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Abstract
We present a version of the John–Nirenberg inequality for a sub-class of BMO by
estimating the corresponding mean oscillating distribution function via dyadic
decomposition. The dominating functions are of the form of decreasing step
functions which are finer than the classical exponential functions and might be much
more efficient for some sophisticated analysis. We also prove that the modified
BMO-norm is equivalent to the classical BMO-norm under the convexity
assumption.
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1 Introduction
The space of functions of bounded mean oscillation(BMO) first appeared in the work of
John and Nirenberg [1] in the context of nonlinear partial differential equations that arise
in the study of minimal surfaces. The space BMO can be characterized by the form of the
John–Nirenberg inequality: it says that for f ∈ BMO, one has
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(1.1)

for every cube Q ⊂ R
d and every t > 0. Here fQ := 1

|Q|
∫

Q f (x) dx. One of the important
applications of the John–Nirenberg inequality (1.1) is the Lp characterization of BMO-
norm; that is, for 1 < p < ∞,

‖f ‖BMOp :=
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(1.2)

is an equivalent to the classical BMO-norm.
This paper refines the John–Nirenberg inequality in two ways. We present a dominating

function F that is finer than the exponential functions at the right-hand side of estimate
(1.1) (Theorem 4). The function F has a form of decreasing step functions which possesses
more merits than the exponential function (see an application of Theorem 4 at the end of
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Sect. 3). Secondly, we introduce an appropriate base function α such that the functional

‖f ‖BMOα := α–1
(

sup
Q

1
|Q|

∫

Q
α
(∣
∣f (x) – fQ

∣
∣
)

dx
)

(1.3)

sets the levels for those functions located in the space BMO and forms a norm of the space
BMO, which is equivalent to the original norm under the convexity assumption.

The base functions α that we have developed include the base functions of the form
α(x) = xp that guarantee the classical result (1.2). We, in fact, designate the base functions
α to achieve the Hölder inequality which always incubates the Minkowski type triangle
inequality.

In this paper, (X,M,μ) represents an abstract measure space and R̄+ = {x ∈R : x ≥ 0}.

2 Hölder functions
Notions of Hölder functions have been developed to find appropriate base functions that
permit the Hölder inequality. In this section, we briefly introduce the fundamentals of
the Hölder functions; the details can be found in [2–4]. The notions presented here are
modified versions without essential differences.

1. A pre-Hölder function α : R̄+ → R̄+ is a strictly increasing absolutely continuous
function. For example, the exponential function α(x) = ex and α(x) = xp (0 < p < ∞)
are in this category. If there exists a pre-Hölder function β satisfying

α–1(x)β–1(x) = x (2.1)

for all x ∈ R̄+, then β is called the conjugate (pre-Hölder) function of α. In relation
(2.1), the notations α–1, β–1 are the inverse functions of α, β , respectively. Some
examples of pre-Hölder pairs are: (α(x),β(x)) = (xp, xq) for p > 1 with 1

p + 1
q = 1, and

(α,β) := (λ ◦ A,λ ◦ Ã), (2.2)

where we set λ(x) = A–1(x)Ã–1(x) for any Orlicz N-function A together with its
complementary N-function Ã.

2. The spectrum (or exponent function) pα of a pre-Hölder function α is defined as

pα(x) := x
α′(x)
α(x)

(2.3)

for almost every x > 0. For example, the Lebesgue base function α(x) = xp has a point
spectrum: pα(x) = p with 1 ≤ p < ∞.

A pre-Hölder function α permits a conjugate function if and only if the bijection α

satisfies the limit conditions

lim
x→0+

α(x)
x

= 0, lim
x→∞

α(x)
x

= ∞ (2.4)

together with the spectrum condition

pα(x) > 1 (2.5)
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for almost every x > 0. Also, for a pre-Hölder pair (α,β), we have

1
pα

(s) +
1

pβ

(t) = 1 when α(s) = β(t).

For details, we refer to [4].
3. Let Φ be a two-variable function on R̄+ × R̄+ defined by

Φ(x, y) := α–1(x)β–1(y).

Then we observe that the equation of the tangent plane T of Φ at a point (α(a),β(b))
is represented by

T(x, y) =
1

pα

ab
α(a)

x +
1

pβ

ab
β(b)

y + abθf (2.6)

with θf = 1 – 1
pα

– 1
pβ

. This motivates us to define the Hölder functions as follows.

