′(Tf )(x) =
∥
∥U(T)f (x)

∥
∥

E =
∥
∥
{

Tti+1 f (x) – Tsf (x)
}

s∈Ji ,i∈N
∥
∥

E

=
∥
∥
∥
∥

{∫

{ti+1<|x–y|<s}
K(x, y)f (y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥

E
.

Let Φ = {β : β = {εi}, εi ∈ R, εi ↘ 0}. We denote by Fρ the mixed norm space of two-
variable functions g(i,β) such that

‖g‖Fρ ≡ sup
β

(
∑

i

∣
∣g(i,β)

∣
∣
ρ

)1/ρ

.

We also take into account the Fρ-valued operator V (T) : f → V (T)f such that

V (T)f (x) =
{

Tεi+1 f (x) – Tεi f (x)
}

β={εi}∈Φ
.

Thus,

Vρ(T)f (x) =
∥
∥V (T)f (x)

∥
∥

Fρ
.

Given m is a positive integer, and b is a function on R. Let Rm+1(b; x, y) be the m + 1th
order Taylor series remainder of b at x about y, that is,

Rm+1(b; x, y) = b(x) –
∑

γ≤m

1
γ !

b(γ )(y)(x – y)γ .

In this paper, we consider the family of operators Tb := {Tb
ε }ε>0 given by [6], where Tb

ε are
the multilinear singular integral operators of Tε as follows:

Tb
ε f (x) =

∫

|x–y|>ε

Rm+1(b; x, y)
|x – y|m K(x, y)f (y) dy. (5)

Thus, if m = 0, then Tb
ε is just the commutator of Tε and b, which is given by (4). But, if

m > 0, then Tb
ε are non-trivial generation of the commutators.

The theory of multilinear analysis was received extensive studies in the last 3 decades
(see [2, 5] for example). Hu and Wang [6] proved that the weighted (Lp, Lq)-boundedness of
the oscillation and variation operators for Tb when the mth derivative of b belongs to the
homogeneous Lipschitz space Λ̇β . In this sense, we recall the definition of homogeneous
Lipschitz space Λ̇β as follows.

Definition 1 (Homogeneous Lipschitz space) Let 0 < β ≤ 1. The homogeneous Lipschitz
space Λ̇β is defined by

Λ̇β (R) =
{

b : ‖b‖Λ̇β
= sup

x,h∈R,h�=0

|b(x + h) – b(x)|
|h|β < ∞

}

.

Obviously, if β > 1, then Λ̇β (R) only includes constant. So we restrict 0 < β ≤ 1.
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Now, we recall the definitions of basic spaces such as Morrey, weighted Lebesgue,
weighted Morrey spaces and consider the relationship between these spaces.

Besides the Lebesgue space Lq(R), the Morrey space Mq
p(R) is another important func-

tion space with definition as follows.

Definition 2 (Morrey space) For 1 ≤ p ≤ q < ∞, the Morrey space Mq
p(R) is the collection

of all measurable functions f whose Morrey space norm is

‖f ‖Mq
p(R) = sup

I⊂R

I:Interval

1

|I| 1
p – 1

q
‖f χI‖Lp(R) < ∞.

Remark 1 If p = q, then

‖f ‖Mq
q (R) = ‖f ‖Lq(R).

If q < p, then Mq
p(R) is strictly larger than Lq(R). For example, f (x) := |x|– 1

q ∈ Mq
p(R) but

f (x) := |x|– 1
q /∈ Lq(R).

On the other hand, for a given weight function w and any interval I , we also denote the
Lebesgue measure of I by |I| and set weighted measure

w(I) =
∫

I
w(x) dx.

For 0 < p < ∞, the weighted Lebesgue space Lp(w) ≡ Lp(R, w) is defined by the norm

‖f ‖Lp(w) =
(∫

R

∣
∣f (x)

∣
∣
pw(x) dx

) 1
p

< ∞.

