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Abstract
In this research, we investigate two types of Copson matrices, the generalized Copson
matrix and the Copson matrix of order n, and their associated sequence spaces
generated by these matrices. We also investigate the topological properties,
inclusions, and dual spaces of these new Banach spaces as well as compute the norm
of Copson operators on the well-known matrix domains such as Hilbert and
difference sequence spaces. Moreover, in a reverse manner, we investigate the norm
of well-known operators on the Copson matrix domains generated with Copson
matrices. Through this study we introduce several new inequalities, inclusions, and
factorizations for well-known operators.
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1 Introduction
Let p ≥ 1 and ω denote the set of all real-valued sequences. The space �p is the set of all
real sequences x = (xk) ∈ ω such that

‖x‖�p =

( ∞∑
k=0

|xk|p
)1/p

< ∞.

There are two different types of Copson matrices, the generalized Copson matrix and
the Copson matrix of order n, we indicate them by the notations CN and Cn, respectively.
In the sequel, we introduce these matrices and their differences as well as their associated
matrix domains.

We say that A = (an,k) is a quasi-summability matrix if it is an upper-triangular matrix,
i.e., an,k = 0 for n < k and

∑k
n=0 an,k = 1 for all k.

Copson matrix. The Copson matrix is a quasi-summability matrix which is defined by

cj,k =

{
1

k+1 , 0 ≤ j ≤ k,
0 otherwise
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for all j, k ∈N0, that is,

C =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
0 1/2 1/3 · · ·
0 0 1/3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ ,

and has the �p-norm ‖C‖�p = p. This matrix is the transpose of the well-known Cesàro
matrix.

Generalized Copson matrix. Suppose that N ≥ 1 is a real number. The generalized Cop-
son matrix CN = (cN

j,k) is defined by

cN
j,k =

{
1

k+N , 0 ≤ j ≤ k,
0 otherwise

for all j, k ∈N0, has the �p-norm ‖CN‖�p = p ([8], Lemma 2.3), and the matrix representa-
tion

cN =

⎛
⎜⎜⎜⎜⎝

1
N

1
1+N

1
2+N · · ·

0 1
1+N

1
2+N · · ·

0 0 1
2+N · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

Note that C1 is the Copson matrix C. For more examples,

C2 =

⎛
⎜⎜⎜⎜⎝

1/2 1/3 1/4 · · ·
0 1/3 1/4 · · ·
0 0 1/4 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ and C3 =

⎛
⎜⎜⎜⎜⎝

1/3 1/4 1/5 · · ·
0 1/4 1/5 · · ·
0 0 1/5 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .

Also note that, for N > 1, the generalized Copson matrix is not a quasi-summability ma-
trix.

The matrix domain of an infinite matrix T in a sequence space X is defined as

XT = {x ∈ ω : Tx ∈ X},

which is also a sequence space. The matrix domain associated with this matrix is the set
{x = (xk) ∈ ω : CN x ∈ �p}, or

CN
p =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣
∞∑
k=j

xk

k + N

∣∣∣∣∣
p

< ∞
}

,

which has the following norm:

‖x‖CN
p

=

( ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

xk

k + N

∣∣∣∣∣
p) 1

p

.
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By using matrix domains of special triangle matrices in classical spaces, many authors
have introduced and studied new Banach spaces. For the relevant literature, we refer to
the papers [2–5, 7, 9, 10, 12, 13, 16, 17, 21, 23–25] and textbooks [2] and [20].

Copson matrix of order n. Consider the Hausdorff matrix Hμ = (hj,k)∞j,k=0, with entries of
the form:

hj,k =

{∫ 1
0

( j
k
)
θ k(1 – θ )j–k dμ(θ ), j ≥ k,

0, j < k,

where μ is a probability measure on [0, 1].
Hardy’s formula ([11], Theorem 216) states that the Hausdorff matrix is a bounded op-

erator on �p if and only if
∫ 1

0 θ
–1
p dμ(θ ) < ∞ and

∥∥Hμ
∥∥

�p
=

∫ 1

0
θ

–1
p dμ(θ ). (1.1)

In order to define and know the Copson matrix details, we need the following theorem
also known as Hellinger–Toeplitz theorem.

Theorem 1.1 ([6], Proposition 7.2) Suppose that 1 < p, q < ∞. A matrix A maps �p into
�q if and only if the transposed matrix At maps �q∗ into �p∗ . We then have ‖A‖�p ,�q =
‖At‖�q∗ ,�p∗ , where p∗ is the conjugate of p, i.e., 1

p + 1
p∗ = 1.

