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Abstract
In this paper, we present new inequalities which reveal further relationship for both
the inverse tangent function arctan(x) and the inverse hyperbolic function arctanh(x).
At the same time, we give the analogue for inverse hyperbolic tangent and other
corresponding functions.
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1 Introduction
Masjed-Jamei [1] obtained the following inequality for |x| < 1:

(arctan x)2 ≤ x ln(x +
√

1 + x2)√
1 + x2

. (1)

Many similar or relative inequalities are discussed in references [2–14]. Recently, Zhu
and Malesevic [15] affirmed inequality (1) for the large interval (–∞,∞), pointed out that
sinh–1(x) = ln(x +

√
1 + x2), and provided the following Theorems 1–6, which (or relative

results) can be also found in [11, 12].

Theorem 1 ([15]) The inequality

(arctan x)2 ≤ x ln(x +
√

1 + x2)√
1 + x2

(2)

holds for all x ∈ (–∞,∞), and the power number 2 is the best in (2).

Theorem 2 ([15]) Let 0 < r < ∞, λ = 1, and μ = r ln(r +
√

r2 + 1)/(
√

r2 + 1(arctan r)2). Then
the double inequality

λ(arctan x)2 ≤ x ln(x +
√

1 + x2)√
1 + x2

≤ μ(arctan x)2 (3)

holds for all x ∈ (– – r, r), where λ and μ are the best constants in (3).

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02396-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02396-8&domain=pdf
mailto:xiaodiao@hdu.edu.cn


Chen et al. Journal of Inequalities and Applications        (2020) 2020:131 Page 2 of 8

Theorem 3 ([15]) We have

–
1

45
x6 ≤ (arctan x)2 –

x ln(x +
√

1 + x2)√
1 + x2

≤ –
1

45
x6 +

4
105

x8, (4)

–
1

45
x6 +

4
105

x8 –
11

225
x10 ≤ (arctan x)2 –

x ln(x +
√

1 + x2)√
1 + x2

≤ –
1

45
x6 ≤ +

4
105

x8 –
11

225
x10 +

586
10,395

x12. (5)

Theorem 4 ([15]) The inequality

(arctanh x)2 ≤ x arcsin x√
1 – x2

(6)

holds for all x ∈ (–1, 1), and the power number 2 is the best in (6).

Theorem 5 ([15]) Let 0 < r < 1, α1 = 1, and β1 = r(arcsin r)/(
√

1 – –r2(arctanh r)2). Then
the double inequality

α1(arctanh x)2 ≤ x arcsin x√
1 – x2

≤ β1(arctanh x)2 (7)

holds for all x ∈ (–r, r), where α1 and β1 are the best constants in (7).

Recently, Chen and Malešević [14] proposed the following results:

x arcsinh x√
1 + x2 + α2x4

≤ (arctan x)2 ≤ x arcsinh x
√

1 + x2 + β2x4
, x > 0, (8)

x arcsin x
1 – α3x2 < (arctanh x)2, 0 < x < 1, (9)

where α2 = 2
45 , β2 = 0, and α3 = 1

2 are the best possible constants.
In 2020, Zhu and Malešević [13] proposed natural approximation of Masjed-Jamei’s in-

equality and provided two-sided bounds in a polynomial form of (arctan x)2 – x ln(x+
√

1+x2)√
1+x2 ,

which consists of explicit formulae of different degrees.
The values of μ in Theorem 2 and β1 in Theorem 5 tend to be +∞ for r tends to be

±∞ and ±1, respectively. In this paper, we obtain the following new inequalities, which
improve the approximation effect of the inequalities in [15]. The main results are as fol-
lows.

Theorem 6 The inequality

(arctan x)2 ≥ 3(8 + 9x2 – 8
√

1 + x2)
(4 + 11

√
1 + x2)

√
1 + x2

� F(x) (10)

holds for all x ∈ (–∞,∞).
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Theorem 7 Let κ1 = 108
11π2 ≈ 0.9947 and κ2 = 1. The inequality

κ1(arctan x)2 ≤ F(x) ≤ κ2(arctan x)2 (11)

holds for all x ∈ (–∞,∞), where κ1 and κ2 are the best constants in (11).

Theorem 8 The inequality

23
75,600

x8 ≥ (arctan x)2 – F(x) ≥ 23
75,600

x8 –
899

1,134,000
x10 (12)

holds for all x ∈ (–∞,∞).

Theorem 9 The inequality

G1(x) � (arctanh x)2 ≤
(

– ln(1 – x2)
arcsin x

)2

� G2(x) (13)

holds for all x ∈ (–1, 1).