A weight w is said to belong to the Muckenhoupt class Ap for 1 < p < ∞ such that

[w]Ap := sup
I

[w]Ap(I)

= sup
I

(
1
|I|

∫

I
w(x) dx

)(
1
|I|

∫

I
w(x)1–p′

dx
)p–1

< ∞, (6)

where p′ = p
p–1 . The condition (6) is called the Ap-condition, and the weights which satisfy

it are called Ap-weights. The expression [w]Ap is also called characteristic constant of w.
Here and after, Ap denotes the Muckenhoupt classes (see [5, 7]). The Ap class of weights

characterizes the Lp(w) boundedness of the maximal function as Muckenhoupt [9] es-
tablished in the 1970s. Subsequent work of Muckenhoupt [9] himself Muckenhoupt and
Wheeden [10, 11], Coifman and Fefferman [3] was devoted to exploring the connection
of the Ap class with weighted estimates for singular integrals. However, it was not until
the 2000s that the quantitative dependence on the so called Ap constant, namely [w]Ap ,
became a trending topic.

When p = 1, w ∈ A1 if there exists C > 1 such that, for almost every x,

Mw(x) dx ≤ Cw(x) (7)
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and the infimum of C satisfying the inequality (7) is denoted by [w]A1 , where M is the
classical Hardy–Littlewood maximal operator.

When p = ∞, we define A∞(R) =
⋃

1≤p<∞ Ap(R). That is, the A∞ constant is given by

[w]A∞ := sup
I

[w]A∞(I)

= sup
I

∫

I
M(χIw)(x) dx,

where we utilize the notation M(χIw) to denote the Hardy–Littlewood maximal function
of a function χIw by

M(χIw)(x) := sup
I

1
|I|

∫

I

∣
∣χIw(x)

∣
∣dx.

A weight function w belongs to Ap,q (Muckenhoupt–Wheeden class) for 1 < p < q < ∞
if

[w]Ap,q := sup
I

[w]Ap,q(I)

= sup
I

(
1
|I|

∫

I
w(x)q dx

) 1
q
(

1
|I|

∫

I
w(x)–p′

dx
) 1

p′
< ∞. (8)

From the definition of Ap,q, we know that w(x) ∈ Ap,q(R) implies w(x)q ∈ Aq(R) and w(x)p ∈
Ap(R).

Now, we begin with some lemmas. These lemmas are very necessary for the proof of the
main result.

Lemma 1 ([4]) If w ∈ Ap, p ≥ 1, then there exists a constant C > 0 such that

w(2I) ≤ Cw(I).

for any interval I .
More precisely, for all λ > 1 we have

w(λI) ≤ Cλpw(I),

where C is a constant independent of I or λ and w(I) =
∫

Iw(x) dx.

Lemma 2 ([2]) Let b be a function on R and b(m) ∈ Lu(R) with m ∈N for any u > 1. Then

∣
∣Rm(b; x, y)

∣
∣ ≤ C|x – y|m

(
1

|I(x, y)|
∫

I(x,y)

∣
∣b(m)(z)

∣
∣
udz

) 1
u

, C > 0,

where I(x, y) is the interval (x – 5|x – y|, x + 5|x – y|).

Lemma 3 ([6]) Let K(x, y) satisfies (1) and (2), ρ > 2, and T := {Tε}ε>0 and Tb := {Tb
ε }ε>0

be given by (3) and (5), respectively. If O(T) and Vρ(T) are bounded on Lp0 (R, dx) for some
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1 < p0 < ∞, and b(m) ∈ Λ̇β with m ∈N for 0 < β < 1, then

∥
∥O′(Tb)∥∥

Lq(wq) ≤ ∥
∥O

(

Tb)∥∥
Lq(wq) ≤ C‖b‖Λ̇β

‖f ‖Lp(wp), C > 0, (9)

and

∥
∥Vρ

(

Tb)∥∥
Lq(wq) ≤ C‖b‖Λ̇β

‖f ‖Lp(wp), C > 0

for any 1 < p < 1
β

with 1
q = 1

p – β and w ∈ Ap,q.

