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Abstract
In this paper, we investigate the Navier–Stokes equations describing the motion of a
compressible viscous fluid confined to a thin domain Ωε = Iε × (0, 1), Iε = (0,ε) ⊂ R.
We show that the strong solutions in the 2D domain converge to the classical
solutions of the limit 1D Navier–Stokes system as ε → 0.
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1 Introduction
We consider the Navier–Stokes system for a barotropic compressible viscous fluid which
in the case of two-dimensional motion has the form [10, 15, 20]

⎧
⎨

⎩

∂tρε + divx(ρεuε) = 0,

∂t(ρεuε) + divx(ρεuε ⊗ uε) + ∇xP(ρε) = divx S(∇xuε),
(1.1)

where ρε = ρε(x, t) and uε = (u1
ε(x, t), u2

ε(x, t)) stand for the unknown fluid mass density
and the velocity field, respectively, and the viscous stress tensor S is a linear function of
the velocity gradient and therefore described by the Newton law:

S(∇xuε) = μ
(∇xuε + ∇ t

xuε

)
+ λ(ρε) divx uεI,

the shear viscosity coefficient μ, the bulk one λ and the pressure P are defined on (0, +∞)
and satisfy the conditions

0 < μ = const, λ(ρε) = bρβ
ε , P(ρε) = aργ

ε
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for positive constants a > 0, b > 0. In the sequel, we set a = b = 1 without loss of generality,
and we also have the following hypotheses on γ and β :

β > 3, γ > 1.

The fluid is confined to a bounded physical domain Ωε ⊂R
2, on the boundary of which

we impose the complete slip boundary conditions

uε · n|∂Ωε = 0,
[
S(∇xuε) · n

] × n|∂Ωε = 0, (1.2)

where the symbol n denotes the outer normal vector. The motion originates from the
initial state

ρε(·, 0) = ρ0,ε , uε(·, 0) = u0,ε , x ∈ Ωε . (1.3)

We remark that the use of the slip instead of the more conventional no-slip condition
uε|∂Ωε = 0 is quite natural in the present context as the latter would completely stop the
fluid motion in the asymptotic limit ε → 0.

Although all fluid flows are in general two-dimensional, in many cases the specific shape
of the physical domain enforce major changes in the density and velocity only in one direc-
tion. A typical example is the fluid flow confined to a thin domain that can be effectively
described by using only spatial variable. We consider a family of shrinking domains:

Ωε = Iε × (0, 1), Iε ⊂R, Iε = εI ⊂R, ε → 0,

where I ⊂R is a unit interval. Under suitable conditions on the initial data it is natural to
expect that the strong solution (ρε , uε) of (1.1)–(1.2) on Ωε tends, as ε → 0, to a classical
solution (ρ, u) of the 1D system on (0, 1):

⎧
⎨

⎩

∂tρ + ∂y(ρu) = 0,

∂t(ρu) + ∂y(ρu2 + P(ρ)) = ∂y(ν(ρ)∂yu), ν(ρ) = 2μ + λ(ρ).
(1.4)

The boundary conditions (1.2) naturally lead to the no-slip boundary conditions for the
velocity, i.e.,

u(0, ·) = u(1, ·) = 0. (1.5)

Since we are interested in smooth solutions of the 1D equations, we complement the sys-
tem of equations (1.4) and (1.5) with the initial conditions

ρ(·, 0) = ρ0, u(·, 0) = u0, x ∈ (0, 1). (1.6)

Hereinafter we use the notation x = (x1, y) ∈ R
2, y ∈R and denote the derivative in x2 by ∂y.

In this paper we give a rigorous justification of the convergence (ρε , uε) → (ρ, u) as ε → 0.
As far as we know, the limit passage for fluid flows has not yet been rigorously investi-

gated and there is only a handful of results on related problems. Since incompressibility
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in one dimension does not allow for any movement, such a limit makes little sense for 1D
incompressibility flows. However, dimension reduction to 2D-planar flows was examined
in [11, 17–19]; see also the references given therein.

