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Abstract
Levinson type inequalities are generalized by using Hermite interpolating polynomial
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1 Introduction
The theory of convex functions has encountered a fast advancement. This can be ascribed
to a couple of causes: firstly, direct implication of convex functions in modern analysis; sec-
ondly, numerous important inequalities are outcomes of applications of convex functions
and convex functions are closely related to the theory of inequalities (see [1]).

In [2], Levinson generalized Ky Fan’s inequality (see also [3, p. 32, Theorem 1]) as follows.

Theorem A Let f : I = (0, 2α̂) →R with f (3)(t) ≥ 0. Also, let xμ ∈ (0, α̂) and pμ > 0. Then

1
Pn

n∑

μ=1

pμf (xμ) – f

(
1
Pn

n∑

μ=1

pμxμ

)

≤ 1
Pn

n∑

μ=1

pμf (2α̂ – xμ) – f

(
1
Pn

n∑

μ=1

pμ(2α̂ – xμ)

)
. (1)

Functional form of (1) is defined as follows:

J1
(
f (·)) =

1
Pn

n∑

μ=1

pμf (2α̂ – xμ) – f

(
1
Pn

n∑

μ=1

pμ(2α̂ – xμ)

)
–

1
Pn

n∑

μ=1

pμf (xμ)

+ f

(
1
Pn

n∑

μ=1

pμxμ

)
. (2)
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In [4], Popoviciu noticed that (1) is legitimate on (0, 2α̂) for 3-convex functions, while in
[5] (see additionally [3, p. 32, Theorem 2]) Bullen gave another proof of Popoviciu’s result
and furthermore the converse of (1).

Theorem B
(a) Let f : I = [ζ1, ζ2] →R with f (3)(t) ≥ 0 and xμ, yμ ∈ [ζ1, ζ2] for μ = 1, 2, . . . ,n be such

that

max{x1, . . . , xn} ≤ min{y1, . . . , yn}, x1 + y1 = · · · = xn + yn (3)

and pμ > 0, then

1
Pn

n∑

μ=1

pμf (xμ) – f

(
1
Pn

n∑

μ=1

pμxμ

)
≤ 1

Pn

n∑

μ=1

pμf (yμ) – f

(
1
Pn

n∑

μ=1

pμyμ

)
. (4)

(b) If the function f is continuous, pμ > 0, and (4) holds for all xμ, yμ satisfying (3), then f
is 3-convex.

Functional form of (4) is defined as follows:

J2
(
f (·)) =

1
Pn

n∑

μ=1

pμf (yμ) – f

(
1
Pn

n∑

μ=1

qμyμ

)

–
1
Pn

n∑

μ=1

pμf (xμ) + f

(
1
Pn

n∑

μ=1

pμxμ

)
. (5)

Remark 1 If the function f is 3-convex, then Ji(f (·)) ≥ 0 for i = 1, 2, and Ji(f (·)) = 0 for
f (t) = t or f (t) = t2 or f is a constant function.

In the following result Pečarić [6] (see also [3, p. 32, Theorem 4]) weakened condition
(3) and proved that inequality (4) still holds.

Theorem C Let f : I = [ζ1, ζ2] →Rwith f (3)(t) ≥ 0, pμ > 0, and let xμ, yμ ∈ [ζ1, ζ2] such that
xμ + yμ = 2c̆ for μ = 1, . . . ,n xμ + xn–μ+1 ≤ 2c̆ and pμxμ+pn–μ+1xn–μ+1

pμ+pn–μ+1
≤ c̆. Then inequality (4)

holds.

In [7], Mercer proved inequality (4) by replacing the condition of symmetric distribution
of points xμ and yμ with symmetric variances of points xμ and yμ.

Theorem D Let f : I = [ζ1, ζ2] → R with f (3)(t) ≥ 0, pμ be positive such that
∑n

μ=1 pμ = 1.
Also let xμ, yμ satisfy max{x1 . . . xn} ≤ min{y1 . . . yn} and

n∑

μ=1

pμ

(
xμ –

n∑

μ=1

pμxμ

)2

=
n∑

μ=1

pμ

(
yμ –

n∑

μ=1

pμyμ

)2

, (6)

then (4) holds.
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In [8], the Hermite interpolating polynomial is given as follows.
Let ζ1, ζ2 ∈ R with ζ1 < ζ2 and ζ1 = c1 < c2 < · · · < cl = ζ2 (l ≥ 2) be the points. For

f ∈ Cn[ζ1, ζ2], a unique polynomial σ
(i)
H (s) of degree (n – 1) exists and satisfies any of the

following conditions:
(i) Hermite conditions

σ
(i)
H (cj) = f (i)(cj); 0 ≤ i ≤ kj, 1 ≤ j ≤ l,

l∑

j=1

kj + l = n.