Definition 1 Let � > 0 be given. A pre-Hölder function α with the conjugate function β

is said to be a Hölder function if, for any positive constants a, b > 0, there exist constants
θ1, θ2, and θf (depending on a and b) such that

θ1 + θ2 + θf ≤ �

and that a dominating condition

Φ(x, y) = α–1(x)β–1(y) ≤ θ1
ab

α(a)
x + θ2

ab
β(b)

y + abθf (2.7)

holds for all (x, y) ∈ R̄+ × R̄+. A Hölder function α is called an s-Hölder function if we can
choose θf = 0 in (2.7).

For example, any (convex) function satisfying

α(x) :=

⎧

⎨

⎩

xp for 0 ≤ x ≤ 1,

xq for sufficiently large x
(2.8)

(1 < p, q < ∞) is a Hölder function, and so are many variants of (2.8).
4. Let α be a Hölder function and β be the corresponding Hölder conjugate function.

For the case when (X,M,μ) is an infinite measure space, we define

‖f ‖α := α–1
(

sup
μ(K )<∞

1
μ(K)

∫

K
α
(∣
∣f (x)

∣
∣
)

dμ

)

, (2.9)

where the supremum is taken over all measurable subsets K (of X) of finite measure.
Hereafter, –

∫

K f (x) dμ := 1
μ(K )

∫

K f (x) dμ. Even though we define ‖ · ‖α on an abstract
measure space (X,M,μ), we restrict our attention to the Euclidean space R

d

equipped with Lebesgue measure, and the measurable sets K at (2.9) are restricted to
cubes Q of Rd in the next section.
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For any measurable set K of finite measure, we have a Hölder type inequality

∣
∣
∣
∣
–
∫

K
f (x)g(x) dμ

∣
∣
∣
∣
≤ �‖f ‖α‖g‖β , (2.10)

if the right-hand side is finite. We name the Hölder functions after Hölder inequality
(2.10). For this reason, we briefly sketch the idea of the proof that justifies
Definition 1. Let a := ‖f ‖α �= 0 and b := ‖g‖β �= 0. Then there exist θ1, θ2, and θf such
that θ1 + θ2 + θf ≤ � and

∣
∣f (x)g(x)

∣
∣ = α–1(α

(∣
∣f (x)

∣
∣
))

β–1(β
(∣
∣g(x)

∣
∣
))

≤ θ1
ab

α(a)
α
(∣
∣f (x)

∣
∣
)

+ θ2
ab

β(b)
β
(∣
∣g(x)

∣
∣
)

+ abθf . (2.11)

Integrating over K and dividing both sides by μ(K) yield

–
∫

K

∣
∣f (x)g(x)

∣
∣dμ ≤ θ1

ab
α(a)

–
∫

K
α
(∣
∣f (x)

∣
∣
)

dμ + θ2
ab

β(b)
–
∫

K
β
(∣
∣g(x)

∣
∣
)

dμ

+ θf ab –
∫

K
dμ

≤ �‖f ‖α‖g‖β .

When (X,M,μ) is a finite measure space, we define

‖f ‖α := α–1
(∫

X
α
(∣
∣f (x)

∣
∣
)

dμ

)

to get a version of Hölder type inequality

∣
∣
∣
∣

∫

X
f (x)g(x) dμ

∣
∣
∣
∣
≤ �‖f ‖α‖g‖β .

The Hölder inequality always incubates the Minkowski type inequality

‖f1 + f2‖α ≤ �
{‖f1‖α + ‖f2‖α

}

. (2.12)

Also, for any constant k ≥ 0 and ‖f ‖α < ∞, we have

k
�
‖f ‖α ≤ ‖kf ‖α ≤ k�‖f ‖α .

In particular, when � = 1, we have the homogeneity

‖kf ‖α = k‖f ‖α .

Quasi-homogeneity of the norm is good enough to exploit estimates for the existence
theory of nonlinear partial differential equations[2, 3] and to study singular integrals
on these genealogical function spaces.
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5. We close this section by introducing the boundedness of the spectra of the convex
base functions.

Proposition 2 (Boundedness of the spectrum) Let (α,β) be a convex Hölder pair, and let
pα be the spectrum of α. Then there exist constants c1, c2 satisfying

1 < c1 ≤ pα(t) ≤ c2 < ∞ (2.13)

for almost every t > 0. The same result holds for the spectrum pβ of β .

Proof From the convexity of α, we get

tα′(t) ≤
∫ 2t

t
α′(s) ds ≤

∫ 2t

0
α′(s) ds = α(2t) for t > 0.

Hence in order to prove the second inequality pα(t) ≤ c2, it is enough to demonstrate that
α(2t) ≤ cα(t) for some constant c > 1.

