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Abstract
The aim of this paper is to establish some fixed point and common fixed point
theorems for (ψ –φ)-almost weak contractions in complete S-metric spaces, followed
by some supportive examples. Our results extend and generalize several results
existing in the literature. We employ the outcomes of the fixed point theorems to
establish the existence and uniqueness of a solution for a class of conformable
differential equations which is a new branch of fractional calculus.
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1 Introduction and preliminaries
Fixed point theory is one of the noteworthy and stimulating themes of nonlinear func-
tional analysis that blends topology, analysis, and applied mathematics. By the fixed-point
technique, a controllability problem is converted to a fixed-point problem for an applicable
nonlinear operator in a function space. An important part of this approach is to guaran-
tee the solvability of an invariant subset for this operator. Through the Banach fixed point
theorem, one can get a unique solution of any nonlinear equation if we convert it into
operator form, and it is a contraction operator in a complete metric space.

In 1997, Alber and Delabrier introduced in [1] the concept of φ-weak contraction. They
proved the existence of fixed points for single-valued maps satisfying weak contraction
condition in Hilbert spaces. Rhoades [5] has shown that the result of Alber and Delabrieer
is also valid in complete metric spaces. The weak contraction was defined as follows.

Definition 1.1 ([1]) A mapping T : X → X is called a φ-weak contraction if there exists
a continuous and nondecreasing function φ : [0,∞) → [0,∞) such that φ is positive on
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(0, +∞) and φ(0) = 0, and, for all x, y ∈ X,

d
(
T (x),T (y)

) ≤ d(x, y) – φ
(
d(x, y)

)
. (1.1)

In fact, Banach contraction appears to be a special case of weak contraction by taking
φ(t) = (1 – α)t for 0 ≤ α < 1. In this connection Rhoades [5] proved the following very
interesting fixed point theorem.

Theorem 1.2 Let (X, d) be a complete metric space and let T : X → X be a φ-weak con-
traction on X. Then T has a unique fixed point.

Dutta and Choudhury introduced in 2008 [4] a new generalization of contraction prin-
ciple and proved the following theorem.

Theorem 1.3 ([4]) Let (X, d) be a complete metric space and let T : X → X be a self-
mapping satisfying the inequality

ψ
(
d
(
T (x),T (y)

)) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
(1.2)

for all x, y ∈ X, where ψ ,φ : [0,∞) → [0,∞) are both continuous and nondecreasing func-
tions with ψ(t) = 0 = φ(t) if and only if t = 0. Then T has a unique fixed point.

Remark 1.4 (i) If we take ψ(t) = t for all t ≥ 0, then (1.2) reduces to (1.1).
(ii) If we take ψ(t) = t for all t ≥ 0 and φ(t) = (1 – α)t where 0 < α < 1, then (1.2) reduces

to contraction condition.

In 2009, Doric [3] generalized Theorem 1.3 for a pair of maps as follows.

Theorem 1.5 ([3]) Let (X, d) be a complete metric space and let T , f : X → X be two self-
mappings satisfying the inequality

ψ
(
d
(
T (x), f (y)

)) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
(1.3)

for any x, y ∈ X, where M is given by

M(x, y) = max

{
d(x, y), d(x,T x), d(y, fy),

1
2
[
d(x, fy) + d(y,T x)

]
}

,

and
(a) ψ : [0,∞) → [0,∞) is a continuous non-decreasing function with ψ(t) = 0 if and

only if t = 0,
(b) φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) = 0 if and only if

t = 0.
Then there exists a unique point u ∈ X such that u = T u = fu.

Recently, Sedghi et al. [6] have introduced the notion of an S-metric space as a general-
ization of G-metric spaces and D∗-metric spaces.
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Definition 1.6 ([6]) Let X be a nonempty set and S : X3 → [0,∞) be a function satisfying
the following conditions for all x, y, z, t ∈ X:

(SM1) S(x, y, z) = 0 if and only if x = y = z;
(SM2) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

Then the function S is called an S-metric on X and the pair (X, S) is called an S-metric
space, or simply SMS.