For nonnegative real number n, and by choosing dμ(θ ) = n(1 – θ )n–1 dθ in the definition
of Hausdorff matrix, we gain the Cesàro matrix of order n, which, according to Hardy’s
formula, has the �p-norm

Γ (n + 1)Γ (1/p∗)
Γ (n + 1/p∗)

. (1.2)

Now, the Copson matrix of order n, Cn = (cn
j,k), which is defined as the transpose of

Cesàro matrix of order n, has the entries

cn
j,k =

⎧⎨
⎩

(n+k–j–1
k–j )

(n+k
k )

, 0 ≤ j ≤ k,

0 otherwise,
(1.3)

and, according to Hellinger–Toeplitz theorem, the �p-norm

∥∥Cn∥∥
�p

=
Γ (n + 1)Γ (1/p)

Γ (n + 1/p)
. (1.4)

Note that C0 = I , where I is the identity matrix and C1 = C is the well-known Copson
matrix. For more examples,

C2 =

⎛
⎜⎜⎜⎜⎝

1 2/3 3/6 · · ·
0 1/3 2/6 · · ·
0 0 1/6 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ and C3 =

⎛
⎜⎜⎜⎜⎝

1 3/4 6/10 · · ·
0 1/4 3/10 · · ·
0 0 1/10 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .
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We emphasize that the Copson matrix of order n is a quasi-summability matrix, while the
generalized Copson matrix is not.

The Copson matrix domain Cn
p is the set of all sequences whose Cn-transforms are in

the space �p; that is,

Cn
p =

{
x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p

< ∞
}

,

which is a Banach space with the norm

‖x‖Cn
p =

( ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p)1/p

.

Throughout this research, we use the notations ‖ · ‖Ap ,�p , ‖ · ‖�p ,Ap and ‖ · ‖Ap ,Bp for the
norm of operators from the matrix domain Ap into sequence space �p, from �p into the
matrix domain Ap, and from the matrix domain Ap into the matrix domain Bp, respec-
tively.

Motivation. Although a lot of papers have been published on Cesàro matrix, Cesàro
sequence spaces, and Cesàro function spaces and many mathematicians, like the pioneers
Jagers, Bennett, Luxemburg, and Zaanen [1, 6, 14, 19], worked on that and later the work
was continued by several mathematicians, there exist limited studies on the transpose of
this matrix. Also, while we can extract many results of Copson matrix just by transposing
the Cesàro matrix and applying some theorems like Hellinger–Toeplitz theorem, there are
some special areas that work only for Copson matrices. We state one of these differences
in this paper by computing the norm of Copson operators between difference sequence
spaces, while we cannot do it for the Cesàro operator. Other examples introduce some
topological properties, inequalities, and inclusions which are only applicable on Copson
matrices.

2 The Copson Banach spaces Cn
p and Cn∞

In this section, the sequence spaces Cn
p (1 ≤ p < ∞) and Cn∞ are introduced by using the

Copson matrix of order n, and the inclusions, basis, and duals of this matrix domain will
investigated.

Lemma 2.1 The Copson matrix of order n, Cn, is invertible and its inverse C–n = (c–n
j,k ) is

defined by

c–n
j,k =

{
(–1)(k–j)( n

k–j
)(n+j

j
)
, j ≤ k ≤ j + n,

0 otherwise.

Proof Let us recall the forward difference matrix of order n, �n = (δn
j,k), which is a lower

triangle matrix with entries

δn
j,k =

{
(–1)(k–j)( n

k–j
)
, j ≤ k ≤ j + n,

0 otherwise.
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This matrix has the inverse �–n = (δ–n
j,k ) with the following entries:

δ–n
j,k =

{(n+k–j–1
k–j

)
, j ≤ k,

0 otherwise.

From relation (1.3), one can see that the Copson matrix of order n and its inverse can be
rewritten based on the forward difference operator and its inverse. For j ≤ k, we have

cn
j,k =

(n+k–j–1
k–j

)
(n+k

k
) =

δ–n
j,k(n+k
k

) and c–n
j,k = δn

j,k

(
n + j

j

)
.

Now, by a simple calculation, we deduce that

(
C–nCn)

i,k =
(n+i

i
)

(n+k
k

) ∑
j

δn
i,jδ

–n
j,k =

(n+i
i
)

(n+k
k

) (
�n�–n)

i,k =
(n+i

i
)

(n+k
k

) Ii,k ,

which completes the proof. �

Now, we introduce the sequence spaces Cn
p and Cn∞ as the set of all sequences whose

Cn-transforms are in the spaces �p and �∞, respectively; that is,

Cn
p =

{
x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p

< ∞
}

and

Cn
∞ =

{
x = (xj) ∈ ω : sup

j

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣ < ∞
}

.