The case of a compressible barotropic fluid was studied by many authors. Vodák in [22]
studied the steady and nonsteady Navier–Stokes system for barotropic compressible flow.
For three-dimensional system, Bella, Feireisl and Novotný in [1] considered the motion of
a compressible viscous fluid confined to a cavity shaped as a thin rod Ωε = εQ× (0, 1), Q ⊂
R

2, they showed that the weak solutions in the 3D domain converge to (strong) solutions
of the limit 1D Navier–Stokes system as ε → 0. Březina–Kreml–Mácha in [2] studied the
dimension reduction for the full Navier–Stokes–Fourier system in a thin long pipe Ωε =
εQ × (0, 1) ∈ R

3, where Q is an open rectangular domain in R
2, they showed that the

weak solutions of 3D system on Ωε tend, as ε → 0, to a classical solution of 1D system
on (0, 1). Ducomet–Caggio–Nečasová–Pokorný in [5] investigated the rotating Navier–
Stokes–Fourier–Poisson system confined to a straight layer Ωε = ω × (0, ε), where ω is a
2-D domain, they showed that the weak solutions in the 3d domain converge to the strong
solution of the 2-D system on ω → 0 as ε → 0 on the time interval, where the strong
solution exists.

Motivated by [1, 5] and [2], our main purpose in this paper is to show that the strong
solution of 2D compressible Navier–Stokes system confined to a thin domain Ωε = (0, ε)×
(0, 1) converge to the classical solution of the 1D Navier–Stokes system on (0, 1) as ε → 0.

In elasticity theory, the analysis of similar dimension reduction problems leans on vari-
ants of the Korn inequality which controls the gradient of velocity v by its symmetric part,
specifically,

‖∇xv‖L2(Ωε) ≤ c(ε)
∥
∥∇xv + ∇ t

xv
∥
∥

L2(Ωε), v · n|∂Ωε = 0. (1.7)

Two problems have arisen in (1.7). Firstly, the kernel of the linear operator v 
→ ∇xv +
∇ t

xv, v · n|∂Ωε has to be empty, in particular, the “bottom” set I must not be rotationally
symmetric. Secondly, for any fixed ε > 0, even if (1.7) holds, the constant c(ε) blows up for
ε → 0 unless some necessary restrictions are imposed on the field v, and this is true even
if the set I is not rotationally symmetric, cf. the interesting paper by Lewicka and Müller
in [14].

Bella, Feireisl and Novotný in [1] obtained their result for a regular planar domain since
they avoid the use of Kron’s inequality by exploring the structural stability of the family of
solutions of the barotropic Navier–Stokes system. It is not difficult to see that the prob-
lems arising in the context of compressible fluids would need a stronger analogue of (1.7),
namely

‖∇xv‖L2(Ωε) ≤ c(ε)
∥
∥
∥
∥∇xv + ∇ t

xv –
2
3

divx vI
∥
∥
∥
∥

L2(Ωε)
, v · n|∂Ωε = 0. (1.8)

In view of the above-mentioned difficulties related to the validity of (1.7) or (1.8), our ap-
proach relies on the structural stability of the family of solutions of the barotropic Navier–
Stokes system encoded in the relative entropy inequality introduced in [6, 8]. This method
is basically independent of the specific form of the viscous stress and of possible “dissipa-
tive” bounds for the Navier–Stokes system.
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The paper is organized as follows. In Sect. 2 we introduce the relative entropy inequality
and formulate our main result. In Sect. 3, we establish convergence towards the target
system (1.4).

2 Preliminaries, main result
In this section, we first introduce the relative entropy inequality, and then give the solu-
tions of the target systems (1.1) and (1.4), finally, we state our main result.

2.1 Relative entropy inequality
The proof of our main theorem is based on the method of the relative entropy (see
[8], Dafermos in [3], Germain in [9] and Mellet, Vasseur in [16]). The relative entropy
Eε([ρ, u]|[r, U]) with respect to [r, U] is defined as

Eε

(
[ρ, u]

∣
∣[r, U]

)
=

1
|Iε|

∫ 1

0

∫

Iε

(
1
2
ρ|u – U|2 + H(ρ) – H ′(r)(ρ – r) – H(r)