Suppose that there exists a sequence {tj}∞j=1 of positive numbers such that

α(2tj) ≥ 2jα(tj), j = 1, 2, . . . . (2.14)

We choose a sequence of mutually disjoint measurable subsets {Xj}∞j=1 of a finite measur-
able subset X of Rd such that

μ(Xj) =
α(1)μ(X)

2jα(tj)
.

Define f (x) =
∑∞

j=1 tjχXj (x). Then we have

∫

X
α
(∣
∣f (x)

∣
∣
)

dμ =
∞

∑

j=1

α(tj)μ(Xj) = α(1)μ(X).

However, from (2.14) one has

∫

X
α
(

2
∣
∣f (x)

∣
∣
)

dμ ≥
∞

∑

j=1

2jα(tj)μ(Xj) = ∞,

which violates the Minkowski type inequality (2.12). In all, we have shown that there is a
positive real number c2 > 1 with

pα(t) ≤ c2

for almost every t > 0.
The same argument on the conjugate function β of α delivers the existence of a positive

constant c0 > 1 for which

pβ (t) ≤ c0 for almost every t > 0, (2.15)
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that is,

β ′(t) ≤ c0
β(t)

t
. (2.16)

From identity (2.1), we notice that

x = β

(
x

α–1(x)

)

or α(x) = β

(
α(x)

x

)

. (2.17)

Hence the spectrum condition (2.16) is equivalent to saying

β ′
(

α(t)
t

)

≤ c0t. (2.18)

On the other hand, differentiate both sides of identity (2.1) to have

β–1(x)
α′(α–1(x))

+
α–1(x)

β ′(β–1(x))
= 1,

which is equivalent to

β–1(α(t))
α′(t)

+
t

β ′(α(t))
= 1. (2.19)

Then from the second identity of (2.17), we obtain β–1 ◦α(x) = α(x)
x . Therefore we find that

identity (2.19) is equivalent to

y
α′(x)

+
x

β ′(y)
= 1 for y :=

α(x)
x

, (2.20)

or

α′(t) = s + t
α′(t)
β ′(s)

, s =
α(t)

t
. (2.21)

Reflecting (2.18) to identity (2.21), we have

α′(t) ≥ c0

c0 – 1
α(t)

t
,

which implies that

pα(t) ≥ c1

with c1 = c0
c0–1 . �

As a direct application of Proposition 2, we have the following.

Corollary 3 Let (α,β) be a convex Hölder pair. Then there exist some constants c1, c2 sat-
isfying

tc1 ≤ α(t) ≤ tc2 (2.22)

for almost every t > 0.
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Proof The result follows from solving the two separable ordinary differential inequalities

c1 ≤ x
α′(x)
α(x)

≤ c2. �

3 Refined John–Nirenberg inequality
In this section Q stands for a cube whose sides are parallel to the axes, and |A| is the
Lebesgue measure of the set A in R

d , d ≥ 1. For a locally integrable function f on R
d , we

let

fQ = –
∫

Q
f (x) dx

and define distribution function μQ with respect to f – fQ by

μQ(t) :=
∣
∣
{

x ∈ Q :
∣
∣f (x) – fQ

∣
∣ > t

}∣
∣. (3.1)

Let α be a pre-Hölder function. We denote a class of functions by

BMOα

(

R
d) =

{

f ∈ L1
loc

(

R
d) : ‖f ‖BMOα < ∞}

,

where we set

‖f ‖BMOα = α–1
(

sup
Q

–
∫

Q
α
(∣
∣f (x) – fQ

∣
∣
)

dx
)

.

When α is the identity function, we write BMOα(Rd) := BMO(Rd).
We now state a refined version of the John–Nirenberg inequality on the sub-classes of

BMO equipped with the huge class of (convex pre-)Hölder base functions α.

Theorem 4 (Refinement of the John–Nirenberg inequality) Let α be a convex pre-Hölder
function or Hölder function and f ∈ BMOα . For every λ > 1, define step functions Fλ by

Fλ(t) =
∞

∑

k=0

(
1
λ

)k

χ(0,T](t – kT) (t > 0),

where T := 2dα–1(λα(‖f ‖BMOα )). Then one has

1
|Q|μQ(t) ≤ Fλ(t) (t > 0) (3.2)

for every cube Q ⊂ R
d and every λ > 1. The upper bound function Fλ is finer than the ex-

ponential function, that is to say, for every λ > 1, we have

1
|Q|μQ(t) ≤ Fλ(t) ≤ λ exp

(

–
t lnλ

2dα–1(λα(‖f ‖BMOα ))

)

. (3.3)

Proof We define

EQ(t) :=
{

x ∈ Q :
∣
∣f (x) – fQ

∣
∣ > t

}

,
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Θ(t) := sup
Q

μQ(t)
|Q| .

