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Abstract
In this paper, we introduce and investigate new classes of normalized analytic
functions in an open unit disk with bounded radius and bounded boundary rotation
by using the subordination. We discuss inclusion results, co-efficient bounds, growth
and distortion theorems of the classes. Moreover, we compute the radii of strong
starlikeness, convexity and starlikeness of the classes. It is interesting to mention that
most of our findings are best possible as compared to the existing results in the
literature.
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1 Introduction and preliminaries
We represent A as the class of functions f (z), which is analytic in E = {z ∈ C : |z| < 1}.
Then, for each z ∈ E, f (z) has the form

f (z) = z +
∞∑

n=2

anzn. (1.1)

Suppose that g(z) and G(z) are analytic functions in E. Then g(z) is said to be subordi-
nate to G(z) written as g(z) ≺ G(z) if and only if there exists w(z), which is analytic in E

with w(0) = 0 and |w(z)| < 1. Therefore, g(z) = G(w(z)) belongs to E. g(z) is univalent in E
follows that g≺ G is equivalent to g(0) = G(0) and g(E) ⊂ G(E).

The function F(A, B, z) = ( 1+Az
1+Bz ) is the conformal mapping of the unit disk to circle, which

is symmetric with respect to the real axis having center 1–AB
1–B2 and radius A–B

1–B2 for each A,
B such that –1 ≤ B < A ≤ 1. A function p(z) (with p(0) = 1) is analytic in E and belongs to
the class P[A, B] if p(z) is subordinate to F(A, B, z). In [5], Janowski introduced and inves-
tigated the class P[A, B]. Later on, Noor and Arif [8] investigated the class Pm[A, B]. They
investigated that a function p(z) (with p(0) = 1) is analytic in E and belongs to the class
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Pm[A, B] if and only if there exist p1(z), p2(z) ∈ P[A, B] such that

p(z) =
(

m
4

+
1
2

)
p1(z) –

(
m
4

–
1
2

)
p2(z) (1.2)

for m ≥ 2, –1 ≤ B < A ≤ 1, and z ∈ E.
In [14], Rajapat et al. used the known family of fractional integral operators (with the

Gauss hypergeometric function in the kernel) and defined new subclasses of strongly star-
like and strongly convex functions of order β and type α in the open unit disk U . Moreover,
they established several inclusion relationships and interesting results associated with the
fractional integral operators.

Shiraishi et al. [16] investigated some new sufficient conditions for the class of strong
Caratheodory functions in the open unit disk U . Example and several corollaries of the
main results were presented.

We consider a function Fβ (A, B, z) = ( 1+Az
1+Bz )β for –1 ≤ B ≤ 1, –1 ≤ A ≤ 1 (A �= B), and

0 < β ≤ 1, which is analytic and univalent in E. If p(z) (with p(0) = 1) is subordinate to
Fβ (A, B, z), then the function p(z) is analytic in E and belongs to the class P̃β [A, B].

Lemma 1.1 ([10]) Suppose f ∈ Vm(ρ) for m ≥ 2 and 0≤ ρ < 1. Then f (z) = (f1(z))(1–ρ) for
f1(z) ∈ Vm.

Lemma 1.2 ([6]) Suppose ξ = ξ1 + iξ2, ζ = ζ1 + iζ2 and Φ : D ⊂ C2 → C is a complex-valued
function, which satisfies the following conditions:

(i) Ψ (ξ , ζ ) is continuous in a domain D ⊂ C2,
(ii) (1,0) ∈ D and Φ(1,0) > 0,

(iii) ReΦ(iξ2, ζ1) ≤ 0, whenever (iξ2, ζ1) ∈ D and ζ1 ≤ – 1
2 (1 + ξ 2

2 ).
If q(z) = 1 +

∑∞
n=1 cnzn is an analytic function in E with (q(z), zq′(z)) ∈ D and ReΦ(q(z),

zq′(z)) for z ∈ E, then Re(q(z)) > 0, for z ∈ E.

Lemma 1.3 ([3]) Suppose ra ≤ Re(a) sin( απ
2 ) – Re(a) cos( απ

2 ), Im(a) ≥ 0. Then the disk |w –
a| ≤ ra is contained in the sector | arg(w)| ≤ απ

2 for 0≤ α < 1.

2 Main results
In this section, we discuss the coefficient problem, analytic property, inclusion results,
and radius problem. It is interesting to mention that our obtained results are sharp as
compared to the existing results in the literature.

First we define the following.