)

dx1 dx2, (2.1)

where the potential H(ρ) is defined (modulo a linear function) through

H(ρ) = ρ

∫ ρ

ρ̃

P(s)
s2 ds,

then

H ′(ρ)ρ – H(ρ) = P(ρ), (2.2)

along with the relative entropy inequality

Eε

(
[ρ, u]

∣
∣[r, U]

)
(t) +

1
|Iε|

∫ τ

0

∫

Ωε

S
(∇x(u – U)

)
: ∇x(u – U) dx dt

≤ Eε

(
[ρ, u]

∣
∣[r, U]

)
(0) +

∫ τ

0
Fε(ρ, u, r, U) dt, (2.3)

and the remainder Fε reads

Fε(ρ, u, r, U) =
1

|Iε|
∫

Ωε

ρ(Ut + u · ∇xU) · (U – u) dx

+
1

|Iε|
∫

Ωε

r(Ut + U · ∇xU) · (u – U) dx

+
1

|Iε|
∫

Ωε

[
P(r) – P(ρ) + (ρ – r)P′(r)

]
divx U dx

+
1

|Iε|
∫

Ωε

(ρ – r)(u – U) · ∇xH ′(r) dx. (2.4)

Here, the functions r, U are arbitrary smooth, r strictly positive, and U satisfying the no-
slip boundary conditions (1.5). It is easy to check that (2.3) is satisfied as an equality as
soon as solution ρ , u is smooth enough.
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2.2 Solutions of target systems (1.1) and (1.4)
The existence of global-in-time strong solutions to the two-dimensional Navier–Stokes
system (1.1) with complete slip boundary conditions was established by Vaigant and
Kazhikhov in [21]. It reads as follows.

Proposition 2.1 Let Ω ⊂R
2 be a rectangular domain. Assume that

0 < μ = const, λ(ρ) = ρβ , P(ρ) = ργ for β > 3,γ > 1. (2.5)

If the initial data (ρ0, u0) are such that

⎧
⎨

⎩

ρ0(x) ∈ W 1,q(Ω), u0(x) ∈ H2(Ω), q > 2,

0 < m0 ≤ ρ0 ≤ M0 < +∞,

where m0 and M0 are some positive constants, and the agreement conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1
0 = ∂1u2

0 = 0 on {x ∈ Ω|x1 = 0, ε},
u2

0 = ∂2u1
0 = 0 on {x ∈ Ω|x2 = 0, 1},

[∂1(2μ∂1u1
0) + ∂1(λ(ρ0)(∂1u1

0 + ∂2u2
0)) + ∂2(μ(∂2u2

0 + ∂1u2
0)) – ∂1(P(ρ0))]|x1=0,ε = 0,

[∂2(2μ∂2u2
0) + ∂2(λ(ρ0)(∂1u1

0 + ∂2u2
0)) + ∂1(μ(∂2u2

0 + ∂1u2
0)) – ∂2(P(ρ0))]|x2=0,1 = 0,

are satisfied for all x ∈ Ω̄ , where ∂i denotes ∂xi , i = 1, 2, then there exists a unique global
strong solution (ρ, u) to problem (1.1)–(1.2) in Ω × (0,∞) satisfying

⎧
⎨

⎩

ρ ∈ Lq(0, T ; W 1,q(Ω)), ∂tρ ∈ L∞(0, T ; L∞(Ω)),

u ∈ L2(0, T ; H2(Ω)), ∂tu ∈ L2(0, T ; L2(Ω)),

for any 0 < T < ∞.

Remark 2.1 From [1, 21] and [6], we know that, for two-dimensional compressible
barotropic Navier–Stokes system, the global-in-time solution (ρε , uε) of Eqs. (1.1) enjoys
the regularity specified in Proposition 2.1, the relative entropy inequality in (2.3) is satis-
fied for ρ = ρε , u = uε and any pair of the test functions

r ∈ C∞(
[0, T] × Ω̄ε

)
, r > 0, U ∈ C∞(

[0, T] × Ω̄ε

)
, U · n|∂Ωε = 0,

and by means of density arguments, the class of test functions can be extended to less
regular (r, U).