Example 1.7 ([6, 7]) Let X = R
n and ‖ · ‖ be a norm on X; then

1. S(x, y, z) = ‖y + z – 2x‖ + ‖y – z‖ is an S-metric on X .
2. S(x, y, z) = ‖x – z‖ + ‖y – z‖ is an S-metric on X .

In the case when X = R, S(x, y, z) = |x – z| + |y – z| is called the usual S-metric on X.

Lemma 1.8 ([6, Lemma 2.5]) In an S-metric space, we have S(x, x, y) = S(y, y, x) for all x, y ∈
X.

Definition 1.9 ([6]) Let (X, S) be an S-metric space.
(1) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞, that is, for

each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have S(xn, xn, x) < ε. We
denote this by limn→∞ xn = x or xn → x as n → ∞.

(2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as n, m → ∞,
that is, for each ε > 0, there exists n0 ∈N such that for all n, m ≥ n0 we have
S(xn, xn, xm) < ε.

(3) The S-metric space (X, S) is called complete if every Cauchy sequence is a
convergent sequence.

Lemma 1.10 ([6, Lemma 2.12]) Let (X, S) be an S-metric space. If xn → x and yn → y as
n → ∞ then S(xn, xn, yn) → S(x, x, y) as n → ∞.

Definition 1.11 Let T be a self mapping on an S-metric space (X, S). Then T is said to
be continuous at x ∈ X if for any sequence {xn} in X, xn → x implies that T xn → T x as
n → ∞.

Very recently, Babu et al. [2] introduced the concept of (ψ –φ)-almost weak contraction
in a G-metric space and derived a basic fixed point result.

Definition 1.12 Let (X, G) be a G-metric space and let T be a self-map on X. If there exist
two continuous and nondecreasing functions ψ ,φ : [0,∞) → [0,∞) with ψ(t),φ(t) > 0 for
t > 0, ψ(0) = φ(0) = 0 and L1 ≥ 0 such that

ψ
(
G(T x,T y,T z)

) ≤ ψ
(
G(x, y, z)

)
– φ

(
G(x, y, z)

)
+ L1θ (x, y, z) (1.4)

for all x, y, z ∈ X, where

θ (x, y, z) = min
{

G(T x, x, x), G(T x, y, y), G(T x, z, z), G(T x, y, z)
}

,

then T is called a (ψ – φ)-almost weakly contractive map on X.
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The purpose of this paper is to first extend the notion of a (ψ – φ)-almost weak contrac-
tion to S-metric spaces and establish some fixed point and common fixed point results. We
give several illustrations to justify the results. Moreover, we utilize this condition to check
the solvability of a class of conformable differential equations (a new branch of fractional
differential equations).

2 Main results
First we introduce the notion of a (ψ – φ)-almost weak contraction in the setting of S-
metric spaces.

Definition 2.1 Let (X, S) be an S-metric space. A map T : X → X is called (ψ – φ)-almost
weakly contractive if it satisfies the inequality

ψ
(
S(T x,T y,T z)

) ≤ ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
+ L1θ (x, y, z) (2.1)

for all x, y, z ∈ X, L1 ≥ 0, where

θ (x, y, z) = min
{

S(x, x,T x), S(y, y,T x), S(z, z,T x), S(x, x,T z)
}

,

and where ψ ,φ : [0,∞) → [0,∞) are two continuous and nondecreasing functions with
ψ(t),φ(t) > 0 for t > 0 and ψ(t) = φ(t) = 0 if and only if t = 0.

Theorem 2.2 Let (X, S) be a complete S-metric space and T : X → X be a (ψ – φ)-almost
weakly contractive mapping. Then T has a unique fixed point in X.