Definition 2.1 A function q(z) (with q(0) = 1) is analytic in E and belongs to the class
P̃β

m[A, B] (for m ≥ 2) if and only if there exist p1(z), p2(z) ∈ P̃β [A, B] such that

q(z) =
(

m
4

+
1
2

)
q1(z) –

(
m
4

–
1
2

)
q2(z) for z ∈ E.

It is easy to see that the set P̃β
m[A, B] is convex. For special values of A, B, and β , we obtain

several subclasses of analytic functions studied and investigated by several researchers
[4, 7–9, 13–15].
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Definition 2.2 An analytic function f (z) ∈ R̃β
m[A, B] if and only if

zf ′(z)
f (z)

∈ P̃β
m[A, B] for z ∈ E. (2.1)

Note that, for β = 1, the class R̃β
m[A, B] yields the class Rm[A, B] [8] and R̃β

m[1, –1] = Rm(β).
For β = 1

2 , B = 0, and A = a with a ∈ (0, 1], we obtain the class

R̃
1
2
m[a,0] = q1, q2 ≺ √

1 + az for z ∈ E. (2.2)

Definition 2.3 A function f ∈ A belongs to Ṽβ
m[A, B] if and only if f is locally univalent

and

(zf ′(z))′

f ′(z)
∈ P̃β

m[A, B] for z ∈ E. (2.3)

From (2.1) and (2.3), it is considered that

f ∈ Ṽβ
m[A, B] ⇔ zf ′(z) ∈ R̃β

m[A, B]. (2.4)

Note that, for particular cases of A, B, and β , several classes are obtained and investigated
in [8]. For β = 1

2 , m = 2, B = 0 and A = a, a ∈ (0, 1], Aouf [1] obtained the following class:

Ṽ
1
2
m[a,0] =

{
f ∈ A :

(zf ′(z))′

f ′(z)
=

(
m
4

+
1
2

)
q1(z) –

(
m
4

–
1
2

)
q2(z), q1, q2 ≺ √

1 + az
}

.

Now we prove the following lemmas, which represent the coefficient inequality of func-
tions belonging to the class P̃β

m[A, B]. By choosing special values of A, B, and β , we may
relate our finding with the existing results. We shall assume m ≥ 2, –1 ≤ B < A ≤ 1,
0 < β ≤ 1, unless otherwise stated.

Lemma 2.4 Suppose q(z) = 1 +
∑∞

n=1 anzn belongs to P̃β
m[A, B]. Then

|an| ≤ βm
2

|A – B| for all n ≥ 1. (2.4*)

Proof Suppose q(z) belongs to P̃β
m[A, B] with q(z) = 1 +

∑∞
n=1 anzn. Then

q(z) =
(

m
4

+
1
2

)
q1(z) –

(
m
4

–
1
2

)
q2(z), q1, q2 ∈ P̃β [A, B].

If q1(z) = 1 +
∑∞

n=1 bnzn and q2(z) = 1 +
∑∞

n=1 cnzn, then

1 +
∞∑

n=1

anzn =
(

m
4

+
1
2

)(
1 +

∞∑

n=1

bnzn

)
–

(
m
4

–
1
2

)(
1 +

∞∑

n=1

cnzn

)
.

By comparing the coefficients of zn and using the triangle inequality, we get

|an| ≤
(

m
4

+
1
2

)
|bn| +

(
m
4

–
1
2

)
|cn|.
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Since qi(z) ≺ ( 1+Az
1+Bz )β = 1 + β(A – B)z + · · · for i = 1, 2. Using the well-known result of Ro-

gosinski [15] on subordination, we have |bn| ≤ β|A – B| and |cn| ≤ β|A – B| for all n ≥ 1.
This implies that

|an| ≤
(

m
4

+
1
2

)
β|A – B| +

(
m
4

–
1
2

)
β|A – B|,

which is as required. This completes the proof. �

The following lemma extends the inequality bound of functions in the class Pm[A, B].

Lemma 2.5 If q(z) belongs to P̃β
m[A, B] and z = reiθ , then

m(k1 – k2) + 2(k1 + k2)
4(1 – B2r2)

≤ Re
{

q(z)
} ≤ m

2

(
1 + Ar
1 + Br

)β

, (2.5)

where k1 = (1 – (A – B)r – ABr2)β , k2 = (1 + (A – B)r – ABr2)β .