For one-dimensional compressible Navier–Stokes system (1.4)–(1.6) with no-slip
boundary conditions, it has been discussed by many mathematicians. Kazhikhov and
Shelukhi in [13] (for polytropic perfect gas with constant viscosity) and Kawohl in [12] (for
real gas with μ = μ(ρ)) got global classical solutions for large initial data with infρ0 > 0,
respectively. Ding, Wen and Zhu in [4] obtained the global existence of classical solutions
to the compressible Navier–Stokes equations in 1D when the initial data are large and the
density dependent viscosity. For completeness, we state the proposition as follows.
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Proposition 2.2 Let Ω ∈ R be an unit interval. Assume that (2.5) holds, and the initial
data (ρ0, u0) satisfying

infρ0 > 0, ρ0 ∈ H2(Ω), u0 ∈ H3(Ω) ∩ H1
0 (Ω)

and the agreement condition

∂y
[
ν(ρ0)∂yu0

]
(y) – ∂y

[
P(ρ0)

]
(y) = ρ0(y)g(y), y ∈ [0, 1],

for a given function g ∈ L2(Ω). Then, for any T > 0, there exists a unique global classical
solution (ρ, u) to (1.4)–(1.6) satisfying

(
ρ,ργ

) ∈ C
(
[0, T]; H2(Ω)

)
,

(
ρt ,

(
ργ

)

t

) ∈ C
(
[0, T]; H1(Ω)

)
,

ρtt ∈ C
(
[0, T]; L2(Ω)

)
,

(
ργ

)

tt ∈ L∞(
[0, T]; L2(Ω)

)
, (ρu)t ∈ C

(
[0, T]; H1(Ω)

)
,

u ∈ C
(
[0, T]; H3(Ω) ∩ H1

0 (Ω)
)
, ut ∈ L∞(

[0, T]; H1
0 (Ω)

) ∩ L2([0, T]; H2(Ω)
)
.

2.3 Main result
We are ready to state our main result.

Theorem 2.1 Let Iε = (0, ε) ⊂ R and Ωε = Iε × (0, 1) for ε > 0. Suppose that the system
(1.1)–(1.2) admits a strong solution (ρε , uε) in Ωε × (0, T) which emanating from the initial
data (ρ0,ε , u0,ε), and the system (1.4)–(1.6) possesses a classical solution (ρ, u) in (0, 1) ×
(0, T) emanating from (ρ0, u0).

Let

1
|Iε|

∫

Iε
ρ0,ε(x1, ·) dx1 → ρ0,

1
|Iε|

∫

Iε
ρ0,εu0,ε(x1, ·) dx1 → ρ0v0, (2.6)

weakly in L1(0, 1), where infρ0 > 0, v0 = (0, u0), and let

1
|Iε|

∫

Ωε

[
1
2
ρ0,ε|u0,ε|2 + H(ρ0,ε)

]

dx →
∫ 1

0

[
1
2
ρ0|v0|2 + H(ρ0)

]

dy, (2.7)

where H(·) defined as in (2.2). Then

ess sup
t∈(0,T)

1
|Iε| ‖ρε – ρ‖γ

Lγ (Ωε) → 0, (2.8)

1
|Iε|

∥
∥u2

ε – u
∥
∥2

L2(Ωε×(0,T)) → 0, (2.9)

as ε → 0,where uε = (u1
ε , u2

ε).

3 Proof of Theorem 2.1
Let ρ , ρ > 0 be two positive constants such that

0 < ρ ≤ 1
2

inf
(y,t)∈(0,1)×(0,T)

ρ(y, t) ≤ 2 sup
(y,t)∈(0,1)×(0,T)

ρ(y, t) ≤ ρ.
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Now, we introduce the set of essential values Oess ⊂ (0,∞)

Oess � {ρε ∈R|ρ ≤ ρε ≤ ρ},

together with its residual counterpart

Ores � (0,∞) \Oess.

Then each measurable function h can be written as

h = hess + hres,

where

hess =

⎧
⎨

⎩

h(x, t) if ρε ∈Oess,

0 otherwise.

We have the following lemmas.

Lemma 3.1 Let ρ , ρ > 0 be two positive constants and let

H(ρε) � H(ρε) – H ′(ρ)(ρε – ρ) – H(ρ).