Theorem 2.2 The spaces Cn
p and Cn∞ are Banach spaces with the norms

‖x‖Cn
p =

( ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p)1/p

and

‖x‖Cn∞ = sup
j∈N0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣,
respectively.

Proof We omit the proof which is a routine verification. �

Theorem 2.3 The spaces Cn
p and Cn∞ are linearly isomorphic to �p and �∞, respectively.

Proof We only prove that Cn
p is linearly isomorphic to �p. Since Cn is invertible, hence

the map T : Cn
p → �p as Tx = Cnx for any x ∈ Cn

p is bijective, which proves the isomor-
phism. �
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Theorem 2.4 The inclusion Cn
p ⊂ Cn

q is strict, where 1 ≤ p < q < ∞.

Proof Let x ∈ Cn
p . Then we have Cnx ∈ �p. Since the inclusion �p ⊂ �q holds for 1 ≤ p < q <

∞, we have Cnx ∈ �q, which implies that x ∈ Cn
q . Hence, we conclude that the inclusion

Cn
p ⊂ Cn

q holds. Now, since the inclusion �p ⊂ �q is strict, we can choose y = (yj) ∈ �q \ �p.
By defining x = C–ny, we have Cnx = y, which results in Cnx ∈ �q \ �p. Hence, we conclude
that x ∈ Cn

q \ Cn
p , and so the inclusion Cn

p ⊂ Cn
q is strict. �

Theorem 2.5 The inclusion Cn
p ⊂ Cn∞ is strict, where 1 ≤ p < ∞.

Proof Choose any x ∈ Cn
p . Then we have Cnx ∈ �p. Since the inclusion �p ⊂ �∞ holds for

1 ≤ p < ∞, we have Cnx ∈ �∞. This implies that x ∈ Cn∞. Hence, we conclude that the
inclusion Cn

p ⊂ Cn∞ holds. Similar to the proof of the previous theorem, we can choose x
such that Cnx = ((–1)j) ∈ �∞ \ �p, and consequently it results in x ∈ Cn∞ \ Cn

p . Therefore,
the inclusion Cn

p ⊂ Cn∞ is strict. �

It is known from Theorem 2.3 of Jarrah and Malkowsky [15] that if T is a triangle then
the domain λT of T in a normed sequence space λ has a basis if and only if λ has a basis.
As a direct consequence of this fact, we have the following.

Corollary 2.6 Define the sequence (h(k)) = (h(k)
j ) for each k ∈ N by

(
h(k))

j =

{
(–1)k–j(n+j

j
)( n

k–j
)
, k ≥ j,

0, k < j
(j ∈N0). (2.1)

Then the sequence (h(k)) is a basis for the space Cn
p and every sequence x ∈ Cn

p has a unique
representation of the form x =

∑
k(Cnx)kh(k).

The following lemma is essential to determine the dual spaces. Throughout the paper,
N is the collection of all finite subsets of N.

Lemma 2.7 ([26]) The following statements hold:
(i) T = (tj,k) ∈ (�1,�1) if and only if

sup
k

∞∑
j=0

|tj,k| < ∞.

(ii) T = (tj,k) ∈ (�p,�1) if and only if

∞∑
k=0

( ∞∑
j=0

|tj,k|
)p∗

< ∞,

where 1 < p < ∞.
(iii) T = (tj,k) ∈ (�∞,�1) if and only if

sup
K∈N

∞∑
j=0

∣∣∣∣∑
k∈K

tj,k

∣∣∣∣ < ∞.
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(iv) T = (tj,k) ∈ (�1, c) if and only if

lim
j→∞ tj,k exists for each k ∈N (2.2)

and

sup
j,k

|tj,k| < ∞. (2.3)

(v) T = (tj,k) ∈ (�p, c) if and only if (2.2) holds and

sup
j

∞∑
k=0

|tj,k|p∗ < ∞, (2.4)

where 1 < p < ∞.
(vi) T = (tj,k) ∈ (�∞, c) if and only if (2.2) holds and

lim
j→∞

∞∑
k=0

|tj,k| =
∞∑

k=0

∣∣∣ lim
j→∞ tj,k

∣∣∣.
(vii) T = (tj,k) ∈ (�1,�∞) if and only if (2.3) holds.

(viii) T = (tj,k) ∈ (�p,�∞) if and only if (2.4) holds, where 1 < p < ∞.
(ix) T = (tj,k) ∈ (�∞,�∞) if and only if

sup
j

∞∑
k=0

|tj,k| < ∞.