Proof We start with any x0 ∈ X and define a sequence {xn} by

xn = T xn–1, n = 1, 2, . . . . (2.2)

If xn+1 = xn for some n ∈N, then trivially xn ∈ Fix(T ). Suppose xn+1 	= xn for all n ∈N. Using
(2.1),

ψ
(
S(xn+1, xn+1, xn)

)

= ψ
(
S(T xn,T xn,T xn–1)

)

≤ ψ
(
S(xn, xn, xn–1)

)
– φ

(
S(xn, xn, xn–1)

)
+ L1θ (xn, xn, xn–1), (2.3)

where

θ (xn, xn, xn–1)

= min
{

S(xn, xn,T xn), S(xn, xn,T xn), S(xn–1, xn–1,T xn),

S(xn, xn,T xn–1)
}

= min
{

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn–1, xn–1, xn+1),

S(xn, xn, xn)
}

= min
{

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn–1, xn–1, xn+1), 0
}



Nashine et al. Journal of Inequalities and Applications        (2020) 2020:139 Page 5 of 27

= 0. (2.4)

Therefore,

ψ
(
S(xn+1, xn+1, xn)

)
= ψ

(
S(T xn,T xn,T xn–1)

)

≤ ψ
(
S(xn, xn, xn–1)

)
– φ

(
S(xn, xn, xn–1)

)
, (2.5)

that is,

ψ
(
S(xn+1, xn+1, xn)

) ≤ ψ
(
S(xn, xn, xn–1)

)
, (2.6)

which implies that

S(xn+1, xn+1, xn) ≤ S(xn, xn, xn–1), for n = 1, 2, . . . (2.7)

Therefore {S(xn+1, xn+1, xn)} is a decreasing sequence of nonnegative reals and hence there
exists d ≥ 0 such that

lim
n→∞ S(xn+1, xn+1, xn) = γ ≥ 0. (2.8)

Letting n → ∞ in (2.5) gives

ψ(γ ) ≤ ψ(γ ) – φ(γ ), (2.9)

which is a contradiction unless γ = 0. Hence,

lim
n→∞ S(xn+1, xn+1, xn) = 0. (2.10)

Next we prove that {xn} is a Cauchy sequence. If not, then there exists an ε > 0 for which
we can find subsequences {xm(k)} and {xn(k)} of {xn} and increasing sequences of integers
{m(k)} and {n(k)} such that n(k) is the smallest index for which

n(k) > m(k) > k, (2.11)

S(xm(k), xm(k), xn(k)) ≥ ε. (2.12)

Then, we have

S(xm(k), xm(k), xn(k)–1) < ε. (2.13)

Now using (2.12), (SM2), and Lemma 1.8, we have

ε ≤ S(xm(k), xm(k), xn(k)) = S(xn(k), xn(k), xm(k))

≤ 2S(xn(k), xn(k), xn(k)–1) + S(xm(k), xm(k), xn(k)–1)

≤ ε + 2S(xn(k), xn(k), xn(k)–1)
(
by (2.13)

)
. (2.14)
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Letting k → ∞ in (2.14) and using (2.10), we get

lim
k→∞

S(xm(k), xm(k), xn(k)) = ε. (2.15)

From (SM2) and Lemma 1.8,

S(xm(k), xm(k), xn(k))

≤ 2S(xm(k), xm(k), xm(k)–1) + S(xn(k), xn(k), xm(k)–1)

≤ 2S(xm(k), xm(k), xm(k)–1) + 2S(xn(k), xn(k), xn(k)–1)

+ S(xm(k)–1, xm(k)–1, xn(k)–1) (2.16)

and

S(xm(k)–1, xm(k)–1, xn(k)–1)

≤ 2S(xm(k)–1, xm(k)–1, xm(k)) + S(xn(k)–1, xn(k)–1, xm(k))

= 2S(xm(k), xm(k), xm(k)–1) + S(xm(k), xm(k), xn(k)–1). (2.17)

Letting k → ∞ in (2.17) and using (2.10), (2.13), (2.15), and (2.16), we get

lim
k→∞

S(xm(k)–1, xm(k)–1, xn(k)–1) = ε. (2.18)

Setting x = xm(k)–1, y = xm(k)–1 and z = xn(k)–1 in (2.1), we obtain

ψ(ε) ≤ ψ
(
S(xm(k), xm(k), xn(k))

)
= ψ

(
S(T xm(k)–1,T xm(k)–1,T xn(k)–1)

)

≤ ψ
(
S(xm(k)–1, xm(k)–1, xn(k)–1)