Then there exists some constant c > 0 independent of ρε such that

H(ρε) ≥ c|ρε – ρ|2ρε ∈ [ρ,ρ],

H(ρε) ≥ c|ρε – ρ|ρε < ρ,

H(ρε) ≥ cρερε > ρ.

The proof of the lemma can be found in [2, 7] and is therefore omitted here for simplicity.

Lemma 3.2 Under the conditions of Lemma 3.1, there exists some positive constant c > 0
independent of ρε such that

H(ρε) ≥ c
(
1 + ργ

ε

)
for ρε ∈Ores.

Proof By the definition of H(ρε), we have

H(ρε) = ρε

∫ ρε

ρ

P(s)
s2 ds =

1
γ – 1

(
ργ

ε – ρερ
γ –1).

Then

H(ρε) = H(ρε) – H ′(ρ)(ρε – ρ) – H(ρ)

≥ 1
γ – 1

(
ργ

ε – ρερ
γ –1) –

∣
∣H ′(ρ)(ρε – ρ)

∣
∣ –

∣
∣H(ρ)

∣
∣

≥ cργ
ε – cρε – c|ρε – ρ| – c,
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that is,

H(ρε) + cρε + c|ρε – ρ| + c ≥ cργ
ε . (3.1)

According to Lemma 5.1 in [7] there exists a constant c > 0 such that

H(ρε) ≥ inf
ξ∈∂Oess

{
H(ξ ) – H ′(ρ)(ξ – ρ) – H(ρ)

}

= c(ρ,ρ) > 0, for all ρε ∈Ores. (3.2)

On the other hand, we know from Lemma 3.1 that

H(ρε) ≥ c|ρε – ρ| = c(ρ – ρε) ≥ cρε , for ρε < ρ ≤ 1
2
ρ,

which together with (3.2) gives

H(ρε) ≥ c|ρε – ρ| + cρε + c, for ρε < ρ ≤ 1
2
ρ.

Similarly to the above inequality, one has

H(ρε) ≥ cρε ≥ c(ρε – ρ) = c|ρε – ρ|, for ρε > ρ > ρ,

then

H(ρε) ≥ cρε + c|ρε – ρ| + c, for ρε > ρ > ρ.

In conclusion, we obtain

H(ρε) ≥ c|ρε – ρ| + cρε + c, for ρε ∈Ores,

which together with (3.1) and (3.2) completes the proof. �

Lemma 3.3 Let Ωε = (0, ε) × (0, 1) and uε ∈ W 1,2(Ωε) be such that uε · n = 0 on ∂Ωε . Then
there exists some positive constant c independent of ε such that

c
∫

Ωε

|∇xuε|2 dx ≤
∫

Ωε

S(∇xuε) : ∇xuε dx.

Proof By straightforward calculation, we can get

∫

Ωε

(
μ

(∇xuε + ∇ t
xuε

)
+ λ(ρε) divx uεI

)
: ∇xuε dx

=
∫

Ωε

μ
(
∂iuj

ε + ∂jui
ε

)
∂iuj

ε + λ(ρε)
(
divx uε∂1u1

ε + divx uε∂2u2
ε

)
dx

=
∫

Ωε

(
μ|∇xuε|2 + λ(ρε)|divx uε|2

)
dx + μ

∫

Ωε

∂jui
ε∂iuj

ε dx. (3.3)
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Now, we estimate the last term of the above equality. According to the boundary condition
(1.2), one obtains

⎧
⎨

⎩

u1 = ∂1u2 = 0 on {x1 = 0, ε},
u2 = ∂2u1 = 0 on {x2 = 0, 1}.

(3.4)

Thus, using (3.4) and integrating by parts on Ωε , we have

∫

Ωε

∂jui
ε∂iuj

ε dx

=
∫ 1

0

∫ ε

0
∂1ui

ε∂iu1
ε dx1 dx2 +

∫ ε

0

∫ 1

0
∂2ui

ε∂iu2
ε dx2 dx1

= –
∫ 1

0

∫ ε

0
ui

ε∂i∂1u1
ε dx1 dx2 –

∫ ε

0

∫ 1

0
ui

ε∂i∂2u2
ε dx2 dx1

=
∫ 1

0

∫ ε

0
∂iui

ε∂1u1
ε dx1 dx2 +

∫ ε

0

∫ 1

0
∂iui

ε∂2u2
ε dx2 dx1

=
∫

Ωε

|divx uε|2 dx,

which together with (3.3) yields

∫

Ωε

(
μ

(∇xuε + ∇ t
xuε

)
+ λ(ρε) divx uεI

)
: ∇xuε dx

=
∫

Ωε

(
μ|∇xuε|2 +

(
λ(ρε) + μ

)|divx uε|2
)

dx. (3.5)