Definition The α-, β-, and γ -duals of a sequence space X are defined by

Xα =

{
a = (ak) ∈ ω :

∞∑
k=1

|akxk| < ∞ for all x = (xk) ∈ X

}
,

Xβ =

{
a = (ak) ∈ ω :

( n∑
k=1

akxk

)
∈ c for all x = (xk) ∈ X

}
,

Xγ =

{
a = (ak) ∈ ω :

( n∑
k=1

akxk

)
∈ �∞ for all x = (xk) ∈ X

}
,

respectively. In the following, we find the Köthe dual of the Copson sequence space.

Theorem 2.8 The α-duals of the spaces Cn
1 , Cn

p (1 < p < ∞), and Cn∞ are as follows:

(
Cn

1
)α =

{
b = (bj) ∈ ω : sup

k

∞∑
j=0

∣∣∣∣(–1)k–j
(

n + j
j

)(
n

k – j

)
bj

∣∣∣∣ < ∞
}

,

(
Cn

p
)α =

{
b = (bj) ∈ ω :

∞∑
k=0

( ∞∑
j=0

∣∣∣∣(–1)k–j
(

n + j
j

)(
n

k – j

)
bj

∣∣∣∣
)p∗

< ∞
}

,
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and

(
Cn

∞
)α =

{
b = (bj) ∈ ω : sup

K∈N

∞∑
j=0

∣∣∣∣∑
k∈K

(–1)k–j
(

n + j
j

)(
n

k – j

)
bj

∣∣∣∣ < ∞
}

.

Proof Let b = (bj) ∈ ω. Consider the matrix A = (aj,k) defined by

aj,k =

{
(–1)k–j(n+j

j
)( n

k–j
)
bj, 0 ≤ j ≤ k,

0, otherwise.

Given any x = (xj) ∈ Cn
p (1 ≤ p ≤ ∞), we have bjxj = (Ay)j for all j ∈ N. This implies that

bx ∈ �1 with x ∈ Cn
p if and only if Ay ∈ �1 with y ∈ �p. Hence, we conclude that b ∈ (Cn

p )α if
and only if A ∈ (�p,�1). This completes the proof by Lemma 2.7. �

Theorem 2.9 Let us define the following sets:

B1 =

{
b = (bk) ∈ ω : lim

j→∞

j∑
k=i

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi exists for each k ∈N

}
,

B2 =

{
b = (bk) ∈ ω : sup

j,k

∣∣∣∣∣
j∑

k=i

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ < ∞
}

,

B3 =

{
b = (bk) ∈ ω : sup

j

∞∑
k=0

∣∣∣∣∣
j∑

k=i

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣
p∗

< ∞
}

,

and

B4 =

{
b = (bk) ∈ ω :

lim
j→∞

∞∑
k=0

∣∣∣∣∣
j∑

k=i

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ =
∞∑

k=0

∣∣∣∣∣
∞∑
k=i

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣
}

.

Then we have (Cn
1 )β = B1 ∩ B2, (Cn

p )β = B1 ∩ B3 (1 < p < ∞), and (Cn∞)β = B1 ∩ B4.

Proof b = (bk) ∈ (Cn
1 )β if and only if the series

∑∞
k=0 bkxk is convergent for all x = (xk) ∈ Cn

1 .
The equality

j∑
k=0

bkxk =
j∑

k=0

bk

( k∑
i=0

(–1)k–i
(

n + i
i

)(
n

k – i

)
yi

)

=
j∑

k=0

( j∑
i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

)
yk

implies that b = (bk) ∈ (Cn
1 )β if and only if the matrix B = (bj,k) is in the class (�1, c), where

bj,k =

{∑j
i=k(–1)k–i(n+i

i
)( n

k–i
)
bi, 0 ≤ j ≤ k,

0, otherwise.
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Hence, we deduce from Lemma 2.7 that

lim
j→∞

n∑
i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi exists for each k ∈N

and

sup
j,k

∣∣∣∣∣
j∑

i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ < ∞,

which means b = (bk) ∈ B1 ∩ B2, and so we have (Cn
1 )β = B1 ∩ B2. The other results can be

proved similarly. �

Theorem 2.10 The γ -duals of the spaces Cn
1 , Cn

p (1 < p < ∞), and Cn∞ are as follows:

(
Cn

1
)γ =

{
b = (bk) ∈ ω : sup

j,k

∣∣∣∣∣
j∑

i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ < ∞
}

,

(
Cn

p
)γ =

{
b = (bk) ∈ ω : sup

j

∞∑
k=0

∣∣∣∣∣
j∑

i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣
p∗

< ∞
}

,

and

(
Cn

∞
)γ =

{
b = (bk) ∈ ω : sup

j

∞∑
k=0

∣∣∣∣∣
j∑

i=k

(–1)k–i
(

n + i
i

)(
n

k – i

)
bi

∣∣∣∣∣ < ∞
}

.