We want to show that, for any λ > 1,

Θ(t) ≤
∞

∑

k=0

1
λk χ(0,T](t – kT) � eb– t

c

for some positive constants b and c. First, we observe that Θ(t) ≤ 1 for all t > 0. So, obvi-
ously, we have

Θ(t) ≤ χ(0,T](t) ≤ eb–b t
T for 0 < t ≤ T , (3.4)

where b > 0 and T > 0 are constants to be chosen later. Now take a number s so large that
s > 1 and

‖f ‖BMOα < s.

Then we have

–
∫

Q
α
(∣
∣f (x) – fQ

∣
∣
)

dx < α(s) (3.5)

for any cube Q.
For a cube Q, we employ a dyadic decomposition of Q as follows: Sub-divide Q into 2d

equal closed sub-cubes of side length equal to half of the side length of Q by bisecting the
sides, and select such sub-cubes Q1

1, Q1
2, . . . , Q1

2d . Repeat this process for any sub-cubes Q1
j

of the second generation to produce the third generation Q2
1, Q2

2, . . . , Q2
22d . Continuing this

process, we obtain the collection of all dyadic cubes of Q, to say D(Q), and F (Q) is the
collection of all the first cubes Q′ ∈D(Q) such that

–
∫

Q′
α
(∣
∣f (x) – fQ

∣
∣
)

dx > α(s),

where the “first Q′” means that, for any cube Q̃ ∈ D(Q) with Q′ ⊂ Q̃, 1
|Q̃|

∫

Q̃ α(|f (x) –
fQ|) dx < α(s). Then we note that

{

x ∈ Q : sup
x∈Q′∈D(Q)

–
∫

Q′
α
(∣
∣f (x) – fQ

∣
∣
)

dx > α(s)
}

=
⋃

Q′∈F (Q)

Q′.

Also, by virtue of the Lebesgue differentiation theorem, for almost every x ∈ EQ(s), there
exists Q′ ∈D(Q) (indeed, Q′ ∈F (Q)) such that x ∈ Q′ and

α(s) < –
∫

Q′
α
(∣
∣f (y) – fQ

∣
∣
)

dy.

This means that the statement

“x ∈ EQ(s) implies x ∈
⋃

Q′∈F (Q)

Q′′′ (3.6)
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holds for almost every x. For Q′ ∈ F (Q), we take the parent Q̃ of Q′, that is, the smallest
cube Q̃ ∈ D(Q) \F (Q) containing Q′. Then Jensen’s inequality for the convex function α

or the Hölder type inequality (2.10) for the Hölder function α leads to

1
|Q′|

∫

Q′

∣
∣f (x) – fQ

∣
∣dx ≤

( |Q̃|
|Q′|

)

α–1
(

1
|Q̃|

∫

Q̃
α
(∣
∣f (x) – fQ

∣
∣
)

dx
)

≤ 2ds. (3.7)

Hence from the fact that for x ∈ EQ(t) with t > 2ds,

t <
∣
∣f (x) – fQ

∣
∣ ≤ ∣

∣f (x) – fQ′
∣
∣ + |fQ′ – fQ|

≤ ∣
∣f (x) – fQ′

∣
∣ +

1
|Q′|

∫

Q′

∣
∣f (x) – fQ

∣
∣dx

≤ ∣
∣f (x) – fQ′

∣
∣ + 2ds,

we have

t – 2ds <
∣
∣f (x) – fQ′

∣
∣.

By (3.6), we obtain that for t > 2ds,

μQ(t) =
∣
∣EQ(s) ∩ EQ(t)

∣
∣

≤
∣
∣
∣
∣

⋃

Q′∈F (Q)

Q′ ∩ EQ(t)
∣
∣
∣
∣

≤
∑

Q′∈F (Q)

∣
∣Q′ ∩ EQ(t)

∣
∣

≤
∑

Q′∈F (Q)

|{x ∈ Q′ : |f (x) – fQ′ | > t – 2ds}|
|Q′|

∣
∣Q′∣∣

≤ Θ
(

t – 2ds
) ∑

Q′∈F (Q)

∣
∣Q′∣∣.