It is noted that Hermite conditions include the following particular cases:
(Case-1) Lagrange conditions (l = n, kj = 0 for all i)

σL(cj) = f (cj), 1 ≤ j ≤ n.

(Case-2) Type (q,n – q) conditions (l = 2, 1 ≤ q ≤ n – 1, k1 = q – 1, k2 = n – q – 1)

σ
(i)
(q,n)(ζ1) = f (i)(ζ1), 0 ≤ i ≤ q – 1,

σ
(i)
(q,n)(ζ2) = f (i)(ζ2), 0 ≤ i ≤ n – q – 1.

(Case-3) Two-point Taylor conditions (n = 2q, l = 2, k1 = k2 = q – 1)

σ
(i)
2T (ζ1) = f (i)(ζ1), f (i)

2T (ζ2) = f (i)(ζ2). 0 ≤ i ≤ q – 1.

In [8], the following result is given.

Theorem E Let –∞ < ζ1 < ζ2 < ∞ and ζ1 < c1 < c2 < · · · < cl ≤ ζ2 (l ≥ 2) be the given points
and f ∈ Cn([ζ1, ζ2]). Then we have

f (u) = σH(u) + RH(f , u), (7)

where σH(u) is the Hermite interpolation polynomial, that is,

σH(u) =
l∑

j=1

kj∑

i=0

Hij (u)f (i)(cj);

the Hij are the fundamental polynomials of the Hermite basis given as

Hij (u) =
1
i!

ω(u)
(u – cj)kj+1–i

kj–i∑

k=0

1
k!

dk

duk

(
(u – cj)kj+1

ω(u)

)∣∣∣∣
u=cj

(u – cj)k , (8)

with

ω(u) =
l∏

j=1

(u – cj)kj+1,
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and the remainder is given by

RH(f , u) =
∫ ζ2

ζ1

GH,n(u, s)f (n)(s) ds,

where GH,n(u, s) is defined by

GH,n(u, s) =

⎧
⎨

⎩

∑l
j=1

∑kj
i=0

(cj–s)n–i–1

(n–i–1)! Hij (u), s ≤ u;

–
∑l

j=r+1
∑kj

i=0
(cj–s)n–i–1

(n–i–1)! Hij (u), s ≥ u,
(9)

for all cr ≤ s ≤ cr+1; r = 0, 1, . . . , l, with c0 = ζ1 and cl+1 = ζ2.

We note that GH,n–3(u, s) ≥ 0, where GH,n–3 denotes the third derivative with respect to
the first variable.

Remark 2 In particular cases, for Lagrange condition from Theorem E, we have

f (u) = σL(u) + RL(f , u),

where σL(u) is the Lagrange interpolating polynomial, that is,

σL(u) =
n∑

j=1

n∑

k=1,k �=j

(
u – ck

cj – ck

)
f (cj),

and the remainder RL(f , u) is given by

RL(f , u) =
∫ ζ2

ζ1

GL(u, s)f (n)(s) ds,

with

GL(u, s) =
1

(n – 1)!

⎧
⎨

⎩

∑r
j=1(cj – s)n–1 ∏n

k=1,k �=j(
u–ck
cj–ck

), s ≤ u;

–
∑n

j=r+1(cj – s)n–1 ∏n

k=1,k �=j(
u–ck
cj–ck

), s ≥ u,
(10)

cr ≤ s ≤ cr+1 r = 1, 2, . . . ,n – 1, with c1 = ζ1 and cn = ζ2.

For type (q,n – q) condition, from Theorem E, we have

f (u) = σ(q,n)(u) + Rq,n(f , u),

where σ(q,n)(u) is (q,n – q) interpolating, that is,

σ(q,n)(u) =
q–1∑

i=0

τi(u)f (i)(ζ1) +
n–q–1∑

i=0

ηi(u)f (i)(ζ2),

with

τi(u) =
1
i!

(u – ζ1)i
(

u – ζ1

ζ1 – ζ2

)n–q q–1–i∑

k=0

(
n – q + k – 1

k

)(
u – ζ1

ζ2 – ζ1

)k

(11)
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and

ηi(u) =
1
i!

