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Abstract
In this paper, we establish some new Hermite–Hadamard-type inequalities involving
ψ -Riemann–Liouville fractional integrals via s-convex functions in the second sense.
Meanwhile, we present many useful estimates on these types of new
Hermite–Hadamard-type inequalities. Finally, we give some applications to special
means of real numbers.
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1 Introduction
The classical Hermite–Hadamard inequality is as follows:

g
(

a + b
2

)
≤ 1

b – a

∫ b

a
g(s) ds ≤ g(a) + g(b)

2
(1)

for convex functions g : [a, b] ⊂ R → R (see [1]).
In the past decade, fractional calculus has been regarded as one of the best tools to

describe long-memory processes. Many researchers are interested in such a model. The
most important of these models are described by differential equations with fractional
derivatives. Their evolution is much more complex than the classical integer-order case,
and the corresponding theory is also more difficult in the integer-order case. The theory
of fractional integral inequalities plays an important role in mathematics.

The Hermite–Hadamard integral inequality for convex functions is one of the most fa-
mous inequalities. Ten recently published papers [2–11] are focused on the generaliza-
tions and variants for the convexity and Hermite–Hadamard inequality. Many mathe-
maticians devoted to the promotion and expansion of (1). For more information, refer
to [1, 12–18] and closely related references.

With a wide application of fractional integration and Hermite–Hadamard inequality,
many researchers extended their research to the Hermite–Hadamard inequality, includ-
ing fractional integration rather than ordinary integration; see [19–27]. Sarikaya et al. [19]
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derived an interesting Hermite–Hadamard-type inequality, which contains the fractional
integral instead of the ordinary one. The study attracted many researchers to consider the
problem. So far, some new integral inequalities have been obtained by using fractional cal-
culus. Sousa et al. [28] introduced fractional integral operators with ψ-Riemann–Liouville
kernel and proved similar inequalities.

In addition to the classical convex functions, Hudzik and Maligranda [29] introduced
the definition of s-convex functions in the second sense.

Definition 1.1 (see [30, Definition 1.4]) A function g : I ⊆ R+ → R+ is said to be s-convex
in the second sense on I if inequality g(λx + (1 – λ)y) ≤ λsg(x) + (1 – λ)sg(y) for all x, y ∈ I
and λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

Definition 1.2 (see [28, Definition 4]) Let (a, b) (–∞ ≤ a < b ≤ ∞) be a finite or infinite
interval of the real line R, and let α > 0. Also, let ψ(x) be an increasing positive func-
tion on (a, b] with continuous derivative ψ ′(x) on (a, b). Then the left- and right-sided
ψ-Riemann–Liouville fractional integrals of a function f with respect to the function ψ

on [a, b] are defined by

Iα:ψ
a+ g(x) =

1
Γ (α)

∫ x

a
ψ ′(t)

(
ψ(x) – ψ(t)

)α–1g(t) dt,

Iα:ψ
b– g(x) =

1
Γ (α)

∫ b

x
ψ ′(t)

(
ψ(t) – ψ(x)

)α–1g(t) dt,

respectively, where Γ is the gamma function.

Lemma 1.3 Let h : [b, c] → R be a differentiable mapping on (b, c) with b < c. Also, let
h ∈ L[b, c]. Then we have the following equality for fractional integrals:

h(b) + h(c)
2

–
Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]

=
c – b

2

∫ 1

0

(
(1 – t)α – tα

)
h′(tb + (1 – t)c

)
dt. (2)

Proof From [31] we have

h(b) + h(c)
2

–
Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]

=
1

2(c – b)α

∫ ψ–1(c)

ψ–1(b)

[(
ψ(ν) – b

)α –
(
c – ψ(ν)

)α](
h′ ◦ψ

)
(ν)ψ ′(ν) dν

=
1
2

∫ ψ–1(c)

ψ–1(b)

[(
ψ(ν) – b

c – b

)α

–
(

c – ψ(ν)
c – b

)α](
h′ ◦ψ

)
(ν)ψ ′(ν) dν

(
let t =

c – ψ(ν)
c – b

)

=
c – b

2

∫ 1

0

(
(1 – t)α – tα

)
h′(tb + (1 – t)c

)
dt.