Theorem 10 Let κ3 = 1 and κ4 = 16
π2 ≈ 1.6211. The inequality

κ3(arctanh x)2 ≤
(

– ln(1 – x2)
arcsin x

)2

≤ κ4(arctanh x)2 (14)

holds for all x ∈ (–1, 1), where κ3 and κ4 are the best constants in (14).

2 Proofs of Theorems 6–10
Let arctan x = t, then one has that x = tan(t) and

√
1 + x2 = sec(t), where x ∈ (–∞,∞) and

t ∈ (–π/2,π/2). It can be verified that

(arctan x)2 = t2,

F(x) = –
3
4

cos(t) –
63
16

+
1125

16(4 cos(t) + 11)
= f1(t),

(arctan x)2 – F(x) =
(
t2 – f1(t)

)
= δ1(t),

δ′′′
1 (t) =

(12(16 cos(t)2 + 208 cos(t) + 1501))(cos(t) – 1)2 sin(t)
(4 cos(t) + 11)4 .

(15)

2.1 Proof of Theorem 6
From Eq. (15), one has that

δ′′′
1 (t) > 0, t ∈ (0,π/2), δ′′

1 (0) = δ′
1(0) = δ1(0) = 0, (16)

which leads to

δ′′
1 (t) > 0, δ′

1(t) > 0, t ∈ (0,π/2), δ1(t) ≥ δ1(0) = 0, t ∈ [0,π/2). (17)
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Note that δ1(t) = δ1(–t), combining Eq. (15) with Eq. (17), one has that

δ1(t) ≥ 0, t ∈ (–π/2,π/2), and (arctan x)2 – F(x) ≥ 0, x ∈ (–∞,∞). (18)

And we complete the proof.

2.2 Proof of Theorem 7
From Theorem 6, one has that

F(x) ≤ κ2(arctan x)2.

Now we prove that κ1(arctan x)2 ≤ F(x). From Eq. (15), one has that

κ1(arctan x)2 – F(x) = κ1t2 – f1(t) = δ2(t),

δ′′′
2 (t) = –f ′′′

1 (t) = δ′′′
1 (t) > 0, t ∈ (0,π/2),

δ′′
2 (0) =

216 – 22π2

11π2 ≈ –0.01 < 0, δ′′
2 (π/2) =

26136 – 2250π2

1331π2 ≈ 0.2 > 0.

(19)

From Eq. (19), there exists a unique root t1 ∈ (0,π/2) such that

δ′′
2 (t) < 0, t ∈ (0, t1), δ′

2(0) = 0,

δ′′
2 (t) > 0, t ∈ (t1,π/2), δ′

2(π/2) =
1188 – 372π

121π
≈ 0.05 > 0.

(20)

From Eq. (19), there exists a unique root t2 ∈ (t1,π/2) such that

δ′
2(t) < 0, t ∈ (0, t2), δ2(0) = 0,

δ′
2(t) > 0, t ∈ (t2,π/2), δ2(π/2) = 0.

(21)

From Eq. (21), one has that

δ2(t) ≤ 0, t ∈ [0, t2] ∪ [t2,π/2) = [0,π/2). (22)

Note that δ2(t) = δ2(–t), combining Eq. (19) with Eq. (22), one has that

δ2(t) ≤ 0, t ∈ (–π/2,π/2), and κ1(arctan x)2 ≤ F(x), x ∈ (–∞,∞). (23)

Note that

lim
x→∞

F(x)
(arctan x)2 = κ1, lim

x→0

F(x)
(arctan x)2 = κ2,

both κ1 and κ2 are the best constants. And the proof is completed.
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2.3 Proof of Theorem 8
Let f2(t) = 23

75,600 (tan t)8 and f3(t) = 23
75,600 (tan t)8 – 899

1,134,000 (tan t)10. Equation (12) in Theo-
rem 8 is equivalent to

δ3(t) = δ1(t) – f2(t) ≤ 0, δ4(t) = δ1(t) – f3(t) ≥ 0, t ∈ (–π/2,π/2). (24)

It can be verified that

f ′′′
2 (t) =

23 sin(t)5(2 cos(t)4 – 26 cos(t)2 + 45)
4725(cos t)11 ,

f ′′′
3 (t) =

sin(t)5(1175 cos(t)6 – 18871 cos(t)4 + 50,261 cos(t)2 – 29,667)
28,350(cos t)13 .