)
– φ

(
S(xm(k)–1, xm(k)–1, xn(k)–1)

)

+ L1θ (xm(k)–1, xm(k)–1, xn(k)–1). (2.19)

Letting k → ∞ in (2.19) and using (2.10), (2.15), and (2.18), we get

ψ(ε) ≤ ψ(ε) – φ(ε),

a contradiction since ε > 0. This shows that {xn} is a Cauchy sequence in the complete S-
metric space (X, S). So, suppose xn → u as n → ∞. Now we prove that u ∈ Fix(T ). Using
(2.1) with x = xn, y = xn, and z = u gives

ψ
(
S(xn+1, xn+1,T u)

)
= ψ

(
S(T xn,T xn,T u)

)

≤ ψ
(
S(xn, xn, u)

)
– φ

(
S(xn, xn, u)

)
+ L1θ (xn, xn, u), (2.20)

Letting n → ∞ in (2.20), we obtain

ψ
(
S(u, u,T u)

) ≤ ψ
(
S(u, u, u)

)
– φ

(
S(u, u, u)

)
= 0, (2.21)
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so that S(u, u,T u) = 0. Hence u = T u. This shows that u ∈ Fix(T ). To prove the uniqueness
of u, let v be a fixed point of T with v 	= u. Then from (2.1), we have

ψ
(
S(u, u, v)

)
= ψ

(
S(T u,T u,T v)

)

≤ ψ
(
S(u, u, v)

)
– φ

(
S(u, u, v)

)
+ L1θ (u, u, v)

≤ ψ
(
S(u, u, v)

)
– φ

(
S(u, u, v)

)
, (2.22)

a contradiction unless S(u, u, v) = 0. Hence u = v. This shows that the fixed point of T is
unique. �

If L1 = 0 in Theorem 2.2, then we obtain the following result.

Corollary 2.3 Let (X, S) be a complete S-metric space and T : X → X be a self-mapping
satisfying the inequality

ψ
(
S(T x,T y,T z)

) ≤ ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
(2.23)

for all x, y, z ∈ X, and where ψ and φ are functions defined as in Theorem 2.2. Then T has
a unique fixed point in X.

Remark 2.4 Corollary 2.3 extends Theorem 2.1 of Dutta and Choudhury [4] from a com-
plete metric space to that in the setting of a complete S-metric space considered in this
paper.

If, in Theorem 2.2, L1 = 0 and ψ is the identity map, then we obtain the following result.

Corollary 2.5 Let (X, S) be a complete S-metric space and T : X → X be a self-mapping
satisfying the inequality

S(T x,T y,T z) ≤ S(x, y, z) – φ
(
S(x, y, z)

)
(2.24)

for all x, y, z ∈ X, and where φ is a continuous and nondecreasing function defined on [0,∞)
with φ(t) = 0 if and only if t = 0. Then T has a unique fixed point in X.

Remark 2.6 Corollary 2.5 extends the corresponding result of Rhoades [5] from a com-
plete metric space to that in the setting of a complete S-metric space considered in this
paper.

2.1 Illustrations
Example 2.7 Let X = [0, 1] ∪ {2, 3, 4, . . . } and

S(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

|x – y – z| if x, y, z ∈ [0, 1], x 	= y 	= z,

x + y + z if at least one of x or y or z /∈ [0, 1] and x 	= y 	= z,

0 if x = y = z,

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space.
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Let ψ : [0,∞) → [0,∞) be defined as

ψ(t) =

⎧
⎨

⎩
t if 0 ≤ t ≤ 1,

t2 if t > 1,

and let φ : [0,∞) → [0,∞) be defined as

φ(t) =

⎧
⎨

⎩
t2 if 0 ≤ t ≤ 1,
1
2 if t > 1.

Let T : X → X be defined as

T (x) =

⎧
⎨

⎩
x – x2 if 0 ≤ x ≤ 1,

x – 1 if x ∈ {2, 3, 4, . . . }.