Proof It follows with the same technique as that in the proof of Theorem 2.9. �

3 Norm of operators on Copson matrix domain
In this section we intend to compute the norm of well-known operators, such as Hilbert,
Hausdorff, and Copson operators, on the Copson matrix domain. In so doing, we need
the following lemma.

Lemma 3.1 Let U be a bounded operator on �p and Ap and Bp be two matrix domains
such that Ap � �p.

(i) If BT is a bounded operator on �p, then T is a bounded operator from �p into Bp and

‖T‖�p ,Bp = ‖BT‖�p .

(ii) If T has a factorization of the form T = UA, then T is a bounded operator from the
matrix domain Ap into �p and

‖T‖Ap ,�p = ‖U‖�p .

(iii) If BT = UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap ,Bp = ‖U‖�p .
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In particular, if AT = UA, then T is a bounded operator from the matrix domain Ap

into Ap and

‖T‖Ap = ‖U‖�p .

Also, if T and A commute, then ‖T‖Ap = ‖T‖�p .

Proof (i) For every x ∈ �p,

‖T‖�p ,Bp = sup
x∈�p

‖Tx‖Bp

‖x‖�p
= sup

x∈�p

‖BTx‖�p

‖x‖�p
= ‖BT‖�p .

(ii) Since Ap and �p are isomorphic, hence

‖T‖Ap ,�p = sup
x∈Ap

‖Tx‖�p

‖x‖Ap
= sup

x∈Ap

‖UAx‖�p

‖Ax‖�p
= sup

y∈�p

‖Uy‖�p

‖y‖�p
= ‖U‖�p ,

which gives the desired result. Part (iii) has a similar proof. �

3.1 Norm of Hilbert operator on Copson matrix domain
Recall the definition of the well-known Hilbert matrix H = (hj,k), which was introduced
(1894) by David Hilbert to study a question in approximation theory. For j, k = 0, 1, . . . , the
Hilbert matrix is defined by

hj,k =
1

j + k + 1
, H =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

which is a bounded operator on �p with �p-norm ‖H‖�p = Γ (1/p)Γ (1/p∗) = π csc(π/p).
For a nonnegative integer n, we define the Hilbert matrix of order n, Hn = (hn

j,k), by

hn
j,k =

1
j + k + n + 1

(j, k = 0, 1, . . .). (3.1)

Note that for n = 0, H0 = H is the Hilbert matrix. For more examples:

H1 =

⎛
⎜⎜⎜⎜⎝

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ , H2 =

⎛
⎜⎜⎜⎜⎝

1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·
1/5 1/6 1/7 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

For nonnegative integers n, j, and k, let us define the matrix Bn = (bn
j,k) by

bn
j,k =

(j + 1) · · · (j + n)
(j + k + 1) · · · (j + k + n + 1)

.

Consider that, for n = 0, B0 = H , where H is the Hilbert matrix.
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Note that the matrix Bn has also the representation

bn
j,k =

(
n + j

j

)
β(j + k + 1, n + 1) (j, k = 0, 1, . . .),

where the β function is

β(m, n) =
∫ 1

0
zm–1(1 – z)n–1 dz (m, n = 1, 2, . . .).

For computing the norm of Hilbert operator on the domain of Copson matrix, we need
the following lemmas.

Lemma 3.2 For |z| < 1, we have

(1 – z)–n =
∞∑
j=0

(
n + j – 1

j

)
zj.

Proof By differentiating n – 1 times the identity (1 – z)–1 =
∑∞

j=0 zj, we obtain the
result. �

Lemma 3.3 ([22], Lemma 2.3) The Hilbert matrix H and the Hilbert matrix of order n,
Hn, have the following factorizations:

(i) H = CnBn,
(ii) Hn = BnCn,

(iii) HCn = CnHn,
(iv) Bn is a bounded operator on �p and

∥∥Bn∥∥
�p

=
Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
.

Corollary 3.4 Let Hn be the Hilbert operator of order n. Then
(i) Hn is a bounded operator from Cn

p into �p and

∥∥Hn∥∥
Cn

p ,�p
=

Γ (n + 1/p)Γ (1/p∗)
Γ (n + 1)

.