(25)

Let φ1(t) = 907,200 cos(t)12 +12,700,800 cos(t)11 +97,807,500 cos(t)10 +97,795,724 cos(t)9 +
97,642,636 cos(t)8 + 96,990,540 cos(t)7 + 96,802,860 cos(t)6 + 103,838,238 cos(t)5 +
126,378,882 cos(t)4 + 148,760,458 cos(t)3 + 130,005,062 cos(t)2 + 67,501,665 cos(t) +
15,153,435 and φ2(t) = 5,443,200 cos(t)13 + 81,648,000 cos(t)12 + 668,493,000 cos(t)11 +
1,255,037,200 cos(t)10 + 1,837,671,000 cos(t)9 + 2,404,568,576 cos(t)8 +
2,978,639,640 cos(t)7 + 3,789,264,297 cos(t)6 + 5,266,619,820 cos(t)5 +
7,153,847,855 cos(t)4 +7,714,708,320 cos(t)3 +5,610,730,675 cos(t)2 +2,369,206,620 cos(t)+
434,354,547. Combining Eq. (24) with Eq. (25), one has that

δ′′′
3 (t) =

sin(t)(cos(t) – 1)3

(4 cos(t) + 11)4(cos t)11 φ1(t) < 0, ∀t ∈ (0,π/2),

δ′′′
4 (t) =

sin(t)(cos(t) – 1)4

28,350(4 cos(t) + 11)4(cos t)13 φ2(t) > 0, ∀t ∈ (0,π/2),

δ′′
3 (0) = 0, δ′′

4 (0) = 0.

(26)

From Eq. (25), one has that

δ′′
3 (t) < 0, δ′′

4 (t) > 0, ∀t ∈ (0,π/2), δ′
3(0) = 0, δ′

4(0) = 0. (27)

From Eq. (27), one obtains that

δ′
3(t) < 0, δ′

4(t) > 0, ∀t ∈ (0,π/2), δ3(0) = 0, δ4(0) = 0, (28)

which leads to

δ3(t) ≤ 0, δ4(t) ≥ 0, ∀t ∈ [0,π/2). (29)

Note that δi(t) = δi(–t), i = 3, 4, combining with Eq. (29), both Eq. (24) and Theorem 8 are
proved.
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2.4 Proof of Theorem 9
Let arcsin(x) = s, then one has that x = sin(s), where x ∈ (–1, 1), s ∈ (–π/2,π/2). It can be
verified that

(arctanh x) =
1
2

ln

(
1 + sin(s)
1 – sin(s)

)
> 0,

(
– ln(1 – x2)

arcsin x

)
=

– ln(1 – (sin s)2)
s

> 0, s ∈ (0,π/2).
(30)

Let

(arctanh x) –
(

– ln(1 – x2)
arcsin x

)
=

1
2

ln

(
1 + sin(s)
1 – sin(s)

)
–

– ln(1 – (sin s)2)
s

= δ5(s),

δ6(s) = δ′
5(s) · s2, φ3(s) = –2 + sin(s)s + 2 cos(s).

(31)

It can be verified that

φ′′
3 (s) = – sin(s)s < 0, s ∈ (0,π/2), φ′

3(0) = φ3(0) = 0,

which leads to

φ3(s) ≤ 0, δ′
6(s) =

s
(cos s)2 φ3(s) ≤ 0, δ6(0) = 0, s ∈ [0,π/2). (32)

Combining Eq. (31) with Eq. (32), one obtains that

δ6(s) ≤ 0, δ′
5(s) ≤ 0, δ5(0) = 0, s ∈ [0,π/2). (33)

Combining Eq. (31) with Eq. (33), we have that

δ5(s) ≤ 0, s ∈ [0,π/2), 0 ≤ (arctanh x)2 ≤
(

– ln(1 – x2)
arcsin x

)2

, x ∈ [0, 1). (34)

Note that Gi(–x) = Gi(x), i = 1, 2, combining with Eq. (34), we have proved both Eq. (13)
and Theorem 9.

2.5 Proof of Theorem 10
Directly from Theorem 9, we have proved the left-hand side in Eq. (14) in Theorem 10.

κ3(arctanh x)2 ≤
(

– ln(1 – x2)
arcsin x

)2

.

Now, we will prove the right-hand side of Eq. (14). Combining with Eq. (30), let

4
π

(arctanh x) –
(

– ln(1 – x2)
arcsin x

)
=

4
2π

ln

(
1 + sin(s)
1 – sin(s)

)
–

– ln(1 – (sin s)2)
s

� δ7(s),

δ8(s) = δ′
7(s) · s2, φ4(s) =

2(2 sin(s)s + 4 cos(s) – π )
π

.