Without loss of generality, we assume that x > y > z with x = 3
4 , y = 1

2 , and z = 1
4 and discuss

the following cases.
Case I. If x ∈ [0, 1], then

ψ
(
S(T x,T y,T z)

)
= S(T x,T y,T z)

= S
(
x – x2, y – y2, z – z2)

=
[(

x – x2) –
(
y – y2) –

(
z – z2)]

=
[
(x – y – z) –

(
x2 – y2 – z2)]

≤ [
(x – y – z) – (x – y – z)2]

= S(x, y, z) –
(
S(x, y, z)

)2

= ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
.

Case II. If x ∈ {2, 3, 4, . . . }, then

S(T x,T y,T z) = S
(
x – 1, y – 1, z – z2) if z ∈ [0, 1],

or

S(T x,T y,T z) = (x – 1) + (y – 1) +
(
z – z2) = x + y + z – z2 – 2

≤ x + y + z – 2

and

S(T x,T y,T z) = S(x – 1, y – 1, z – 1) if y, z ∈ {2, 3, 4, . . . },

or

S(T x,T y,T z) = x – 1 + y – 1 + z – 1 = x + y + z – 3
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≤ x + y + z – 2.

Consequently,

ψ
(
S(T x,T y,T z)

)
= S(T x,T y,T z)2

≤ (x + y + z – 2)2

< (x + y + z – 1)(x + y + z + 1)

= (x + y + z)2 – 1 < (x + y + z)2 –
1
2

=
(
S(x, y, z)

)2 – φ
(
S(x, y, z)

)

= ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
.

Case III. If x = 2, then y, z ∈ [0, 1], T(x) = 1, and S(T x,T x,T y) = 1 + (y – y2) + (z – z2) ≤ 2.
So, we have ψ(S(T x,T y,T z)) ≤ ψ(2) = 4. Again S(x, y, z) = 2 + y + z. So,

ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
= (2 + y + z)2 – φ

(
(2 + y + z)2)

= (2 + y + z)2 –
1
2

=
7
2

+ y2 + z2 + 2yz + 4y + 4z > 4

= ψ
(
S(T x,T y,T z)

)
.

Considering all the above cases, we conclude that the inequality used in Corollary 2.3
remains valid for ψ , φ, and T constructed in above example and, consequently by an ap-
plication of Corollary 2.3, T has a unique fixed point which is 0.

Example 2.8 Let X = [0, 1] and let S be the S-metric defined by S(x, y, z) = |x – z| + |y – z|
for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. Let T : X → X be a mapping
defined as T (x) = x – x2

2 and φ(t) = t2

4 . Without loss of generality, we assume that x > y > z.
Then for x = 1, y = 1

2 , and z = 1
4 , we have

S(T x,T y,T z) = |Tx – Tz| + |Ty – Tz|

=
∣
∣∣
∣

(
x –

x2

2

)
–

(
z –

z2

2

)∣
∣∣
∣ +

∣
∣∣
∣

(
y –

y2

2

)
–

(
z –

z2

2

)∣
∣∣
∣

=
(

x –
x2

2

)
–

(
z –

z2

2

)
+

(
y –

y2

2

)
–

(
z –

z2

2

)

≤ [
(x – z) + (y – z)

]
–

1
2
[
(x – z)2 + (y – z)2]

≤ [
(x – z) + (y – z)

]
–

1
4
[
(x – z) + (y – z)

]2

= S(x, y, z) – φ
(
S(x, y, z)

)
.

Thus T satisfies inequality (2.24) so that T is a weakly contractive map. Thus by Corol-
lary 2.5, T has a unique fixed point 0 in X.
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Example 2.9 Let X = [0, 1]. We define S : X3 →R+ by

S(x, y, z) =

⎧
⎨

⎩
0 if x = y = z,

max{x, y, z} if otherwise,

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. Let T : X → X be a mapping
defined as T (x) = x2

2 and φ(t) = t2

4 . Without loss of generality, we assume that x > y > z.
Then

S(T x,T y,T z) = max{T x,T y,T z} =
x2

2
,

S(x, y, z) = max{x, y, z} = x,

and

φ
(
S(x, y, z)

)
=

x2

4
.