Therefore, by (3.7) and (3.5), we get

μQ(t) ≤ Θ
(

t – 2ds
) ∑

Q′∈F (Q)

1
α(s)

∫

Q′
α
(∣
∣f (x) – fQ

∣
∣
)

dx

=
1

α(s)
Θ

(

t – 2ds
)
∫

∪Q′
α
(∣
∣f (x) – fQ

∣
∣
)

dx

≤ 1
α(s)

Θ
(

t – 2ds
) · |Q| · α(‖f ‖BMOα

)

for t > 2ds. That is,

1
|Q|μQ(t) ≤ α(‖f ‖BMOα )

α(s)
Θ

(

t – 2ds
)

.
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We take the supremum over Q to have

Θ(t) ≤ Θ(t – T)
λ

(t > T), (3.8)

where we put λ = α(s)
α(‖f ‖BMOα ) > 1 and T := 2ds = 2dα–1(λα(‖f ‖BMOα )).

We revisit (3.4) to have

Θ(t) ≤ χ(0,T](t) for 0 < t ≤ T . (3.9)

Applying (3.9) into (3.8), we have

Θ(t) ≤ Θ(t – T)
λ

≤ 1
λ

χ(0,T](t – T) (T < t ≤ 2T).

Continue this process to get, for t > 0,

Θ(t) ≤
∞

∑

k=1

1
λk–1 χ(0,T]

(

t – (k – 1)T
)

.

In order to find a smooth dominating function for Fλ(t), consider (3.4) to have

χ(0,T](t) ≤ exp

(

b – b
t
T

)

for 0 < t ≤ T = 2dα–1(λα
(‖f ‖BMOα

))

. (3.10)

Then we have that, for kT < t ≤ (k + 1)T ,

1
λk χ(0,T](t – kT) ≤ 1

λk exp

(

b – b
t – kT

T

)

=
1
λk ekb exp

(

b – b
t
T

)

.

Choosing b = lnλ, we obtain that, for t > 0,

Fλ(t) ≤ λ exp

(

–
t lnλ

2dα–1(λα(‖f ‖BMOα ))

)

for every λ > 0. The proof is now completed. �

By Theorem 4, we can see that

‖f ‖BMOα = α–1
(

sup
Q

1
|Q|

∫ ∞

0
α′(t)μQ(t) dt

)

≤ α–1
(∫ ∞

0
α′(t)Fλ(t) dt

)

= α–1

( ∞
∑

k=0

(
1
λ

)k ∫ (k+1)T

kT
α′(t) dt

)

= α–1

( ∞
∑

k=0

α((k + 1)T) – α(kT)
λk

)

. (3.11)
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When α is a convex pre-Hölder function or the Hölder function, Jensen’s inequality or
the Hölder type inequality (2.10), respectively, yields

‖f ‖BMO ≤ ‖f ‖BMOα . (3.12)

We can argue that for a convex Hölder pair (α,β), the classical BMO(Rd)-norm and the
modified BMOα(Rd)-norm are equivalent: For it, we will demonstrate that the identity
function id : BMO → BMOα is continuous at 0, which implies that

‖f ‖BMOα ≤ C‖f ‖BMO

for some C > 0. In fact, for any sequence {fn} converging to 0 in BMO(Rd), we have

α
(‖fn‖BMOα

)

= sup
Q

∫ ∞

0
α′(t)

μQ(t)
|Q| dt.

We apply Theorem 4 for the case when the base function α is the identity function so that
we have

1
|Q|μQ(t) ≤ F2(t) =

∞
∑

k=0

(
1
2

)k

χ(0,T](t – kT),

where T := 2d+1‖f ‖BMO. Then, as in (3.11), we obtain

α
(‖fn‖BMOα

) ≤
∞

∑

k=0

α((k + 1)2d+1‖fn‖BMO) – α(k2d+1‖fn‖BMO)
2k

≤
∞

∑

k=0

α((k + 1)2d+1‖fn‖BMO)
2k .

Corollary 3 yields

(‖fn‖BMOα

)c1 ≤ α
(‖fn‖BMOα

) ≤
∞

∑

k=0

((k + 1)2d+1‖fn‖BMO)c2

2k � ‖fn‖c2
BMO

for some 1 < c1 < c2. Therefore we obtain the equivalence between BMO(Rd)-norm and
BMOα(Rd)-norm:

Corollary 5 Let (α,β) be a convex Hölder pair. Then there exists a constant Cα such that

‖f ‖BMO ≤ ‖f ‖BMOα ≤ Cα‖f ‖BMO.
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