(u – ζ1)i
(

u – ζ1

ζ2 – ζ1

)q n–q–1–i∑

k=0

(
q + k – 1

k

)(
u – ζ2

ζ2 – ζ1

)k

, (12)

and the remainder R(q,n)(f , u) is defined as

R(q,n)(f , u) =
∫ ζ2

ζ1

Gq,n(u, s)f (n)(s) ds,

with

G(q,n)(u, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑q–1
j=0 [

∑q–1–j
p=0

(
n–q+p–1

p
)
( u–ζ1
ζ2–ζ1

)p]

× (u–ζ1)j(ζ1–s)n–j–1

j!(n–j–1)! ( ζ2–u
ζ2–ζ1

)n–q, ζ1 ≤ s ≤ u ≤ ζ2;

–
∑n–q–1

j=0 [
∑n–q–j–1

λ=0
(q+λ–1

λ

)
( ζ2–u
ζ2–ζ1

)λ]

× (u–ζ2)j(ζ2–s)n–j–1

j!(n–j–1)! ( u–ζ1
ζ2–ζ1

)q, ζ1 ≤ u ≤ s ≤ ζ2.

(13)

From type two-point Taylor condition from Theorem E, we have

f (u) = σ2T (u) + R2T (f , u),

where

σ2T (u) =
q–1∑

i=0

q–1–i∑

k=0

(
q + k – 1

k

)[
(u – ζ1)i

i!

(
u – ζ2

ζ1 – ζ2

)q( u – ζ1

ζ2 – ζ1

)k

f (i)(ζ1)

–
(u – ζ2)i

i!

(
u – ζ1

ζ2 – ζ1

)q( u – ζ1

ζ1 – ζ2

)k

f (i)(ζ2)
]

,

and the remainder R2T (f , u) is given by

R2T (f , u) =
∫ ζ2

ζ1

G2T (u, s)f (n)(s) ds

with

G2T (u, s) =

⎧
⎨

⎩

(–1)q

(2q–1)! p
n(u, s)

∑q–1
j=0

(q–1+j
j

)
(u – s)q–1–jδj(u, s), ζ1 ≤ s ≤ u ≤ ζ2;

(–1)q

(2q–1)!δ
n(u, s)

∑q–1
j=0

(q–1+j
j

)
(s – u)q–1–jpj(u, s), ζ1 ≤ u ≤ s ≤ ζ2,

(14)

where p(u, s) = (s–ζ1)(ζ2–u)
ζ2–ζ1

, δ(u, s) = p(u, s) for all u, s ∈ [ζ1, ζ2].
In [9] and [10] the positivity of Green functions is given as follows.

Lemma 1 For the Green function GH,n(u, s) as defined in (9), the following results holds:
(i) GH,n(u,s)

ω(u) > 0 c1 ≤ u ≤ cl , c1 ≤ s ≤ cl ;
(ii) GH,n(u, s) ≤ 1

(n–1)!(ζ2–ζ1) |ω(u)|;
(iii)

∫ ζ2
ζ1

GH,n(u, s) ds = ω(u)
n! .
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Under Mercer’s assumptions (6), Pečarić et al. [11] gave a probabilistic version of (1) for
the family of 3-convex functions at a point. Operator version of probabilistic Levinson’s
inequality discussed in [12]. All generalizations existing in the literature are only for one
type of data points, see [13–17]. But in this pattern, and motivated by the above discussion,
Levinson type inequalities are generalized via Hermite interpolating polynomial involving
two types of data points for higher order convex functions.

2 Main results
Motivated by identity (5), we construct the following identities.

2.1 Bullen type inequalities for higher order convex functions
First we define the following functional:
F : Let f : I1 = [ζ1, ζ2] → R be a function. Also, let (p1, . . . , pn1 ) ∈ R

n1 and (q1, . . . , qm1 ) ∈
R

m1 be such that
∑n1

μ=1 pμ = 1,
∑m1

ν=1 qν = 1, and xμ, yν ,
∑n1

μ=1 pμxμ,
∑m1

ν=1 qνyν ∈ I1.
Then

J̆
(
f (·)) =

m1∑

ν=1

qν f (yν) – f

( m1∑

ν=1

qνyν

)
–

n1∑

μ=1

pμf (xμ) + f

(
n1∑

μ=1

pμxμ

)
. (15)

Theorem 1 Assume F . Let f ∈ Cn[ζ1, ζ2] and ζ1 = c1 < c2 < · · · < cl = ζ2 (l ≥ 2) be the
points. Moreover, Hij and GH,n are the same as defined in (8) and (9) respectively. Then we
have the following identity:

J̆
(
f (·)) =

l∑

j=1

kj∑

i=0

f (i)(cj)J̆
(
Hij (·)

)
+

∫ ζ2

ζ1

J̆
(
GH,n(·, s)