The proof is completed. �
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Lemma 1.4 Let h : [b, c] → R be a differentiable mapping on (b, c) with b < c. If h ∈ L[b, c],
then we have the following equality for fractional integrals:

Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)

=
c – b

2

∫ 1

0

(
k + tα – (1 – t)α

)
h′(tb + (1 – t)c

)
dt, (3)

where

k =

⎧⎨
⎩

1, 0 ≤ t < 1
2 ,

–1, 1
2 ≤ t < 1.

Proof Note that

c – b
2

∫ 1

0
kh′(tb + (1 – t)c

)
dt

=
c – b

2

∫ 1
2

0
h′(tb + (1 – t)c

)
dt –

c – b
2

∫ 1

1
2

h′(tb + (1 – t)c
)

dt

=
h(c) – h( b+c

2 )
2

+
h(b) – h( b+c

2 )
2

=
h(b) + h(c)

2
– h

(
b + c

2

)
.

By Lemma 1.3 we have

Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)

=
[

h(b) + h(c)
2

– h
(

b + c
2

)]

–
{

h(b) + h(c)
2

–
Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]}

=
c – b

2

∫ 1

0
kh′(tb + (1 – t)c

)
dt –

c – b
2

∫ 1

0

(
(1 – t)α – tα

)
h′(tb + (1 – t)c

)
dt

=
c – b

2

∫ 1

0

(
k + tα – (1 – t)α

)
h′(tb + (1 – t)c

)
dt.

The proof is completed. �

Lemma 1.5 (see [32, Definition 1.1]) Let (Ω ,Λ,μ) be a measure space with 0 < μ(Ω) < 1,
and let φ : I → R be a convex function defined on an open interval I in R. If f : Ω → I is
such that f , φ◦f ∈ L(Ω ,Λ,μ), then

φ

(
1

μ(Ω)

∫
Ω

f dμ

)
≤ 1

μ(Ω)

∫
Ω

φ(f ) dμ. (4)

In the case where Ω is strictly convex on I , we have equality in (4) if and only if f is constant
almost everywhere on Ω .
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Remark 1.6 Inequality (4) is reversed if φ is, that is,

φ

(
1

μ(Ω)

∫
Ω

f dμ

)
≥ 1

μ(Ω)

∫
Ω

φ(f ) dμ. (5)

The main purpose of this paper is to introduce some new Hermite–Hadamard-type
inequalities involving ψ-Riemann–Liouville fractional integrals via s-convex functions in
the second sense. For these functions, we establish some results related to the left end of
new inequalities similar to inequality (1). We give some applications to special mean of a
positive real number.

2 Main results
We now in a position to establish some inequalities of Hermite–Hadamard type involving
ψ-Riemann–Liouville fractional integrals (with α ∈ (0, 1)) via s-convex functions.

Theorem 2.1 Let α ∈ (0, 1), let h : [b, c] → R be a positive function with 0 ≤ b < c and h ∈
L[b, c], and let ψ be an increasing positive function on [b, c] having a continuous derivative
ψ ′ on (b, c). If h is an s-convex function on [b, c], then we have the following inequality for
fractional integrals:

2s–1h
(

b + c
2

)
≤ Γ (α + 1)

2(c – b)α
[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]

≤
[

3α

α + s
–

α

(α + s)2α+s

]
h(b) + h(c)

2
. (6)

Proof Since h is an s-convex function on [b, c], for every x, y ∈ [b, c] with λ = 1
2 , we have

h
(

x + y
2

)
≤ 1

2s h(x) +
1
2s h(y),

that is, with x = tb + (1 – t)c, y = (1 – t)b + tc,

2sh
(

b + c
2

)
≤ h

(
tb + (1 – t)c

)
+ h

(
(1 – t)b + tc

)
. (7)

Multiplying both sides of (7) by tα–1 and then integrating the resulting inequality with
respect to t over [0, 1], we obtain

∫ 1

0
tα–1h

(
tb + (1 – t)c

)
dt +

∫ 1

0
tα–1h

(
(1 – t)b + tc

)
dt

≥
∫ 1

0
tα+s–1h

(
b + c

2

)
dt

≥ 2s

α
h
(

b + c
2

)
.