(ii) Hn is a bounded operator from Cn
p into Cn

p and

∥∥Hn∥∥
Cn

p
= π csc(π/p).

Proof According to Lemma 3.3, we have Hn = BnCn and CnHn = HCn. Now, by applying
Lemma 3.1 parts (ii) and (iii), we gain the result. �

As an application of Lemma 3.3, we are ready to generalize the inequality

‖Hx‖�p ≤ π csc(π/p)‖x‖�p ,

also known as Hilbert’s inequality.
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Corollary 3.5 Let p > 1 and x ∈ �p. Then

∥∥Hnx
∥∥

�p
≤ Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
∥∥Cnx

∥∥
�p

or

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤
(

Γ (n + 1/p)Γ (1/p∗)
Γ (n + 1)

)p ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p

.

In particular, for n = 0, Hilbert’s inequality occurs, and for n = 1, we have the inequality

∥∥H1x
∥∥

�p
≤ π/p csc(π/p)‖Cx‖�p

or

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 2

∣∣∣∣∣
p

≤ (
π/p csc(π/p)

)p
∞∑
j=0

∣∣∣∣∣
∞∑
k=j

xk

1 + k

∣∣∣∣∣
p

.

Proof According to Lemma 3.3, Hn = BnCn, hence

∥∥Hnx
∥∥

�p
=

∥∥BnCnx
∥∥

�p
≤ Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
∥∥Cnx

∥∥
�p

.

Consider that, for n = 0, C0 = I , and we have Hilbert’s inequality. �

3.2 Norm of Copson operators on Copson matrix domains
Lemma 3.6 Let α and n be two nonnegative integers that α ≥ n ≥ 0. For j = 1, 2, . . . , we
have

j∑
k=0

(–1)k
(

n
k

)(
α + j – k – 1

j – k

)
=

{(
α–n+j–1

j
)
, α > n,

1, α = n.

Proof Since α – n ≥ 0, hence Lemma 3.2 results in

(1 – z)–(α–n) =
∞∑
j=0

(
α – n + j – 1

j

)
zj.

On the other hand,

(1 – z)–(α–n) = (1 – z)n(1 – z)–α

=
n∑

j=0

(–1)j
(

n
j

)
zj

∞∑
j=0

(
α + j – 1

j

)
zj

=
∞∑
j=0

j∑
k=0

(–1)k
(

n
k

)(
α + j – k – 1

j – k

)
zj.

Now, the result is obvious. �
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Theorem 3.7 Let α, n be two nonnegative integers that α ≥ n ≥ 0. The Copson matrix of
order α has a factorization of the form Cα = CnSα,n = Sα,nCn, where Cn is the Copson matrix
of order n, Sα,n = (sα,n

j,k ) is a bounded operator on �p with the entries

sα,n
j,k =

(n+j
j
)(

α–n+k–j–1
k–j

)
(
α+k

k
) (j, k = 0, 1, . . .),

and �p-norm

∥∥Sα,n∥∥
�p

=
Γ (α + 1)Γ (n + 1/p)
Γ (n + 1)Γ (α + 1/p)

.

Proof For obtaining the matrix Sα,n, it is sufficient to compute C–nCα . By applying Lemma
3.6, we gain

(
C–nCα

)
i,k =

(n+i
i
)

(
α+k

k
) k∑

j=i

(–1)j–i
(

n
j – i

)(
α + k – j – 1

k – j

)

=
(n+i

i
)

(
α+k

k
) k–i∑

j=0

(–1)j
(

n
j

)(
α + k – i – j – 1

k – i – j

)

=
(n+i

i
)(

α–n+k–i–1
k–i

)
(
α+k

k
) = sα,n

i,k ,

which proves the identity

Cα = CnSα,n. (3.2)

Now, by letting n = 0 and n = α in relation (3.2), we gain Sα,0 = Cα and Sn,n = I , respec-
tively.

For computing the �p-norm of Sα,n, by inserting n = 0 in identity (3.2), we gain

∥∥Sα,n∥∥
�p

=
Γ (α + 1)Γ (1/p)

Γ (α + 1/p)
g(n), g(0) �= 0. (3.3)

Now, inserting n = α in (3.3) results in

∥∥Sα,n∥∥
�p

=
Γ (α + 1)Γ (n + 1/p)
Γ (n + 1)Γ (α + 1/p)

,

which completes the proof. �

Corollary 3.8 Let p > 1, α ≥ n ≥ 0, and x ∈ �p. Then
(i) ‖Cαx‖�p ≤ Γ (α+1)Γ (n+1/p)

Γ (n+1)Γ (α+1/p)‖Cnx‖�p ,
(ii) ‖Cx‖�p ≤ p‖x‖�p ,

(iii) Cn
p ⊂ Cα

p .
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Proof (i) Since Cα = Sα,βCn, according to Theorem 3.7, we have

∥∥Cαx
∥∥

�p
=

∥∥Sα,nCnx
∥∥

�p
≤ Γ (α + 1)Γ (n + 1/p)

Γ (n + 1)Γ (α + 1/p)
∥∥Cnx

∥∥
�p

.