Proof Suppose q(z) ∈ P̃β
m[A, B]. Then

q(z) =
(

m
4

+
1
2

)
q1(z) –

(
m
4

–
1
2

)
q2(z), where q1(z), q2(z) in P̃β [A, B]. (2.6)

Using the triangle inequality, we have

Re
(
q(z)

) ≤ ∣∣q(z)
∣∣ ≤

(
m
4

+
1
2

)∣∣q1(z)
∣∣ +

(
m
4

–
1
2

)∣∣q2(z)
∣∣. (2.7)

Since q1(z), q2(z) ∈ P̃β [A, B], then

Re
{

qi(z)
} ≤

(
1 + A|w|
1 + B|w|

)β

<
(

1 + Ar
1 + Br

)β

for i = 1, 2, (2.8)

where w(z) is defined in E, which is an analytic function with w(0) = 0 and |w(z)| < r. Using
(2.8) in (2.7), we get the right-hand side of (2.5).

Moreover, (2.6) can be written as

Re
(
q(z)

) ≥
(

m
4

+
1
2

)
Re

{
q1(z)

}
–

(
m
4

–
1
2

)∣∣q2(z)
∣∣. (2.9)

Since q1(z), q2(z) ∈ P̃β [A, B] and

Re
{

qi(z)
} ≥

(
1 – A|w|
1 – B|w|

)β

>
(

1 – Ar
1 – Br

)β

for i = 1, 2. (2.10)

Using (2.10) in (2.9), we have

{
Re q(z)

} ≥
(

m
4

+
1
2

)(
1 – Ar
1 – Br

)β

–
(

m
4

–
1
2

)(
1 + Ar
1 + Br

)β

. (2.11)
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This implies that

{
Re q(z)

} ≥
(

m
4

+
1
2

)(
1 – (A – B)r – ABr2

1 – B2r2

)β

–
(

m
4

–
1
2

)(
1 + (A – B)r – ABr2

1 – B2r2

)β

. (2.11*)

By simple calculations, we get the left-hand side of (2.5). Hence the proof. �

Lemma 2.6 If a function q(z) ∈A belongs to P̃β
m[A, B], then q(z) ∈ Pm(γ ), where γ = ( 1–A

1–B )β

for z ∈ E.

Proof Let q(z) belong to P̃β
m[A, B]. From (2.6) and (2.8), we have

Re
{

qi(z)
} ≥

(
1 – A|w|
1 – B|w|

)β

>
(

1 – Ar
1 – Br

)β

, i = 1, 2, z ∈ E. (2.12)

From this it follows that each qi(z) ∈ P(γ ) for i = 1, 2, where γ = ( 1–A
1–B )β and q(z) ∈ Pm(γ )

for γ = ( 1–A
1–B )β . This implies that P̃β

m[A, B] ⊆ Pm(γ ). Hence the proof. �

In the following theorems, we discuss and investigate the coefficient problem, analytic
property, inclusion results, and radius problem.

Theorem 2.7 If f ∈ Ṽβ
m[A, B], then there exist σ1,σ2 ∈ ∗

S(γ ) with γ = ( 1–A
1–B )β such that

f ′(z) =
( σ1(z)

z )( m
4 + 1

2 )

( σ2(z)
z )( m

4 – 1
2 )

, z ∈ E. (2.13)

Proof Let f (z) belong to Ṽβ
m[A, B]. Then q(z) = (zf ′(z))′

f ′(z) ∈ P̃β
m[A, B]. By Lemma 2.6, P̃β

m[A, B] ⊆
Pm(γ ). This implies that (zf ′(z))′

f ′(z) ∈ Pm(γ ) with γ = ( 1–A
1–B )β . It follows that f ∈ Vm(γ ). By

Lemma 1.1, it has the form

f ′(z) =
(
g(z)

)1–λ, where λ =
(

1 – A
1 – B

)β

and g(z) ∈ Vm. (2.14)

Brannan [2] showed that each g(z) ∈ Vm has the representation of the form

g ′(z) =
( s1(z)

z )( m
4 + 1

2 )

( s2(z)
z )( m

4 – 1
2 )

, s1, s2 ∈ ∗
S. (2.15)

It has been proved in [12] that each σi ∈ ∗
S(γ ) is

σi(z) = z
(

si(z)
z

)1–γ

, si(z) ∈ ∗
S, i = 1, 2. (2.16)

Using (2.14), (2.15), and (2.16), we get our required result (2.13). This completes the
proof. �
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Theorem 2.8 Let f (z) belong to R̃β
m[A, B] with f (z) = z +