Next,

Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
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=
Γ (α + 1)
2(c – b)α

[
1

Γ (α)

∫ ψ–1(c)

ψ–1(b)
ψ ′(t)

(
ψ

(
ψ–1(c)

)
– ψ(t)

)α–1(h◦ψ
)
(t) dt

+
1

Γ (α)

∫ ψ–1(c)

ψ–1(b)
ψ ′(t)

(
ψ(t) – ψ

(
ψ–1(b)

))α–1(h◦ψ
)
(t) dt

]

=
Γ (α + 1)
2(c – b)α

× 1
Γ (α)

[∫ ψ–1(c)

ψ–1(b)
ψ ′(t)

(
c – ψ(t)

)α–1h
(
ψ(t)

)
dt

+
∫ ψ–1(c)

ψ–1(b)
ψ ′(t)

(
ψ(t) – b

)α–1h
(
ψ(t)

)
dt

]

(
let m = ψ(t)

)

=
α

2(c – b)

[∫ c

b

(
c – m
c – b

)α–1

h(m) dm +
∫ c

b

(
m – b
c – b

)α–1

h(m) dm
]

(
let u =

c – m
c – b

, v =
m – b
c – b

, then let t = u and t = v
)

=
α

2

[∫ 1

0
tα–1h

(
tb + (1 – t)c

)
dt +

∫ 1

0
tα–1h

(
(1 – t)b + tc

)
dt

]

≥ α

2
× 2s

α
h
(

b + c
2

)

= 2s–1h
(

b + c
2

)
,

so the left-hand side inequality in (6) is proved.
To prove the right-hand side inequality in (6), since h is an s-convex function, for t ∈

[0, 1], we have

h
(
tb + (1 – t)c

) ≤ tsh(b) + (1 – t)sh(c)

and

h
(
(1 – t)b + tc

) ≤ (1 – t)sh(b) + tsh(c),

and then

h
(
tb + (1 – t)c

)
+ h

(
(1 – t)b + tc

) ≤ (
ts + (1 – t)s)(h(b) + h(c)

)
. (8)

Multiplying both sides of (8) by tα–1 and then integrating, we obtain

∫ 1

0
tα–1h

(
tb + (1 – t)c

)
dt +

∫ 1

0
tα–1h

(
(1 – t)b + tc

)
dt

≤
∫ 1

0
tα–1(ts + (1 – t)s)(h(b) + h(c)

)
dt

=
[∫ 1

0
tα+s–1 dt +

∫ 1

0
tα–1(1 – t)s dt

](
h(b) + h(c)

)

=
[

1
α + s

+
∫ 1

2

0
tα–1(1 – t)s dt +

∫ 1

1
2

tα–1(1 – t)s dt
](

h(b) + h(c)
)
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≤
[

1
α + s

+
∫ 1

2

0
(1 – t)α+s–1 dt +

∫ 1

1
2

tα+s–1 dt
](

h(b) + h(c)
)

≤
[

3
α + s

+
1

(α + s)2α+s

](
h(b) + h(c)

)
.

So then

Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]

=
α

2

[∫ 1

0
tα–1h

(
tb + (1 – t)c

)
dt +

∫ 1

0
tα–1h

(
(1 – t)b + tc

)
dt

]

≤ α

2
×

[
3

α + s
–

1
(α + s)2α+s

](
h(b) + h(c)

)

=
[

3α

α + s
–

α

(α + s)2α+s

]
h(b) + h(c)

2
.