)
f (n)(s) ds, (16)

where J̆(f (·)) is defined in (15),

J̆
(
Hij (·)

)
=

m1∑

ν=1

qν

(
Hij (yν)

)
– Hij

( m1∑

ν=1

qνyν

)

–
n1∑

μ=1

pμ

(
Hij (xμ)

)
+ Hij

(
n1∑

μ=1

pμxμ

)
(17)

and

J̆
(
GH,n(·, s)

)
=

m1∑

ν=1

qν

(
GH,n(yν , s)

)
– GH,n

( m1∑

ν=1

qνyν , s

)

–
n1∑

μ=1

pμ

(
GH,n(xμ, s)

)
+ GH,n

(
n1∑

μ=1

pμxμ, s

)
. (18)

Proof We get (16), after using (7) in (15) and the linearity of J̆(·). �

Next we obtain a generalization of Bullen type inequality (4) for real weights.

Theorem 2 Assume that all the conditions of Theorem 1 hold with f being an n-convex
function.
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If

J̆
(
GH,n(·, s)

) ≥ 0, s ∈ I1, (19)

then

J̆
(
f (·)) ≥

l∑

j=1

kj∑

i=0

f (i)(cj)J̆
(
Hij (·)

)
. (20)

Proof It is given that the function f is n-convex, therefore f (n)(x) ≥ 0 for all x ∈ I1. There-
fore we apply Theorem 1 to obtain (20). �

Remark 3 (i) In Theorem 2, inequality in (20) holds in reverse direction if the inequality
in (19) is reversed.

(ii) Inequality (20) also holds in reverse direction if f is n-concave.

Corollary 1 Assume that all the conditions of Theorem 1 hold with f being an n-convex
function. If GL is a Green function defined in (10), and

J̆
(
GL(·, s)

) ≥ 0 for all s ∈ I1.

Then

J̆
(
f (·)) ≥

n∑

j=1

f (i)(cj)J̆

(
n∏

k=1,k �=j

(
(·) – cj

cj – ck

))
. (21)

Proof By using the Lagrange conditions in (16), we get (21). �

Corollary 2 Assume that all the conditions of Theorem 1 hold with f being an n-convex
function. Let G(q,n) be the Green function defined in (13) and τi, ηi be defined in (11) and
(12) respectively. If

J̆
(
G(q,n)(·, s)

) ≥ 0 for all s ∈ I1,

then

J̆
(
f (·)) ≥

q–1∑

i=0

f (i)(ζ1)J̆
(
τi(·)

)
+

n–q–1∑

i=0

f (i)(ζ2)J̆
(
ηi(·)

)
. (22)

Proof By using the type (q,n – q) conditions in (16), we get (22). �

Corollary 3 Assume that all the conditions of Theorem 1 hold with f being an n-convex
function. Let G2T be a Green function as defined in (14). If

J̆
(
G2T (·, s)

) ≥ 0 for all s ∈ I1,
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then

J̆
(
f (·)) ≥

q–1∑

i=0

q–1–i∑

k=0

(
q + k – 1

k

)[
f (i)(ζ1)J̆

(
((·) – ζ1)i

i!

(
(·) – ζ2

ζ1 – ζ2

)q( (·) – ζ1

ζ2 – ζ1

)k)

+ f (i)(ζ2)J̆
(

((·) – ζ2)i

i!

(
(·) – ζ1

ζ2 – ζ1

)q( (·) – ζ2

ζ1 – ζ2

)k)]
. (23)

Proof By using two-point Taylor condition in (16), we get (23). �

If we put m1 = n1, pμ = qν and use positive weights in (15), then J̆(·) converted to the
functional J2(·) defined in (5), also in this case, (16), (17), (18), (19), and (20) become

J2
(
f (·)) =

l∑

j=1

kj∑

i=0

f (i)(cj)J2
(
Hij (·)

)
+

∫ ζ2

ζ1

J2
(
GH,n(·, s)

)
f (n)(s) ds, (24)

where J2(f (·)) is defined in (15),

J2
(
Hij (·)

)
=

n1∑

μ=1

pμ

(
Hij (yμ)

)
– Hij

(
n1∑

μ=1

pμyμ

)

–
n1∑

μ=1

pμ

(
Hij (xμ)

)
+ Hij

(
n1∑

μ=1

pμxμ

)
, (25)

J2
(
GH,n(·, s)

)
=

n1∑

μ=1

pμ

(
GH,n(yμ, s)

)
– GH,n

(
n1∑

μ=1

pμyμ, s

)

–
n1∑

μ=1

pμ

(
GH,n(xμ, s)

)
+ GH,n

(
n1∑

μ=1

pμxμ, s

)
, (26)

J2
(
GH,n(·, s)

) ≥ 0, s ∈ I1, (27)

and

J2
(
f (·)) ≥

l∑

j=1

kj∑

i=0

f (i)(cj)J2
(
Hij (·)

)
. (28)

Theorem 3 Let f : I1 = [ζ1, ζ2] → R be an n-convex function and pn1 ∈ R
n1
+ be such that

∑n1
μ=1 pμ = 1. Also let f ∈ Cn([ζ1, ζ2]) and ζ1 = c1 < c2 < · · · < cl = ζ2 (l ≥ 2) be the points.