Now, S(x, y, z) – φ(S(x, y, z)) = x – x2

4 . Therefore S(T x,T y,T z) = x2

2 < x – x2

4 = S(x, y, z) –
φ(S(x, y, z)). Hence T satisfies inequality (2.23) so that T is a weakly contractive map. Thus
by Corollary 2.3, T has a unique fixed point and clearly it is 0 in X.

Example 2.10 Let X = [0, 1]. We define S : X3 →R+ by

S(x, y, z) =

⎧
⎨

⎩
0 if x = y = z,

max{x, y, z} if otherwise,

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. We define T : X → X and ψ , φ
on R+ by T (x) = 2x

3 , ψ(t) = 9
8 t2 and φ(t) = 1

8 t2 for all x ∈ X and t ∈R+.
Without loss of generality, we assume that x > y > z. Then choosing x = 1, y = 1

2 , and
z = 1

4 , we have

S(T x,T y,T z) = max

{
2x
3

,
2y
3

,
2z
3

}
=

2x
3

,

S(x, y, z) = max{x, y, z} = x,

S(y, y,T y) = max

{
y, y,

2y
3

}
= y,

S(z, z,T z) = max

{
z, z,

2z
3

}
= z,

S(x, x,T z) = max

{
x, x,

2z
3

}
= x,

S(z, z,T x) = max

{
z, z,

2x
3

}
=

2x
3

,

and

Θ(x, y, z) = max

{
x, y, z,

1
2

(
x +

2x
3

)}
= x.
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Now, we consider

ψ
(
S(T x,T y,T z)

)
=

x2

2
≤ x2 =

[
Θ(x, y, z)

]2

=
9
8
[
Θ(x, y, z)

]2 –
1
8
[
Θ(x, y, z)

]2

= ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
,

that is,

ψ
(
S(T x,T y,T z)

) ≤ ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
.

Thus inequality (2.23) of Corollary 2.3 holds, and 0 is the unique fixed point of T .

Example 2.11 Let X = [0, 1]. We define S : X3 →R+ by

S(x, y, z) =

⎧
⎨

⎩
0 if x = y = z,

max{x, y, z} if otherwise.

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. Let T : X → X be a mapping
defined as

T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if x = 0,

2x if 0 < x < 1
2 ,

1 if 1
2 ≤ x ≤ 1.

We define ψ and φ on R+ by ψ(t) = t2

3 and φ(t) = t2

2 . Then, if we take x = y = z = 0 and
L1 = 1, we have

S(T x,T y,T z) = S
(
T (0),T (0),T (0)

)
= S

(
1
2

,
1
2

,
1
2

)
= max

{
1
2

,
1
2

,
1
2

}
=

1
2

,

S(x, y, z) = max{x, y, z} = max{0, 0, 0} = 0,

S(x, x,T x) = max

{
0, 0,

1
2

}
=

1
2

,

S(y, y,T y) = max

{
0, 0,

1
2

}
=

1
2

,

S(z, z,T x) = max

{
0, 0,

1
2

}
=

1
2

,

S(x, x,T z) = max

{
0, 0,

1
2

}
=

1
2

,

and

θ (x, y, z) = min

{
1
2

,
1
2

,
1
2

,
1
2

}
=

1
2

.
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Now, we have

ψ
(
S(T x,T y,T z)

)
=

1
12

,

ψ
(
S(x, y, z)

)
= 0, φ

(
S(x, y, z)

)
= 0.

Thus, we have

ψ
(
S(T x,T y,T z)

)
=

1
12

≤ 0 – 0 + 1.
1
2

=
1
2

= ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
+ L1θ (x, y, z),

that is,

ψ
(
S(T x,T y,T z)

) ≤ ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
+ L1θ (x, y, z).

Hence T is a (ψ – φ)-almost weak contraction. Thus T satisfies all the hypothesis of The-
orem 2.2 and 1 is the unique fixed point of T .

3 Common fixed point results
In this section, we discuss a common fixed point theorem for a pair of maps in the setting
of S-metric spaces.