(ii) Consider that, for α = 1 and n = 0, C1 = C and C0 = I in part (i), hence we have the
inequality.

(iii) is a straightforward result of part (i). �

Theorem 3.9 Let α ≥ n ≥ 0. The Copson operator of order α, Cα , is a bounded operator
from Cn

p into �p and

∥∥Cα
∥∥

Cn
p ,�p

=
Γ (α + 1)Γ (n + 1/p)
Γ (n + 1)Γ (α + 1/p)

.

Proof According to Lemma 3.1 and Theorem 3.7, we have

∥∥Cα
∥∥

Cn
p ,�p

=
∥∥Sα,nCn∥∥

Cn
p ,�p

=
∥∥Sα,n∥∥

�p
=

Γ (α + 1)Γ (n + 1/p)
Γ (n + 1)Γ (α + 1/p)

. �

4 Norm of Copson operators on some sequence spaces
In this section, we investigate the problem of finding the norm of Copson operators on
several sequence spaces.

4.1 Norm of Copson operators on difference sequence spaces
In this part of study, we investigate the norm of both the generalized Copson matrix and
the Copson matrix of order n on the difference sequence spaces. In so doing we need the
following preliminaries.

Let n ∈N and �nF = (δnF
j,k ) be the forward difference operator of order n with entries

δ
nF
j,k =

{
(–1)k–j( n

k–j
)
, j ≤ k ≤ n + j,

0 otherwise.

We define the sequence space �p(�nF ) as the set {x = (xk) : �nF x ∈ �p} or

�p
(
�nF

)
=

{
x = (xk) :

∞∑
j=0

∣∣∣∣∣
n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣
p

< ∞
}

,

with semi-norm ‖ · ‖�p(�nF ), which is defined by

‖x‖�p(�nF ) =

( ∞∑
j=0

∣∣∣∣∣
n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣
p) 1

p

.

Note that this function will be not a norm since if x = (1, 1, 1, . . .), then ‖x‖�p(�nF ) = 0 while
x �= 0. The definition of backward difference sequence space �p(�nB ) is similar to that of
�p(�nF ), except ‖ · ‖�p(�nB ) is a norm.



Roopaei Journal of Inequalities and Applications        (2020) 2020:120 Page 15 of 18

For special case n = 1, we use the notations �B and �F to indicate the backward and
forward difference matrices of order 1, respectively. These matrices are defined by

δB
j,k =

⎧⎪⎨
⎪⎩

1, k = j,
–1, k = j – 1,
0 otherwise,

and δF
j,k =

⎧⎪⎨
⎪⎩

1, k = j,
–1, k = j + 1,
0 otherwise,

and their associated sequence spaces �p(�B) and �p(�F ) are

�p
(
�B)

=

{
x = (xn) :

∞∑
n=1

|xn – xn–1|p < ∞
}

and

�p
(
�F)

=

{
x = (xn) :

∞∑
n=1

|xn – xn+1|p < ∞
}

,

respectively.
The idea of difference sequence spaces was introduced by Kizmaz [18] in 1981. Although

topological properties and inclusion relations of these spaces have been studied till now,
the problem of finding the norm of operators on difference sequence spaces has not been
studied extensively. More recently, Roopaei and Foroutannia investigated this problem for
the difference sequence spaces �p(�F ), �p(�B), and �p(�nF ) in [9, 21, 24].

Theorem 4.1 The Copson matrix of order n, Cn, is a bounded operator from �p into
�p(�nF ) and

∥∥Cn∥∥
�p ,�p(�nF ) = 1.

In particular, the Copson matrix is a bounded operator from �p into �p(�F ) and
‖C‖�p ,�p(�F ) = 1.

Proof Let �nF Cn = Dn. By the definition of Copson matrix, the matrix Dn = (dn
i,j) has the

entries

dn
i,j =

1(n+j
j
) j∑

k=i

(–1)k–i
(

n
k – i

)(
n + j – k – 1

j – k

)

=
1(n+j
j
) j–i∑

k=0

(–1)k
(

n
k

)(
n + j – i – k – 1

j – i – k

)
.