Moreover, Hij , GH,n are defined in (8) and (9) respectively. Then, for the functional J2(·)
defined in (5), we have the following:

(i) If kj is odd for each j = 2, . . . , l, then (28) holds.
(ii) Let (28) be satisfied and the function

F(·) =
l∑

j=1

kj∑

i=0

f (i)(cj)Hij (·) (29)
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be 3-convex. Then
∑l

j=1
∑kj

i=0 f (i)(cj)J2(Hij (·)) ≥ 0 and

J2
(
f (·)) ≥ 0. (30)

Proof (i) ω(·) ≥ 0 for odd values of kj, so from Lemma 1 we have GH,n–3(·, s) ≥ 0. Hence
GH,n is 3-convex, so J2(GH,n(·, s)) ≥ 0 by virtue of Remark 1 because weights are assumed
to be positive. Now, using Theorem 2, we get (28).

(ii) J2(·) is a linear function, so we can
∑l

j=1
∑kj

i=0 f (i)(cj)J2(Hij (·)) in the form J2(λ).

Therefore
∑l

j=1
∑kj

i=0 f (i)(cj)J2(Hij (·)) ≥ 0, because λ is supposed to be convex, hence
J2(f (·)) ≥ 0. �

In the next result, we generalize Levinson type inequality for 2n points given in [6] (see
also [3]).

Theorem 4 Let f : [ζ1, ζ2] → R be an n-convex function, (p1, . . . , pn1 ) ∈ R
n1
+ be such that∑n1

μ=1 pμ = 1. Also, let x1, . . . , xn1 and y1, . . . , yn1 ∈ I1 be such that xμ +yμ = 2c̆, xμ +xn1–μ+1 ≤
2c̆, pμxμ+pn1–μ+1xn1–μ+1

pμ+pn1–μ+1
≤ c̆ for μ = 1, . . . ,n1.

(i) If kj is odd for each j = 2, . . . , l, then (28) holds.
(ii) Let (28) be satisfied and the function

F(·) =
l∑

j=1

kj∑

i=0

f (i)(cj)Hij (·) (31)

be 3-convex. Then
∑l

j=1
∑kj

i=0 f (i)(cj)J2(Hij (·)) ≥ 0 and (30) holds.

Proof Verification is like Theorem 3. �

In the next result, Levinson type inequality is given (for positive weights) under Mercer’s
conditions.

Corollary 4 Let f ∈ Cn([ζ1, ζ2]), (p1, . . . , pn1 ) ∈ R
n1 be such that

∑n1
μ=1 pμ = 1 and xμ, yμ

satisfy (6) and max{x1 . . . xn1} ≤ min{y1 . . . yn1}. Also, let ζ1 = c1 < c2 < · · · < cl = ζ2 (l ≥ 2) be
the points. Moreover, Hij , GH,n are defined by (8) and (9) respectively. Then (33) holds.

Proof We get (33), after using (7) in (5) and the linearity of J2(·). �

2.2 Levinson’s inequality for higher order-convex functions
For the next results, motivated by identity (2), we construct the following identities:

First we define the following functional:
H: Let f : I2 = [0, 2α̂] → R be a function, x1, . . . , xn1 ∈ (0,α), (p1, . . . , pn1 ) ∈ R

n1 ,
(q1, . . . , qm1 ) ∈ R

m1 are real numbers such that
∑n1

μ=1 pμ = 1 and
∑m1

ν=1 qν = 1. Also,
let xμ,

∑m1
ν=1 qν(2α̂ – xν) and

∑n1
μ=1 pμ ∈ I2. Then

J̃
(
f (·)) =

m1∑

ν=1

qν f (2α̂ – xν) – f

( m1∑

ν=1

qν(2α̂ – xν)

)
–

n1∑

μ=1

pμf (xμ)