Next, in 2009, the weighted Morrey space Lp,κ (w) was defined by Komori and Shirai [7]
as follows.

Definition 3 (Weighted Morrey space) Let 1 ≤ p < ∞, 0 < κ < 1 and w be a weight func-
tion. Then the weighted Morrey space Lp,κ (w) ≡ Lp,κ (R, w) is defined by

Lp,κ (w) ≡ Lp,κ (R, w) =
{

f ∈ Lloc
p,w(R) : ‖f ‖Lp,κ (w) = sup

I
w(I)– κ

p ‖f ‖Lp,w(I) < ∞
}

.

Remark 2 If κ = 0, then

‖f ‖Lp,0(w) = ‖f ‖Lp(w).

When w ≡ 1 and κ = 1 – p
q with 1 < p ≤ q < ∞, then

‖f ‖Lp,1– p
q

(1) = ‖f ‖Mq
p(R).

Finally, we recall the definition of the weighted Morrey space with two weights as fol-
lows.

Definition 4 (Weighted Morrey space with two weights) Let 1 ≤ p < ∞ and 0 < κ < 1.
Then for two weights u and v, the weighted Morrey space Lp,κ (u, v) ≡ Lp,κ (R, u, v) is defined
by

Lp,κ (u, v) ≡ Lp,κ (R, u, v) =
{

f ∈ Lloc
p,u(R) : ‖f ‖Lp,κ (w) = sup

I
v(I)– κ

p ‖f ‖Lp,u(I) < ∞
}

.

It is obvious that

Lp,κ (w, w) ≡ Lp,κ (w).

In 2016, Zhang and Wu [12] gave the boundedness of the oscillation and variation oper-
ators for Calderón–Zygmund singular integrals and the corresponding commutators on
the weighted Morrey spaces. In 2017, Hu and Wang [6] established the weighted (Lp, Lq)-
inequalities of the variation and oscillation operators for the multilinear Calderón–
Zygmund singular integral with a Lipschitz function in R. Inspired of these results [6, 12],
we investigate the boundedness of the oscillation and variation operators for the family of
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the multilinear singular integral defined by (5) on weighted Morrey spaces when the mth
derivative of b belongs to the homogeneous Lipschitz space Λ̇β in this work.

Throughout this paper, C always means a positive constant independent of the main
parameters involved, and may change from one occurrence to another. We also use the
notation F � G to mean F ≤ CG for an appropriate constant C > 0, and F ≈ G to mean
F � G and G � F .

2 Main result
We now formulate our main result as follows.

Theorem 1 Let K(x, y) satisfies (1) and (2), ρ > 2, and T := {Tε}ε>0 and Tb := {Tb
ε }ε>0 be

given by (3) and (5), respectively. If O(T) and Vρ(T) are bounded on Lp0 (R, dx) for some
1 < p0 < ∞, and b(m) ∈ Λ̇β with m ∈ N for 0 < β < 1, then O(Tb) and Vρ(Tb) are bounded
from Lp,κ (wp, wq) to Lp, κq

p
(wq) for any 1 < p < 1

β
, 1

q = 1
p – β , 0 < κ < p

q and w ∈ Ap,q.

Corollary 1 ([12]) Let K(x, y) satisfies (1) and (2), ρ > 2, and T := {Tε}ε>0 and Tb :=
{Tε,b}ε>0 be given by (3) and (4), respectively. If O(T) and Vρ(T) are bounded on Lp0 (R, dx)
for some 1 < p0 < ∞, and b ∈ Λ̇β for 0 < β < 1, then O(Tb) and Vρ(Tb) are bounded from
Lp,κ (wp, wq) to Lp, κq

p
(wq) for any 1 < p < 1

β
, 1

q = 1
p – β , 0 < κ < p

q and w ∈ Ap,q.