If i = j, then j – i = 0, which results in k = 0, hence dn
j,j = 1/

(n+j
j
)
. If j > i, then Lemma 3.6 will

result in dn
i,j = 0. Therefore dn

i,j = Ii,j/
(n+j

j
)
, where I is the identity matrix. Now, since Dn is

diagonal, Lemma 3.1 results in

∥∥Cn∥∥
�p ,�p(�nF ) =

∥∥Dn∥∥
�p

= sup
j

dn
j,j = 1. �
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Theorem 4.2 The generalized Copson matrix CN is a bounded operator from �p into ma-
trix domain �p(�F ) and

∥∥CN∥∥
�p ,�p(�F ) =

1
N

.

In particular, the Copson matrix is a bounded operator from �p into �p(�F ) and
‖C‖�p ,�p(�F ) = 1.

Proof It is not difficult to verify the identity �F CN = DN , where the diagonal matrix DN =
(dN

j,k) has the entries

DN =

⎛
⎜⎜⎜⎜⎝

1
N 0 0 · · ·
0 1

N+1 0 · · ·
0 0 1

N+2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ , (4.1)

and the �p-norm 1/N . Now, by applying Lemma 3.1, we have

∥∥CN∥∥
�p ,�p(�F ) =

∥∥�F CN∥∥
�p

=
∥∥DN∥∥

�p
=

1
N

. �

Theorem 4.3 The Copson matrix of order n, Cn, is a bounded operator from �p(�nB ) into
�p(�nF ) and

∥∥Cn∥∥
�p(�nB ),�p(�nF ) =

Γ (n + 1)Γ (1/p∗)
Γ (n + 1/p∗)

.

In particular, the Copson matrix is a bounded operator from �p(�B) into �p(�F ) and

‖C‖�p(�B),�p(�F ) = p∗.

Proof The fact that �nB is the transpose of �nF and �nF Cn is a diagonal matrix, according
to Theorem 4.1, results in the identity �nF Cn = Cnt�nB . Now, Lemma 3.1 and relation (1.2)
complete the proof. �

Theorem 4.4 The generalized Copson matrix CN is a bounded operator from �p(�B) into
matrix domain �p(�F ) and

∥∥CN∥∥
�p(�B),�p(�F ) = p∗.

In particular, the Copson matrix is a bounded operator from �p(�B) into �p(�F ) and

‖C‖�p(�B),�p(�F ) = p∗.

Proof Through the proof of Theorem 4.2 we showed that �F CN = DN , where DN is a
diagonal matrix as defined by relation (4.1). Similar to the proof of Theorem 4.3, �F CN =
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CNt�B, where CNt is the transpose of the generalized Copson matrix. Now, according to
Lemma 3.1, we have

∥∥CN∥∥
�p(�B),�p(�F ) =

∥∥CNt∥∥
�p

= p∗.

This completes the proof. �

4.2 Norm of Copson operator on the Hilbert matrix domain
Let Hn

p be the sequence space associated with Hilbert matrix Hn, which is

Hn
p =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

< ∞
}

,

and has the norm

‖x‖Hn
p =

( ∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p) 1

p

.

Corollary 4.5 The Copson operator of order n, Cn, is a bounded operator from Hn
p into Hp

and

∥∥Cn∥∥
Hn

p ,Hp
=

Γ (n + 1/p)Γ (1/p)
Γ (n + 1)

.

Proof According to Lemma 3.3, we have HCn = CnHn. Now, Lemma 3.1 completes the
proof. �

As another application of Lemma 3.3, we have the following inclusions.

Corollary 4.6 Let p > 1. Then
(i) Cn

p ⊂ Hn
p ,

(ii) Hn
p ⊂ Hn–1

p ⊂ · · · ⊂ Hp.

Acknowledgements
There are no competing interests, there is only one author and no funding on this manuscript.

Funding
There is no funding on this research.

Availability of data and materials
No data have been used in this study.

Competing interests
The author declares that there are no competing interests.

Authors’ contributions
This manuscript has only one author and nobody has collaborated in writing that. All authors read and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 February 2020 Accepted: 17 April 2020



Roopaei Journal of Inequalities and Applications        (2020) 2020:120 Page 18 of 18

References
1. Alexiewicz, A.: On Cauchy’s condensation theorem. Stud. Math. 16, 80–85 (1957)
2. Başar, F.: Summability Theory and Its Applications. Bentham Science Publishers, İstanbul (2012)
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