+ f

(
n1∑

μ=1

pμxμ

)
. (32)
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Theorem 5 Assume H. Let f ∈ Cn([ζ1, ζ2]) and ζ1 = c1 < c2 < · · · < cl = ζ2 (l ≥ 2) be the
points. Moreover, Hij , GH,n are defined by (8) and (9) respectively. Then, for 0 ≤ ζ1 < ζ2 ≤
2α̂, we have the following identity:

J̃
(
f (·)) =

l∑

j=1

kj∑

i=0

f (i)(cj)J̃
(
Hij (·)

)
+

∫ ζ2

ζ1

J̃
(
GH,n(·, s)

)
f (n)(s) ds, (33)

where J̃(f (·)) is defined in (32),

J̃
(
Hij (·)

)
=

m1∑

ν=1

qν

(
Hij (2α̂ – xμ)

)
– Hij

( m1∑

ν=1

qν(2α̂ – xν)

)

–
n1∑

μ=1

pμ

(
Hij (xμ)

)
+ Hij

(
n1∑

μ=1

pμxμ

)
(34)

and

J̃
(
GH,n(·, s)

)
=

m1∑

ν=1

qν

(
GH,n(2α̂ – xμ, s)

)
– GH,n

( m1∑

ν=1

qν(2α̂ – xμ), s

)

–
n1∑

μ=1

pμ

(
GH,n(xμ, s)

)
+ GH,n

(
n1∑

μ=1

pμxμ, s

)
. (35)

Proof Replace I1, J̆(·), and yν with I2, J̃(·), and 2α̂ – xν respectively in Theorem 1 to get
the required result. �

In the next result we generalize Levinson’s inequality (for real weights) for n-convex
functions.

Theorem 6 Assume that all the conditions of Theorem 2 hold with f being an n-convex
function.

If

J̃
(
GH,n(·, s)

) ≥ 0, s ∈ I2, (36)

then for 0 ≤ ζ1 < ζ2 ≤ 2α̂

J̃
(
f (·)) ≥

l∑

j=1

kj∑

i=0

f (i)(cj)J̃
(
Hij (·)

)
. (37)

Proof Proof is similar to that of Theorem 2 with the conditions given in the statement. �

If we put m1 = n1, pμ = qν and use positive weights in (32), then J̃(·) converted to the
functional J1(·) defined in (2), also in this case, for 0 ≤ ζ1 < ζ2 ≤ 2α̂, (33), (34), (35), (36),
and (37) become

J1
(
f (·)) =

l∑

j=1

kj∑

i=0

f (i)(cj)J1
(
Hij (·)

)
+

∫ ζ2

ζ1

J1
(
GH,n(·, s)

)
f (n)(s) ds, (38)
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J1
(
Hij (·)

)
=

n1∑

μ=1

pμ

(
Hij (2α̂ – xμ)

)
– Hij

(
n1∑

μ=1

pμ(2α̂ – xμ)

)

–
n1∑

μ=1

pμ

(
Hij (xμ)

)
+ Hij

(
n1∑

μ=1

pμxμ

)
, (39)

J1
(
GH,n(·, s)

)
=

n1∑

μ=1

pμ

(
GH,n(2α̂ – xμ, s)

)
– GH,n

(
n1∑

μ=1

pμ(2α̂ – xμ), s

)

–
n1∑

μ=1

pμ

(
GH,n(xμ, s)

)
+ GH,n

(
n1∑

μ=1

pμxμ, s

)
, (40)

J1
(
GH,n(·, s)

) ≥ 0, s ∈ I2, (41)

J1
(
f (·)) ≥

l∑

j=1

kj∑

i=0

f (i)(cj)J1
(
Hij (·)

)
, (42)

respectively.

Theorem 7 Let all the assumptions of Theorem 5 hold, f : [ζ1, ζ2] → R be an n-convex
function.

(i) If kj is odd for each j = 2, . . . , l, then (42) holds.
(ii) Let (42) be satisfied and the function

F(·) =
l∑

j=1

kj∑

i=0

f (i)(cj)Hij (·) (43)

be 3-convex. Then the right-hand side of (42) is nonnegative, and we have

J1
(
f (·)) ≥ 0, (44)

where 0 ≤ ζ1 < ζ2 ≤ 2α̂.

Proof By using Theorem 6 and Remark 1. �

Remark 4 Čebyšev, Grüss, and Ostrowski-type new bounds related to the obtained gener-
alizations can also be discussed. Moreover, we can also give related mean value theorems
by using nonnegative functionals (16) and (33), and we can construct the new families of
n-exponentially convex functions and Cauchy means related to these functionals as given
in Sect. 4 of [17].