2.1 The proof of Theorem 1

Proof We consider the proof related to O(Tb) firstly. Fix an interval I = (x0 – l, x0 + l), and
we write as f = f1 + f2, where f1 = f χ2I , χ2I denotes the characteristic function of 2I . Thus,
it is sufficient to show that the conclusion

∥
∥O′(Tbf

)

(x)
∥
∥

Lp, κq
p

(wq) ≤ ∥
∥O′(Tbf1

)

(x)
∥
∥

Lp, κq
p

(wq) +
∥
∥O′(Tbf1

)

(x)
∥
∥

Lp, κq
p

(wq)

� ‖b‖Λ̇β
‖f ‖Lp,κ (wp ,wq)

holds for every interval I ⊂R. Then

(∫

I

∣
∣O′(Tbf

)

(x)
∣
∣
qwq(x) dx

) 1
q

≤
(∫

I

∣
∣O′(Tbf1

)

(x)
∣
∣
qwq(x) dx

) 1
q

+
(∫

I

∣
∣O′(Tbf2

)

(x)
∣
∣
qwq(x) dx

) 1
q

=: F1 + F2.

First, we use (9) to estimate F1, and we obtain

F1 =
(∫

I

∣
∣O′(Tbf1

)

(x)
∣
∣
qwq(x) dx

) 1
q
� ‖b‖Λ̇β

‖f1‖Lp(wp)

= ‖b‖Λ̇β

(
1

wq(2I)κ

∫

2I

∣
∣f (x)

∣
∣
pwp(x) dx

) 1
p

wq(2I)
κ
p

� ‖b‖Λ̇β
‖f ‖p

Lp,κ (wp ,wq)w
q(I)

κ
p .
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Thus,

∥
∥O′(Tbf1

)

(x)
∥
∥

Lp, κq
p

(wq) � ‖b‖Λ̇β
‖f ‖Lp,κ (wp ,wq). (10)

Second, for x ∈ I , k = 1, 2, . . . , m ∈ N, let Ak = {y : 2kl ≤ |y – x| < 2k+1l}, Bk = {y : |y – x| <
2k+1l}, and

bk(z) = b(z) –
1

m!
(

b(m))

Bk
zm.

By [2], for any y ∈ Ak , it is obvious that

Rm+1(b; x, y) = Rm+1(bk ; x, y).

Moreover, since b ∈ Λ̇β , for y ∈ Ak , we get

∣
∣b(m)(y) –

(

b(m))

Bk

∣
∣ ≤ 1

|Bk|
∫

Bk

∣
∣b(m)(y) – b(m)(z)

∣
∣dz

�
∥
∥b(m)∥∥

Λ̇β

(

2kl
)β . (11)

Hence, by Lemma 2 and (11)

Rm(bk ; x, y) � |x – y|m
(

1
|I(x, y)|

∫

I(x,y)

∣
∣b(m)(z)

∣
∣
udz

) 1
u

� |x – y|m∥
∥b(m)∥∥

Λ̇β

(

2kl
)β .

Also, following [12], we have

∥
∥{χ{ti+1<|x–y|<u}}u∈Ji ,i∈N

∥
∥

A ≤ 1.

Thus, the estimate of F2 can be obtained as follows:

∣
∣O′(Tbf2

)

(x)
∣
∣ =

∥
∥U

(

Tbf2
)

(x)
∥
∥

=
∥
∥
∥
∥

{∫

{ti+1<|x–y|<u}
Rm+1(b; x, y)

|x – y|m K(x, y)f2(y) dy
}∥
∥
∥
∥

A

≤
∫

R

∥
∥{χ{ti+1<|x–y|<u}}u∈Ji ,i∈N

∥
∥

A

∣
∣
∣
∣

Rm+1(b; x, y)
|x – y|m K(x, y)f2(y)

∣
∣
∣
∣
dy

≤
∫

R

∣
∣
∣
∣

Rm+1(b; x, y)
|x – y|m K(x, y)f2(y)

∣
∣
∣
∣
dy

�
∫

|x–y|>2l

∣
∣
∣
∣

Rm+1(b; x, y)
|x – y|m K(x, y)f (y)