The proof is completed. �

Theorem 2.2 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c],
and let ψ be an increasing positive function on [b, c] having a continuous derivative ψ ′

on (b, c). If h′ is an s-convex function on [b, c] for some fixed s ∈ (0, 1], then we have the
following inequality for fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣
≤ c – b

2(s + 1)
(∣∣h′(b)

∣∣ +
∣∣h′(c)

∣∣). (9)

Proof Using Lemma 1.4 and the s-convexity of h, we have

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣
=

c – b
2

∣∣∣∣
∫ 1

0

(
k + tα – (1 – t)α

)
h′(tb + (1 – t)c

)
dt

∣∣∣∣

≤ c – b
2

{∫ 1
2

0

(
1 + tα – (1 – t)α

)[
ts∣∣h′(b)

∣∣ + (1 – t)s∣∣h′(c)
∣∣]dt

+
∫ 1

1
2

(
(1 – t)α + 1 – tα

)[
ts∣∣h′(b)

∣∣ + (1 – t)s∣∣h′(c)
∣∣]dt

}

=
c – b

2

{∣∣h′(b)
∣∣ ∫ 1

2

0

[
ts + tα+s – ts(1 – t)α

]
dt

+
∣∣h′(c)

∣∣ ∫ 1
2

0

[
(1 – t)s + tα(1 – t)s – (1 – t)α+s]dt

+
∣∣h′(b)

∣∣ ∫ 1

1
2

[
ts(1 – t)α + ts – tα+s]dt

+
∣∣h′(c)

∣∣ ∫ 1

1
2

[
(1 – t)α+s + (1 – t)s – tα(1 – t)s]dt

}
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≤ c – b
2

{∣∣h′(b)
∣∣ ∫ 1

2

0
ts dt +

∣∣h′(c)
∣∣ ∫ 1

2

0
(1 – t)s dt +

∣∣h′(b)
∣∣ ∫ 1

1
2

ts dt

+
∣∣h′(c)

∣∣ ∫ 1

1
2

(1 – t)s dt
}

=
c – b

2

{∣∣h′(b)
∣∣ ∫ 1

0
ts dt +

∣∣h′(c)
∣∣ ∫ 1

0
(1 – t)s dt

}

=
c – b

2(s + 1)
(∣∣h′(b)

∣∣ +
∣∣h′(c)

∣∣).

The proof is completed. �

Theorem 2.3 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c],
and let ψ be an increasing positive function on [b, c] having a continuous derivative ψ ′ on
(b, c). If |h′|q (q > 1) is an s-convex function on [b, c] for some fixed s ∈ (0, 1], then we have
the following inequality for fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ (c – b)
(

1
(αp + 1)2αp+1

) 1
p
(

1
(s + 1)2s+1

) 1
q

× [(∣∣h′(b)
∣∣q +

(
2s+1 – 1

)∣∣h′(c)
∣∣q) 1

q +
((

2s+1 – 1
)∣∣h′(b)

∣∣q +
∣∣h′(c)

∣∣q) 1
q
]
, (10)

where 1
p = 1 – 1

q .

Proof Using Lemma 1.4 and the Hölder inequality via the s-convexity of |h′|q (q > 1), we
have

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ c – b
2

{∫ 1
2

0

(
1 + tα – (1 – t)α

)∣∣h′(tb + (1 – t)c
)∣∣dt

+
∫ 1

1
2

(
(1 – t)α + 1 – tα

)∣∣h′(tb + (1 – t)c
)∣∣dt

}

≤ c – b
2

{(∫ 1
2

0

(
1 + tα – (1 – t)α

)p dt
) 1

p
(∫ 1

2

0

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q

+
(∫ 1

1
2

(
(1 – t)α + 1 – tα

)p dt
) 1

p
(∫ 1

1
2

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q
}

≤ c – b
2

(∫ 1
2

0

(
1 + tα – (1 – t)α

)p dt
) 1

p
{(∫ 1

2

0

[
ts∣∣h′(b)

∣∣q + (1 – t)s∣∣h′(c)
∣∣q]dt

) 1
q

+
(∫ 1

1
2

[
ts∣∣h′(b)