3 Application to information theory
The idea of Shannon entropy is the central job of information speculation now and again
implied as the measure of uncertainty. The entropy of random variable is described with
respect to probability distribution and can be shown to be a decent measure of random
variable. Shannon entropy allows us to assess the typical least number of bits expected to
encode a progression of pictures subject to the letters all together size and the repeat of
the symbols.
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Divergences between probability distributions have been familiar with measure of
the difference between them. An assortment of divergences exist, for example, the f -
divergences (especially, Kullback–Leibler divergences, Hellinger distance, and total varia-
tion distance), Rényi divergences, Jensen–Shannon divergences, etc. (see [18, 19]). There
are a lot of papers overseeing inequalities and entropies, see, e.g., [20–28] and the refer-
ences therein. Jensen’s inequality is an essential job in a bit of these inequalities. Regardless,
Jensen’s inequality manages one kind of data points and Levinson’s inequality deals with
two types of data points.

3.1 Csiszár divergence
The following definition is given by Csiszár in [29, 30].

Definition 1 Let f : R+ → R
+ be a convex function. Also, let r̃, k̃ ∈ R

n1
+ be such that

∑n1
v=1 rv = 1 and

∑n1
v=1 kv = 1. Then f -divergence functional is defined by

If (r̃, k̃) :=
n1∑

v=1

kvf
(

rv

kv

)
.

By defining the following:

f (0) := lim
x→0+

f (x); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

x→0+
xf

(
a
x

)
, a > 0,

he stated that nonnegative probability distributions can also be used.
First we give the following definition.

Definition 2 Let I be an interval contained in R and f : I → R be an n-convex function.
Also, let r̃ = (r1, . . . , rn1 ) ∈ R

n1 and k̃ = (k1, . . . , kn1 ) ∈ (0,∞)n1 be such that

rv

kv
∈ I, v = 1, . . . ,n1.

Then

Îf (r̃, k̃) :=
n1∑

v=1

kvf
(

rv

kv

)
. (45)

We apply Theorem 2 for n-convex functions to Îf (r̃, k̃).

Theorem 8 Let r̃ = (r1, . . . , rn1 ) ∈ R
n1 , w̃ = (w1, . . . , wm1 ) ∈R

m1 , k̃ = (k1, . . . , kn1 ) ∈ (0,∞)n1

and t̃ = (t1, . . . , tm1 ) ∈ (0,∞)m1 be such that

rv

kv
∈ I, v = 1, . . . ,n1,

and

wu

tu
∈ I, u = 1, . . . ,m1.
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Also, let f ∈ Cn[ζ1, ζ2] be such that f is an n-convex function. If kj is odd for each j = 2, . . . , l,
then

Jcis
(
f (·)) ≥

l∑

j=1

kj∑

i=0

f (i)(cj)J
(
Hij (·)

)
, (46)

where

Jcis
(
f (·)) =

1∑m1
u=1 tu

Îf (w̃, t̃) – f

(
m1∑

u=1

wu∑m1
u=1 tu

)
–

1∑n1
s=1 ks

Îf (r̃, k̃)

+ f

(
n1∑

s=1

rs∑n1
s=1 ks

)
(47)

and

J
(
Hij (·)

)
=

m1∑

ν=1

tu∑m1
u=1 tu

Hij

(
wu

tu

)
– Hij

(
m1∑

ν=1

wu∑m1
u=1 tu

)

–
n1∑

μ=1

kv∑n1
v=1 kv

Hij

(
rv

kv

)
+ Hij

(
n1∑

μ=1

rv∑n1
v=1 kv

)
. (48)

Proof Since kj is odd for each j = 2, . . . , l, so we have ω(·) ≥ 0 and by using Lemma 1 we
have GH,n–3(·, s) ≥ 0, so GH,n is 3-convex, so (19) holds. Hence, using pμ = kv∑n1

v=1 kv
, xμ = rv

kv
,

qν = tu∑m1
u=1 tu

, yν = wu
tu

in Theorem 2, (20) becomes (46), where Îf (r̃, k̃) is defined in (45)
and

Îf (w̃, t̃) :=
m1∑

u=1

tuf
(

wu

tu

)
. (49)

�

3.2 Shannon entropy
Definition 3 (see [31]) The Shannon entropy of positive probability distribution k̃ =
(k1, . . . , kn1 ) is defined by

S := –
n1∑

v=1

kv log(kv). (50)

Corollary 5 Let k̃ = (k1, . . . , kn1 ) and t̃ = (t1, . . . , tm1 ) be positive probability distributions.
Also, let r̃ = (r1, . . . , rn1 ) ∈ (0,∞)n1 and w̃ = (w1, . . . , wm1 ) ∈ (0,∞)m1 .