(35)
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It can be verified that

φ′′
4 (s) =

–4 sin(s)s
π

< 0, s ∈ (0,π/2), φ′
4(0) = φ4(π/2) = 0,

which leads to

φ4(s) ≥ 0, δ′
8(s) =

s
(cos s)2 φ4(s) ≥ 0, δ8(0) = 0, s ∈ [0,π/2). (36)

Combining Eq. (35) with Eq. (36), one obtains that

δ8(s) ≥ 0, δ′
7(s) ≥ 0, δ7(0) = 0, s ∈ [0,π/2). (37)

Combining Eq. (35) with Eq. (37), we have that

δ7(s) ≥ 0, s ∈ [0,π/2),

0 ≤
(

– ln(1 – x2)
arcsin x

)2

≤
(

4
π

arctanh x
)2

, x ∈ [0, 1).
(38)

Note that Gi(–x) = Gi(x), i = 1, 2, combining with Eq. (38), one obtains that

(
– ln(1 – x2)

arcsin x

)2

≤ κ2(arctanh x)2, x ∈ (–1, 1). (39)

Combining Theorem 9 with Eq. (39), we have completed the proofs of both Eq. (14) and
Theorem 10.

3 Discussions and conclusions
The values of μ in Theorem 2 and β1 in Theorem 5 tend to be +∞ for r tends to be ±∞
and ±1, respectively, while the values of κi in Theorems 7 and 10 are constant. The error
plots of the bounds from Eq. (2) and Eq. (6) in [15], from Eq. (8) and Eq. (9) in [14], and
from Eq. (6) and Eq. (13) are plotted in Fig. 1. It shows that the results of Eq. (11) and

Figure 1 Error plots of bounds from (a) Eq. (2), (8), and (11); and (b) Eq. (6), (9), and (13)
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Eq. (13) in this paper achieve better approximation effect than those of Eq. (2), Eq. (6),
Eq. (8), and Eq. (9).

Acknowledgements
The authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments
which helped us to improve this paper greatly.

Funding
This research work was partially supported by Zhejiang Key Research and Development Project of China (LY19F020041,
2018C01030), the National Science Foundation of China (61972120,61672009).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 February 2020 Accepted: 24 April 2020

References
1. Masjed-Jamei, M.: A main inequality for several special functions. Comput. Math. Appl. 60, 1280–1289 (2010)
2. Maleševic, B., Lutovac, T., Rašajski, M., Mortici, C.: Extensions of the natural approach to refinements and

generalizations’ of some trigonometric inequalities. Adv. Differ. Equ. 2018, 90 (2018).
https://doi.org/10.1186/s13662-018-1545-7

3. Zhu, L., Hua, J.K.: Sharpening the Becker–Stark inequalities. J. Inequal. Appl. 2010, Article ID 931275 (2010).
https://doi.org/10.1155/2010/931275

4. Sun, Z.J., Zhu, L.: Simple proofs of the Cusa–Huygens-type and Becker–Stark-type inequalities. J. Math. Inequal. 7(4),
563–567 (2013). https://doi.org/10.7153/jmi-07-52

5. Debnath, L., Mortici, C., Zhu, L.: Refinements of Jordan–Steckin and Becker–Stark inequalities. Results Math. 67,
207–215 (2015). https://doi.org/10.1007/s00025-014-0405-3

6. Lv, H.L., Yang, Z.H., Luo, T.Q., Zheng, S.Z.: Sharp inequalities for tangent function with applications. J. Inequal. Appl.
2017, 94 (2017). https://doi.org/10.1186/s13660-017-1372-5

7. Zhu, L.: Sharpening Redheffer–type inequalities for circular functions. Appl. Math. Lett. 22, 743–748 (2009).
https://doi.org/10.1016/j.aml.2008.08.012

8. Wu, S., Debnath, L.: A generalization of l’Hospital–type rules for monotonicity and its application. Appl. Math. Lett. 22,
284–290 (2009). https://doi.org/10.1016/j.aml.2008.06.001

9. Yang, Z.H., Chu, Y.M., Wang, M.K.: Monotonicity criterion for the quotient of power series with applications. J. Math.
Anal. Appl. 428(1), 587–604 (2015). https://doi.org/10.1016/j.jmaa.2015.03.043

10. Zhu, L.: New bounds for the exponential function with cotangent. J. Inequal. Appl. 2018, Article ID 106 (2018).
https://doi.org/10.1186/s13660-018-1697-8

11. Banjac, B.D.: System for automatic proving of some classes of analytic inequalities. School of Electrical Engineering
(2019). Available on: http://baig.etf.bg.ac.rs/

12. Malesevic, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J.
Math. Inequal. 3, 849–876 (2016)
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