∑∞
n=2 anzn for z ∈ E. Then

|an| ≤ (β m
2 |A – B|)n–1

(n – 1)!
for all n ≥ 2. (2.17)

Proof Let f (z) belong to R̃β
m[A, B]. Then q(z) = zf ′(z)

f (z) ∈ P̃β
m[A, B]. Suppose q(z) = zf ′(z)

f (z) = 1 +
∑∞

n=1 cnzn, where q(z) is defined in E and is analytic with q(0) = 1. This implies

zf ′(z) = f (z)q(z). (2.18)

The series representation of (2.18) is

z +
∞∑

n=2

nanzn =

(
z +

∞∑

n=2

anzn

)(
1 +

∞∑

n=1

cnzn

)
= z +

∞∑

n=2

n–1∑

i=0

cian–izn.

Comparing the coefficient of zn, we obtain (n – 1)an =
∑n–1

i=1 cian–i, c0 = 1 and hence

|an| =
1

n – 1

n–1∑

i=1

|ci||an–i| for n ≥ 2. (2.19)

Since q(z) ∈ P̃β
m[A, B] and using Lemma 2.4, we get |ci| ≤ βm

2 (A – B) for all n ≥ 1. From
(2.19), we have |an| ≤ βm(A–B)

2(n–1)
∑n–1

i=1 |ai|. In particular,

|a2| ≤ βm
2

(A – B),

|a3| ≤ β m
2 (A – B)

2

(
βm

2
(A – B) + 1

)
=

( m
2 (A – B))2

(2)!
.

For n = j,

|aj| ≤ β m
2 (A – B)

j – 1

j–1∑

i=1

|ai| =
β m

2 (A – B)
j – 1

j–2∏

i=1

(
β m

2 (A – B)
i

+ 1
)

=
(β m

2 (A – B))j–1

(j – 1)!
for j ≥ 3, (2.20)

where we use the Pochhammer notation (β)m introduced in [11]:

(β)m =

⎧
⎨

⎩
1, m = 0,β ∈C \ {0},
β(β + 1) · (β + m – 1), m ∈N,β ∈C.

Consider

|am+1| ≤ β m
2 (A – B)

m

m–1∑

i=1

|ai| +
β m

2 (A – B)
m

|am|.
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Using (2.20), we obtain the following:

|aj+1| ≤ β m
2 (A – B)

j

j–2∏

i=1

(
β m

2 (A – B)
i

+ 1
)

+
m
2 (β(A – B))2

j(j – 1)

j–2∏

i=1

(
β(A – B)

i
+ 1

)

=
β m

2 (A – B)
j

j–1∏

i=1

(
β m

2 (A – B)
i

+ 1
)

=
(β m

2 (A – B))m

(j)!
.

By induction, we get (2.17). Hence the proof. �

Theorem 2.9 Let f (z) belong to Ṽβ
m[A, B] with f (z) = z +

∑∞
n=2 anzn, z ∈ E. Then

|an| ≤ (β m
2 (A – B))n–1

(n)!
for n ≥ 2.

Proof Let f (z) belong to Ṽβ
m[A, B] with f (z) = z +

∑∞
n=2 anzn. Then zf ′(z) ∈ R̃β

m[A, B]. By
using Theorem 2.8, we get

|an| ≤ (β m
2 (A – B))n–1

(n)!
for n ≥ 2. �

Corollary 2.10 For A = 1, B = –1, f ∈ Ṽβ
m[1, –1] ≡ Ṽm(β) and using Theorem 2.9, we obtain

|an| ≤ (2mβ)n–1

(n)!
for n ≥ 2.

Theorem 2.11 If f ∈ Ṽβ
m[A, B], then f ∈ R̃β

m(ρ), where

ρ =
(2γ – 1) +

√
(1 – 2γ )2 + 8
4

, γ =
(

1 – A
1 – B

)β

. (2.21)

Proof Suppose that

zf ′(z)
f (z)

= (1 – ρ)q(z) + ρ

= (1 – ρ)
{(

m
4

+
1
2

)
q1(z) –

(
m
4

–
1
2

)
q2(z)

}
+ ρ, (2.22)

where q(z) is analytic in E with q(0) = 1. From (2.21), we have

(zf ′(z))′

f ′(z)
= (1 – ρ)

[
q(z) +

zq′(z)
(1 – ρ)q(z) + ρ.