(i) If base of log is greater than 1 and n = odd (n = 3, 5, . . .), then

Js(·) ≥
l∑

j=1

kj∑

i=0

(–1)i–1(i – 1)!
(cj)i J

(
Hij (·)

)
, (51)
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where

Js(·) =
m1∑

u=1

tu log(wu) + S̃ – log

(
m1∑

u=1

wu

)
–

n1∑

v=1

kv log(rv) + S

+ log

(
n1∑

v=1

rv

)
(52)

and J(Hij (·)) is defined in (48).
(ii) If kj is odd and base of log is less than 1 or n = even (n = 4, 6, . . .), then the inequality

in (51) is reversed.

Proof (i) The function f (x) = log(x) is n-convex for n = 3, 5, . . . and base of log is greater
than 1. Therefore, using f (x) = log(x) in Theorem 8, we get (51), where S is defined in (50)
and

S̃ = –
m1∑

u=1

tu log(tu).

(ii) Since kj is odd and the function f (x) = log(x) is n-concave for n = 4, 6, . . . , so by using Re-
mark 3(ii), (20) holds in reverse direction. Therefore, using f (x) = log(x) and pμ = kv∑n1

v=1 kv
,

xμ = rv
kv

, qν = tu∑m1
u=1 tu

, yν = wu
tu

in reversed inequality (20), we have

Js(·) ≤
l∑

j=1

kj∑

i=0

(–1)i–1(i – 1)!
(cj)i J

(
Hij (·)

)
. (53)

�

Corollary 6 Let r̃ = (r1, . . . , rn1 ) and w̃ = (w1, . . . , wm1 ) be positive probability distributions.
Also, let k̃ = (k1, . . . , kn1 ) ∈ (0,∞)n1 , t̃ = (t1, . . . , tm1 ) ∈ (0,∞)m1 , and kj be odd.

(i) If base of log is greater than 1 and n = even (n≥ 4), then

Js(·) ≥
l∑

j=1

kj∑

i=0

(–1)i–1(i – 2)!
(cj)i–1 J

(
Hij (·)

)
, (54)

where

Js(·) =
1∑m1

u=1 tu

(
S̃ +

m1∑

u=1

wu log(tu)

)
–

1∑m1
u=1 tu

log

(
m1∑

u=1

tu

)

–
1∑n1

v=1 kv

(
S +

n1∑

v=1

rv log(kv)

)
+

1∑n1
v=1 kv

log

(
n1∑

v=1

kv

)
(55)

and J(Hij (·)) is defined in (48).
(ii) If base of log is less than 1 or n = odd (n ≥ 3), then (54) holds in reverse direction.

Proof (i) Since the function f (x) = –x log(x) is n-convex (n = 4, 6, . . .) and kj is odd for each
j = 2, . . . , l, so we have ω(·) ≥ 0, and by using Lemma 1 we have GH,n–3(·, s) ≥ 0 implies GH,n
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is 3-convex. Hence (19) holds. Therefore, using f (x) = –x log(x) and pμ = kv∑n1
v=1 kv

, xμ = rv
kv

,

qν = tu∑m1
u=1 tu

, yν = wu
tu

in Theorem 2, (20) becomes (54), where

S̃ = –
m1∑

u=1

wu log(wu)

and

S = –
n1∑

v=1

rv log(rv).

(ii) The function f (x) = –x log(x) is n-concave (n = 3, 5, . . .), so by using Remark 3(ii), (20)
holds in reverse direction. Therefore using the same substitutions as in (i) in reversed
inequality (20), we have (54) in reverse direction. �

4 Conclusion
This paper is concerned with a generalization of the Levinson type inequalities (for real
weights) for two types of data points implicating higher order convex functions. Hermite
interpolating polynomial is used for the class of n-convex functions, where n ≥ 3. In seek
of application to information theory, the main results are applied to information theory
via f -divergence and Shannon entropy.
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17. Butt, S.I., Khan, K.A., Pečarić, J.: Generalization of Popoviciu inequality for higher order convex function via Taylor’s

polynomial. Acta Univ. Apulensis, Mat.-Inform. 42, 181–200 (2015)
18. Liese, F., Vajda, I.: Convex Statistical Distances. Teubner-Texte zur Mathematik, vol. 95. Teubner, Leipzig (1987)
19. Vajda, I.: Theory of Statistical Inference and Information. Kluwer, Dordrecht (1989)
20. Khan, M.A., Mohammad, Z., Sahwi, A., Chu, Y.M.: New estimations for Shannon and Zipf-Mandelbrot entropies.

Entropy 20(608), 1–10 (2018)
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