∣∣q + (1 – t)s∣∣h′(c)
∣∣q]dt

) 1
q
}

≤ c – b
2

(∫ 1
2

0

(
1 + tα –

(
1 – tα

))p dt
) 1

p
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×
{(

1
(s + 1)2s+1

∣∣h′(b)
∣∣q +

1
s + 1

(
1 –

1
2s+1

)∣∣h′(c)
∣∣q

) 1
q

+
(

1
s + 1

(
1 –

1
2s+1

)∣∣h′(b)
∣∣q +

1
(s + 1)2s+1

∣∣h′(c)
∣∣q

) 1
q
}

≤ c – b
2

(
2p

∫ 1
2

0
tαp dt

) 1
p
(

1
(s + 1)2s+1

) 1
q

× [(∣∣h′(b)
∣∣q +

(
2s+1 – 1

)∣∣h′(c)
∣∣q) 1

q +
((

2s+1 – 1
)∣∣h′(b)

∣∣q +
∣∣h′(c)

∣∣q) 1
q
]

≤ (c – b)
(

1
(αp + 1)2αp+1

) 1
p
(

1
(s + 1)2s+1

) 1
q

× [(∣∣h′(b)
∣∣q +

(
2s+1 – 1

)∣∣h′(c)
∣∣q) 1

q +
((

2s+1 – 1
)∣∣h′(b)

∣∣q +
∣∣h′(c)

∣∣q) 1
q
]
.

The proof is completed. �

Corollary 2.4 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c]
ψ(·) is an increasing and positive monotone function on [b, c], having a continuous deriva-
tive ψ ′ on (b, c). If |h′|q (q > 1) is an s-convex function on [b, c] for some fixed s ∈ (0, 1], then
we have the following inequality for fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ (c – b)
(

1
(αp + 1)2αp+1

) 1
p
(

1
(s + 1)2s+1

) 1
q

× (
1 +

(
2s+1 – 1

) 1
q
)(∣∣h′(b)

∣∣ +
∣∣h′(c)

∣∣), (11)

where 1
p = 1 – 1

q .

Proof We consider inequality (10), and we let a1 = |h′(b)|q, b1 = (2s+1 – 1)|h′(c)|q, a2 =
(2s+1 – 1)|h′(b)|q, b2 = |h′(c)|q. Here 0 < 1

q < 1 for q > 1. Using the inequality
∑n

i=1(ai + bi)r ≤∑n
i=1 ar

i +
∑n

i=1 br
i for 0 < r < 1, ai > 0, bi > 0, i = 1, 2, . . . , n, we obtain the required result. This

completes the proof. �

Theorem 2.5 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c],
and let ψ is an increasing positive function on [b, c] having a continuous derivative ψ ′ on
(b, c). If |h′|q (q > 1) is an s-convex function on [b, c] for some fixed s ∈ (0, 1], then we have
the following inequality for fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× [(∣∣h′(b)
∣∣q +

(
2s+1 – 1

)∣∣h′(c)
∣∣q) 1

q +
((

2s+1 – 1
)∣∣h′(b)

∣∣q +
∣∣h′(c)

∣∣q) 1
q
]
. (12)
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Proof Using Lemma 1.4 and the power mean inequality via the s-convexity of |h′|q (q > 1),
we have

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ c – b
2

{∫ 1
2

0

(
1 + tα – (1 – t)α

)∣∣h′(tb + (1 – t)c
)∣∣dt

+
∫ 1

1
2

(
(1 – t)α + 1 – tα

)∣∣h′(tb + (1 – t)c
)∣∣dt

}

≤ c – b
2

{(∫ 1
2

0

(
1 + tα – (1 – t)α

)
dt

)1– 1
q

×
(∫ 1

2

0

(
1 + tα – (1 – t)α

)∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q

+
(∫ 1

1
2

(
(1 – t)α + 1 – tα

)
dt

)1– 1
q
(∫ 1

1
2

(
(1 – t)α + 1 – tα

)∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q
}

≤ c – b
2

(∫ 1
2

0

(
1 + tα – (1 – t)α

)
dt

)1– 1
q

×
{(∫ 1

2

0

(
1 + tα – (1 – t)α

)[
ts∣∣h′(b)

∣∣q + (1 – t)s∣∣h′(c)
∣∣q]dt

) 1
q

+
(∫ 1

1
2

(
(1 – t)α + 1 – tα

)[
ts∣∣h′(b)