By the definition of S(∇xuε), we get from (3.5)

∫

Ωε

S(∇xuε) : ∇xuε dx

=
∫

Ωε

(
μ|∇xuε|2 +

(
λ(ρε) + μ

)|divx uε|2
)

dx

≥ c
∫

Ωε

|∇xuε|2 dx, (3.6)

this completes the proof. �

Proof of Theorem 2.1 In order to prove Theorem 2.1, we take

r = ρ(y, t), U = v(y, t) =

(
0

u(y, t)

)

.

It follows from Remark 2.1 and (2.3) that

Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
+

1
|Iε|

∫ τ

0

∫

Ωε

S
(∇x(uε – v)

)
: ∇x(uε – v) dx dt

≤ Eε

(
[ρ0,ε , u0,ε]

∣
∣[ρ0, v0]

)
+

∫ τ

0
Fε(ρε , uε ,ρ, v) dt, (3.7)
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where the (scaled) relative entropy functional

Eε

(
[ρε , uε]

∣
∣[ρ, v]

)

=
1

|Iε|
∫ 1

0

∫

Iε

(
1
2
ρε|uε – v|2 + H(ρε) – H ′(ρ)(ρε – ρ) – H(ρ)

)

dx1 dx2

=
1

|Iε|
∫ 1

0

∫

Iε

(
1
2
ρε|uε – v|2 + H(ρε)

)

(3.8)

and the remainder Fε reads

Fε(ρε , uε ,ρ, v) =
1

|Iε|
∫

Ωε

ρε(vt + uε · ∇xv) · (v – uε) dx

+
1

|Iε|
∫

Ωε

ρ(vt + v · ∇xv) · (uε – v) dx

+
1

|Iε|
∫

Ωε

[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]
divx v dx

+
1

|Iε|
∫

Ωε

(ρε – ρ)(uε – v) · ∇xH ′(ρ) dx

�
3∑

i=1

Ji. (3.9)

In order to handle the integrals on the right-hand side of (3.9), we proceed in several
steps as follows.

Step 1. Observe that by (2.6) and (2.7) in Theorem 2.1, we get

Eε

(
[ρ0,ε , u0,ε]

∣
∣[ρ0, v0]

)

=
1

|Iε|
∫

Ωε

(
1
2
ρ0,ε|u0,ε – v0|2 + H(ρ0,ε) – H ′(ρ0)(ρ0,ε – ρ0) – H(ρ0)

)

dx → 0, (3.10)

as ε → 0. From now on, we include this term in Γ (ε) where Γ (ε) → 0 as ε → 0.
On the other hand, by Lemma 3.3, we obtain

∫

Ωε

S
(∇x(uε – v)

)
: ∇x(uε – v) dx

≥ c
∫

Ωε

∣
∣∇x(uε – v)

∣
∣2 dx

≥ c
∫

Ωε

∣
∣∂y

(
u2

ε – u
)∣
∣2 dx, (3.11)

Due to the condition uε · n|∂Ωε = 0 and v · n|∂Ω = 0, we know that u2
ε = u = 0 on {y = 0, 1},

and then, by the Poincaré inequality, we have

c
∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx ≤

∫

Ωε

∣
∣∂y

(
u2

ε – u
)∣
∣2 dx,



Zhang Journal of Inequalities and Applications        (2020) 2020:138 Page 11 of 16

which together with (3.11) gives

∫

Ωε

S
(∇x(uε – v)

)
: ∇x(uε – v) dx ≥ c

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx. (3.12)