]
+ ρ. (2.23)

f ∈ Ṽβ
m[A, B] implies that (zf ′(z))′

f ′(z) ∈ P̃β
m[A, B] and P̃β

m[A, B] ⊆ Pm(γ ), where γ = ( 1–A
1–B )β . From

this it follows that

1
1 – γ

(
(zf ′(z))′

f ′(z)
– γ

)
∈ Pm. (2.24)
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Using (2.23) and (2.24), we get

(1 – ρ)
1 – γ

[
q(z) +

1
1–ρ

zq′(z)
q(z) + ρ

1–ρ
.

]
+

(ρ – γ )
1 – γ

∈ Pm. (2.25)

Now we define

Φη1,η2 (z) =
1

η2 + 1
z

(1 – z)η1
+

η2

η2 + 1
z

(1 – z)η1+1 ,

with η1 = 1
1–ρ

, η2 = ρ

1–ρ
. Using (2.22) with the convolution techniques given by Noor [7],

we have

q(z) +
η1zq(z)

q(z) + η2
= (1 – ρ)

[(
m
4

+
1
2

){
q1(z) +

η1zq′
1(z)

q1(z) + η2.

}

–
(

m
4

–
1
2

){
q2(z) +

η1zq′
2(z)

q2(z) + η2.

}]
+ ρ. (2.26)

Thus, using (2.25) and (2.26), we have

(1 – ρ)
1 – γ

{
qi(z) +

η1zq′
i(z)

qi(z) + η2.

}
+

(ρ – γ )
1 – γ

∈ P for i = 1, 2 and z ∈ E. (2.27)

Since the first two conditions of Lemma 1.2 are obviously satisfied, we satisfy condition
(iii) as follows:

ReΦ(iξ2, ζ1) =
ρ – γ

1 – γ
+

1 – ρ

1 – γ
Re

{
iξ2 +

ρζ1

(1 – ρ)iξ2 + ρ

}

≤ ρ – γ

1 – γ
–

1 – ρ

2(1 – γ )

{
ρ(1 + ζ 2

2
(1 – ρ)2ξ 2

2 + ρ2

}
, for ξ1 ≤ –

1 + ξ 2
2

2

=
A + Bξ 2

2
D

, (2.28)

where

A = 2(ρ – γ )ρ2 – ρ(1 – ρ),

B = 2(ρ – γ )(1 – ρ)2 – ρ(1 – ρ),

D = 2(1 – γ )
(
(1 – ρ)2u2

2 + ρ2).

It is observed that (2.28) gives negative value for A ≤ 0 and B ≤ 0. Therefore, using A ≤ 0,
we have

ρ =
(2γ – 1) +

√
(1 – 2γ )2 + 8
4

, γ =
(

1 – A
1 – B

)β

, (2.29)

and from B ≤ 0, we obtain0≤ ρ < 1. Hence all three conditions of Lemma 1.2 are satisfied.
From this it follows that qi(z) ∈ P for i = 1, 2 and z ∈ E. Therefore q(z) ∈ Pm and f ∈ Rm(ρ),
where ρ is given in (2.29). This completes the proof. �



Hussain and Ahmad Journal of Inequalities and Applications        (2020) 2020:126 Page 9 of 10

Corollary 2.12 If β = 1
2 , B = 0, A = a, a ∈ (0, 1] and f ∈ Ṽ

1
2
m[a, 0]. Then, using Theorem 2.11,

we have f ∈ R̃
1
2
m(ρ), where

ρ =
(2γ – 1) +

√
(1 – 2γ )2 + 8
4

, γ =
√

1 – a. (2.30)

Theorem 2.13 If f (z) belongs to R̃β
m[A, B], then f (z) ∈ Rm(γ ), γ = ( 1–A

1–B )β for z ∈ E.

Proof f (z) belongs to R̃β
m[A, B] implies q(z) = zf ′(z)

f (z) for some q ∈ P̃β
m[A, B]. Using Lemma 2.6,

we get zf ′(z)
f (z) ∈ Pm(γ ), where γ = ( 1–A

1–B )β . Thus f (z) ∈ Rm(γ ) for z ∈ E. This completes the
proof. �

Corollary 2.14 If β = 1, m = 2 and f ∈ S∗[A, B]. Then, using Theorem 2.13, we have f (z) ∈
S∗(γ ), where γ = ( 1–A

1–B ).

3 Conclusion
We introduced some new classes of analytic functions with bounded radius and bounded
boundary rotation by using the subordination. We discussed inclusion results, coefficient
bounds, growth and distortion theorems of the classes. The radii of starlikeness and strong
starlikeness of the classes have been computed. It is observed that most of the results are
best possible.
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