∣∣q + (1 – t)s∣∣h′(c)
∣∣q]dt

) 1
q
}

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q

×
{(∣∣h′(b)

∣∣q
∫ 1

2

0

[
ts + tα+s – ts(1 – t)α

]
dt

+
∣∣h′(c)

∣∣q
∫ 1

2

0

[
(1 – t)s + tα(1 – t)s – (1 – t)α+s]dt

) 1
q

+
(∣∣h′(b)

∣∣q
∫ 1

1
2

[
ts(1 – t)α + ts – tα+s]dt

+
∣∣h′(c)

∣∣q
∫ 1

1
2

[
(1 – t)α+s + (1 – t)s – tα(1 – t)s]dt

) 1
q
}

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q

×
{(∣∣h′(b)

∣∣q
∫ 1

2

0
ts dt +

∣∣h′(c)
∣∣q

∫ 1
2

0
(1 – t)s dt

) 1
q

+
(∣∣h′(b)

∣∣q
∫ 1

1
2

ts dt +
∣∣h′(c)

∣∣q
∫ 1

1
2

(1 – t)s dt
) 1

q
}

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q
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×
{(

1
(s + 1)2s+1

∣∣h′(b)
∣∣q +

1
s + 1

(
1 –

1
2s+1

)∣∣h′(c)
∣∣q

) 1
q

+
(

1
s + 1

(
1 –

1
2s+1

)∣∣h′(b)
∣∣q +

1
(s + 1)2s+1

∣∣h′(c)
∣∣q

) 1
q
}

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× [(∣∣h′(b)
∣∣q +

(
2s+1 – 1

)∣∣h′(c)
∣∣q) 1

q +
((

2s+1 – 1
)∣∣h′(b)

∣∣q +
∣∣h′(c)

∣∣q) 1
q
]
.

The proof is completed. �

Corollary 2.6 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c],
and let ψ be an increasing positive function on [b, c] having a continuous derivative ψ ′ on
(b, c). If |h′|q (q > 1) is an s-convex function on [b, c] for some fixed s ∈ (0, 1], then we have
the following inequality for fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ c – b
2

(
1

α + 1

)1– 1
q
(

α – 1
2

+
1

2α

)1– 1
q
(

1
(s + 1)2s+1

) 1
q

× (
1 +

(
2s+1 – 1

) 1
q
)(∣∣h′(b)

∣∣ +
∣∣h′(c)

∣∣). (13)

Proof We can obtain the result using the technique in the proof of Corollary 2.4 by con-
sidering inequality (13). �

Theorem 2.7 Let h : [b, c] → R be a positive function with 0 ≤ b < c such that h ∈ L[b, c],
and let ψ be an increasing positive function on [b, c] having a continuous derivative ψ ′ on
(b, c). If |h′|q (q > 1) is a concave function on [b, c], then we have the following inequality for
fractional integrals:

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ (c – b)
(

1
(αp + 1)2αp+1

) 1
p
(

1
2

) 1
q
(∣∣∣∣h′

(
b + 3c

4

)∣∣∣∣ +
∣∣∣∣h′

(
3b + c

4

)∣∣∣∣
)

, (14)

where 1
p = 1 – 1

q .

Proof Using Lemma 1.4 and the Hölder inequality, we have

∣∣∣∣Γ (α + 1)
2(c – b)α

[
Iα:ψ
ψ–1(b)+

(
h◦ψ

)(
ψ–1(c)

)
+ Iα:ψ

ψ–1(c)–

(
h◦ψ

)(
ψ–1(b)

)]
– h

(
b + c

2

)∣∣∣∣

≤ c – b
2

(∫ 1
2

0

(
1 + tα – (1 – t)α

)p dt
) 1

p
{(∫ 1

2

0

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q

+
(∫ 1

1
2

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q
}
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= (c – b)
(

1
(αp + 1)2αp+1

) 1
p
{(∫ 1

2

0

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q

+
(∫ 1

1
2

∣∣h′(tb + (1 – t)c
)∣∣q dt

) 1
q
}

.