Step 2. By Eq. (1.4)2, we have

J1 =
1

|Iε|
∫

Ωε

ρε(vt + uε · ∇xv) · (v – uε) dx

+
1

|Iε|
∫

Ωε

ρ(vt + v · ∇xv) · (uε – v) dx

=
1

|Iε|
∫

Ωε

[
(ρ – ρε)vt + (ρv – ρεuε) · ∇xv

] · (uε – v) dx

=
1

|Iε|
∫

Ωε

[
(ρ – ρε)vt + (ρ – ρε)v · ∇xv + ρε(v – uε) · ∇xv

] · (uε – v) dx

=
1

|Iε|
∫

Ωε

(ρ – ρε)(vt + v · ∇xv) · (uε – v) dx +
1

|Iε|
∫

Ωε

ρε(v – uε) · ∇xv · (uε – v) dx

=
1

|Iε|
∫

Ωε

(ρ – ρε)(ut + u∂yu)
(
u2

ε – u
)

dx –
1

|Iε|
∫

Ωε

ρε

(
u2

ε – u
)2

∂yu dx

=
1

|Iε|
∫

Ωε

ρ – ρε

ρ

(
u2

ε – u
)[

∂y
(
ν(ρ)∂yu – P(ρ)

)]
dx –

2
|Iε|

∫

Ωε

1
2
ρε

(
u2

ε – u
)2

∂yu dx

≤ ch1(t)
K1

|Iε| + ch2(t)Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
, (3.13)

where

h1(t) �
∥
∥∂y

(
ν(ρ)∂yu(·, t) – P(ρ)(·, t)

)∥
∥

L∞(0,1),

h2(t) �
∥
∥∂yu(·, t)

∥
∥

L∞(0,1),

K1 �
∫

Ωε

|ρε – ρ|∣∣u2
ε – u

∣
∣dx.

Now we estimate h1(t), h2(t) and K1, respectively. Firstly, we split K1 into three parts:

∫

Ωε

|ρε – ρ|∣∣u2
ε – u

∣
∣dx

=
∫

{ρ≤ρε≤ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx +

∫

{ρε<ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx

+
∫

{ρε>ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx. (3.14)

Using Lemma 3.1 and Cauchy–Schwarz’s inequality, we obtain

∫

{ρ≤ρε≤ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)

∫

{ρ≤ρε≤ρ}
|ρε – ρ|2 dx
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≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)

∫

{ρ≤ρε≤ρ}
H(ρε) dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
(3.15)

for any δ > 0.
Similarly to (3.15), for any δ > 0, one has

∫

{ρε<ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)

∫

{ρε<ρ}
|ρε – ρ|2 dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ,ρ,ρ)

∫

{ρε<ρ}
|ρε – ρ|dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ,ρ,ρ)

∫

Ωε

H(ρε) dx

≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ,ρ,ρ)|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
. (3.16)

Finally, it follows from ρε > ρ̄ that

|ρε – ρ|2 = ρ2
ε – 2ρερ + ρ2 ≤ ρ2

ε + ρ2 ≤ ρ2
ε + ρ̄2 ≤ 2ρ2

ε ,

thus

∫

{ρε>ρ}
|ρε – ρ|∣∣u2

ε – u
∣
∣dx

≤ c
∫

Ωε

ρε

∣
∣u2

ε – u
∣
∣2 dx + c

∫

{ρε>ρ}
|ρε – ρ|2

ρε

dx

≤ c
∫

Ωε

ρε|uε – v|2 dx + c
∫

{ρε>ρ}
ρε dx

≤ c|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
. (3.17)

Combining with (3.14)–(3.17), we have

K1 ≤ δ

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
, (3.18)

which together with (3.13), and by the regularity of (ρ, u), leaves us with

J1 ≤ δ
h1(t)
|Iε|

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx + c(δ)

[
h1(t) + h2(t)

]
Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
, (3.19)

for any δ > 0.
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Step 3. We split J2 into the residual and essential parts:

J2 =
1

|Iε|
∫

Ωε

[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]
divx v dx

≤ ‖∂yu‖L∞(0,1)
1

|Iε|
∫

Ωε

∣
∣
[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]

ess

∣
∣dx

+ ‖∂yu‖L∞(0,1)
1

|Iε|
∫

Ωε

∣
∣
[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]

res

∣
∣dx

=
h2(t)
|Iε| (K2 + K3), (3.20)

where

K2 �
∫

Ωε

∣
∣
[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]

ess

∣
∣dx,

K3 �
∫

Ωε

∣
∣
[
P(ρ) – P(ρε) + (ρε – ρ)P′(ρ)

]

res

∣
∣dx.