∣
∣
∣
∣
dy

�
∞

∑

k=1

1
2kl

∫

Ak

(∥
∥b(m)∥∥

Λ̇β

(

2kl
)β +

∣
∣b(m)(y) –

(

b(m))

Bk

∣
∣
)∣
∣f (y)

∣
∣dy

�
∥
∥b(m)∥∥

Λ̇β

∞
∑

k=1

1
(2kl)1–β

∫

Ak

∣
∣f (y)

∣
∣dy
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+
∞

∑

k=1

1
2kl

∫

Ak

∣
∣b(m)(y) –

(

b(m))

Bk

∣
∣
∣
∣f (y)

∣
∣dy

= G1 + G2.

For G1, since

(∫

Ak

w(y)–p′
dy

) 1
p′
� wq(Bk)– 1

q |Bk|
1
p′ + 1

q

with 1 < p < 1
β

, 1
q = 1

p – β and using Hölder’s inequality, we have

∞
∑

k=1

1
(2kl)1–β

∫

Ak

∣
∣f (y)

∣
∣dy

�
∞

∑

k=1

1
(2kl)1–β

(∫

Ak

∣
∣f (y)

∣
∣
pwp(y) dy

) 1
p
(∫

Ak

w(y)–p′
dy

) 1
p′

� ‖f ‖Lp,κ (wp ,wq)

∞
∑

k=1

(2kl)
1
p′ + 1

q

(2kl)1–β
wq(Bk)

κ
p – 1

q

� ‖f ‖Lp,κ (wp ,wq)

∞
∑

k=1

wq(Bk)
κ
p – 1

q . (12)

Since w ∈ Ap,q, we have wq ∈ A∞. Thus, Lemma 1 implies wq(Bk) ≤ (C)kwq(I), C > 1, i.e.,

∞
∑

k=1

wq(Bk)
κ
p – 1

q � wq(I)
κ
p – 1

q

∞
∑

k=1

C
κ
p – 1

q � wq(I)
κ
p – 1

q (13)

with κ
p – 1

q < 0. This implies

G1 �
∥
∥b(m)∥∥

Λ̇β
‖f ‖Lp,κ (wp ,wq)wq(I)

κ
p – 1

q . (14)

Let y ∈ Ak . For G2, by (11), (12) and (13) we get

G2 �
∥
∥b(m)∥∥

Λ̇β

∞
∑

k=1

1
(2k+1l)1–β

∫

Ak

∣
∣f (y)

∣
∣dy

�
∥
∥b(m)∥∥

Λ̇β
‖f ‖Lp,κ (wp ,wq)wq(I)

κ
p – 1

q . (15)

Thus, by (14) and (15), we obtain

F2 =
(∫

I

∣
∣O′(Tbf2

)

(x)
∣
∣
qwq(x) dx

) 1
q

�
∥
∥b(m)∥∥

Λ̇β
‖f ‖Lp,κ (wp ,wq)wq(I)

κ
p – 1

q wq(I)
1
q

=
∥
∥b(m)∥∥

Λ̇β
‖f ‖Lp,κ (wp ,wq)wq(I)

κ
p .
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Thus,

∥
∥O′(Tbf2

)

(x)
∥
∥

Lp, κq
p

(wq) � ‖b‖Λ̇β
‖f ‖Lp,κ (wp ,wq). (16)

As a result, by (10) and (16), we get

∥
∥O′(Tbf

)

(x)
∥
∥

Lp, κq
p

(wq) � ‖b‖Λ̇β
‖f ‖Lp,κ (wp ,wq).

Similarly, Vρ(Tb) has the same estimate as above (here we omit the details), thus the in-
equality

∥
∥Vρ

(

Tbf
)

(x)
∥
∥

Lp, κq
p

(wq) � ‖b‖Λ̇β
‖f ‖Lp,κ (wp ,wq)

is valid.
Therefore, Theorem 1 is completely proved. �
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