Noting that |h′|q (q > 1) is concave on [b, c] and using the Jensen integral inequality (5), we
have

∫ 1
2

0

∣∣h′(tb+(1– t)c
)∣∣q dt ≤

(∫ 1
2

0
t∗ dt

)∣∣∣∣h′
(∫ 1

2
0 (tb + (1 – t)c) dt∫ 1

2
0 t∗ dt

)∣∣∣∣
q

≤ 1
2

∣∣∣∣h′
(

b + 3c
4

)∣∣∣∣
q

.

Similarly,

∫ 1

1
2

∣∣h′(tb + (1 – t)c
)∣∣q dt ≤

(∫ 1

1
2

t∗ dt
)∣∣∣∣h′

(∫ 1
1
2

(tb + (1 – t)c) dt∫ 1
1
2

t∗ dt

)∣∣∣∣
q

≤ 1
2

∣∣∣∣h′
(

3b + c
4

)∣∣∣∣
q

.

In this formula, t∗ is an arbitrary constant independent of t. Combined with the previous
inequality, we get the required results. The proof is completed. �

3 Applications to some special means
Bivariate means are with respect to two elements. Consider the following bivariate means
(see [33]) for arbitrary m, n ∈ R, m �= n:

the harmonic mean

H(m, n) =
2

1
m + 1

n
, m, n ∈ R \ {0},

the arithmetic mean

A(m, n) =
m + n

2
, m, n ∈ R,

the logarithmic mean

L(m, n) =
n – m

ln |n| – ln |m| , |m| �= |n|, mn �= 0,

the r-logarithmic mean

Lr(m, n) =
[

nr+1 – mr+1

(r + 1)(n – m)

] 1
r
, r ∈ Z \ {–1, 0}, m, n ∈ R, m �= n.

Now we give some applications to special means of a real number.
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Proposition 3.1 Let m, n ∈ R+, m < n, r ∈ Z, |r| ≥ 2, s ∈ (0, 1], and q > 1. Then

∣∣Lr
r(m, n) – Ar(m, n)

∣∣≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n–m)|r|
s+1 A(|m|r–1, |n|r–1),

2(n – m)|r|( 1
(p+1)2p+1 )

1
p ( 1

(s+1)2s+1 )
1
q

× (1 + (2s+1 – 1)
1
q )A(|m|r–1, |n|r–1),

(n – m)|r|( 1
4 )

1
p ( 1

(s+1)2s+1 )
1
q

× (1 + (2s+1 – 1)
1
q )A(|m|r–1, |n|r–1),

where 1
p = 1 – 1

q .

Proof Applying Theorem 2.2, Corollary 2.4, and Corollary 2.6, respectively, for h(x) = xr ,
ψ(x) = x, and α = 1, we immediately obtain the result. �

Proposition 3.2 Let m, n ∈ R+, m < n, r ∈ Z, s ∈ (0, 1], and q > 1. Then

∣∣L–1(m, n) – H
(
m–1, n–1)∣∣≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n–m
s+1 A(|m|–2, |n|–2),

2(n – m)( 1
(p+1)2p+1 )

1
p ( 1

(s+1)2s+1 )
1
q

× (1 + (2s+1 – 1)
1
q )A(|m|–2, |n|–2),

(n – m)( 1
4 )

1
p ( 1

(s+1)2s+1 )
1
q

× (1 + (2s+1 – 1)
1
q )A(|m|–2, |n|–2).

where 1
p = 1 – 1

q .

Proof Applying Theorem 2.2, Corollary 2.4, and Corollary 2.6 respectively, for h(x) = 1
x ,

ψ(x) = x, and α = 1, we immediately obtain the result. �
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33. Pearce, C.E., Pečarić, J.: Inequalities for differentiable mappings with application to special means and quadrature

formulae. Appl. Math. Lett. 13(2), 51–55 (2000)


	Hermite-Hadamard-type inequalities involving psi-Riemann-Liouville fractional integrals via s-convex functions
	Abstract
	Keywords

	Introduction
	Main results
	Applications to some special means
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