We immediately see from Lemma 3.1 and the Taylor theorem that

K2 ≤ c
∫

Ωε

[|ρε – ρ|2]ess dx

≤ c
∫

Ωε

H(ρε) dx

≤ c|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
. (3.21)

Next, we show that similar estimates hold also for the residual parts. Firstly, by Lemma 3.2
and Cauchy–Schwarz’s inequality, for any α ∈ [1,γ ], we have

∫

Ωε

∣
∣
[
ρα

ε – ρα
]

res

∣
∣dx ≤ c

∫

Ωε

∣
∣[ρε]res

∣
∣α + 1res dx

≤ c
∫

Ωε

∣
∣[ρε]res

∣
∣γ dx + c

∫

Ωε

1res dx

≤ c
∫

Ωε

H(ρε) dx

≤ c|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
,

thus

K3 ≤ c
∫

Ωε

∣
∣
[
ργ

ε – ργ
]

res

∣
∣dx + c

∫

Ωε

∣
∣[ρε – ρ]res

∣
∣dx

≤ c|Iε|Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
. (3.22)

Combining with (3.20)–(3.22), one has

J2 ≤ ch2(t)Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
. (3.23)
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Step 4. It follows from (3.18) that, for any δ > 0, we have

J3 =
1

|Iε|
∫

Ωε

(ρε – ρ)(uε – v) · ∇xH ′(ρ) dx

≤ c
|Iε|

∥
∥∂yH ′(ρ)

∥
∥

L∞(0,1)

∫

Ωε

|ρε – ρ|∣∣u2
ε – u

∣
∣dx

=
c

|Iε|
∥
∥∂yH ′(ρ)

∥
∥

L∞(0,1)K1

≤ δh3(t)
(

1
|Iε|

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx

)

+ c(δ)h3(t)Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
, (3.24)

where

h3(t) �
∥
∥∂yH ′(ρ)

∥
∥

L∞(0,1).

Inserting (3.10), (3.11), (3.19), (3.23) and (3.24) into (3.7) and (3.9), and taking δ > 0 suit-
able small, we have

Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
(τ ) +

1
|Iε|

∫ τ

0

∫

Ωε

∣
∣u2

ε – u
∣
∣2 dx dt

≤ Γ (ε) + c
∫ τ

0

[
h1(t) + h2(t) + h3(t)

]
Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
dt.

In addition, since (ρ, u) is the solution of (1.4)–(1.6), we have

h1(t) + h2(t) + h3(t) ≤ c.

Thus, a straightforward application of Gronwall’s lemma yields

Eε

(
[ρε , uε]

∣
∣[ρ, v]

)
(τ ) → 0 as ε → 0. (3.25)

On the other hand, By using Lemma 3.1 and Lemma 3.2, we infer that

|ρε – ρ|2 ≥ c|ρε – ρ|γ , 1 < γ ≤ 2, for ρε ∈Oess, (3.26)

|ρε – ρ|2 =
1

|ρε – ρ|γ –2 |ρε – ρ|γ ≥ c|ρε – ρ|γ , γ ≥ 2, for ρε ∈Oess, (3.27)

and

c
(
1 + ργ

ε

) ≥ c|ρε – ρ|γ , γ > 1, for ρε ∈Ores. (3.28)
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Hence, it follows from (3.8), Lemma 3.1, Lemma 3.2 and (3.26)–(3.28) that

Eε

(
[ρε , uε]

∣
∣[ρ, v]

) ≥ c
|Iε|

∫

Ωε

(∣
∣[ρε – ρ]ess

∣
∣2 +

∣
∣[1 + ρε]res

∣
∣γ

)
dx

+
c

|Iε|
∫

Ωε

ρε|uε – v|2 dx

≥ c
|Iε|

∫

Ωε

(|ρε – ρ|γ + ρε|uε – v|2)dx,

which together with (3.25) completes the proof of Theorem 2.1. �
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