Theorem 3.1 Let (X, S) be a complete S-metric space and F , H : X → X be two self-
mappings satisfying the inequality

ψ
(
S(Fx, Fy, Hz)

) ≤ ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
+ L1θ (x, y, z) (3.1)

for all x, y, z ∈ X, L1 ≥ 0, where

Θ(x, y, z) = max

{
S(x, y, z), S(y, y, Fx), S(z, z, Hz),

1
2
[
S(y, y, Hz) + S(z, z, Hy)

]
}

,

θ (x, y, z) = min
{

S(x, x, Fx), S(y, y, Hy), S(x, x, Hy), S(y, y, Fz)
}
, (3.2)

and where ψ and φ are functions defined as in Theorem 2.2. Then there exists a unique
point u ∈ X such that u = Fu = Hu.

Proof For any x0 ∈ X, we construct a sequence {xn} for n ≥ 0 recursively as

x2n+1 = Hx2n, x2n = Fx2n+1.

Suppose now that n is an odd number. Putting x = xn, y = xn, and z = xn–1 in inequality
(3.1), we get

ψ
(
S(xn+1, xn+1, xn)

)
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= ψ
(
S(Fxn, Fxn, Hxn–1)

)

≤ ψ
(
Θ(xn, xn, xn–1)

)
– φ

(
Θ(xn, xn, xn–1)

)
+ L1θ (xn, xn, xn–1), (3.3)

where

θ (xn, xn, xn–1)

= min
{

S(xn, xn, Fxn), S(xn, xn, Hxn), S(xn, xn, Hxn), S(xn, xn, Fxn–1)
}

= min
{

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn, xn, xn)
}

= min
{

S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn, xn, xn+1), 0
}

= 0. (3.4)

Using (3.4) in (3.3), we get

ψ
(
S(xn+1, xn+1, xn)

)
= ψ

(
S(Fxn, Fxn, Hxn–1)

)

≤ ψ
(
Θ(xn, xn, xn–1)

)
– φ

(
Θ(xn, xn, xn–1)

)
, (3.5)

which implies

ψ
(
S(xn+1, xn+1, xn)

) ≤ ψ
(
Θ(xn, xn, xn–1)

)
. (3.6)

Using the properties of ψ and φ functions in the above inequality, we obtain

S(xn+1, xn+1, xn) ≤ Θ(xn, xn, xn–1). (3.7)

Now using condition (SM2) and Lemma 1.8, we have

Θ(xn, xn, xn–1) = max

{
S(xn, xn, xn–1), S(xn, xn, Fxn), S(xn–1, xn–1, Hxn–1),

1
2
[
S(xn, xn, Hxn–1) + S(xn–1, xn–1, Hxn)

]
}

= max

{
S(xn, xn, xn–1), S(xn, xn, xn+1), S(xn–1, xn–1, xn),

1
2
[
S(xn, xn, xn) + S(xn–1, xn–1, xn+1)

]}

= max

{
S(xn, xn, xn–1), S(xn+1, xn+1, xn), S(xn, xn, xn–1),

1
2
[
S(xn+1, xn+1, xn–1)

]
}

≤ max

{
S(xn, xn, xn–1), S(xn+1, xn+1, xn), S(xn, xn, xn–1),

1
2
[
2S(xn+1, xn+1, xn) + S(xn–1, xn–1, xn)

]}
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= max

{
S(xn, xn, xn–1), S(xn+1, xn+1, xn), S(xn, xn, xn–1),

1
2
[
2S(xn+1, xn+1, xn) + S(xn, xn, xn–1)

]}
.

If S(xn+1, xn+1, xn) > S(xn, xn, xn–1), then Θ(xn, xn, xn–1) = S(xn+1, xn+1, xn) > 0. This further-
more implies that

ψ
(
S(xn+1, xn+1, xn)

) ≤ ψ
(
S(xn+1, xn+1, xn)

)
– φ

(
S(xn+1, xn+1, xn)

)
, (3.8)

which is a contraction. So, we have

S(xn+1, xn+1, xn) ≤ Θ(xn, xn, xn–1) ≤ S(xn, xn, xn–1). (3.9)

Similarly, we can obtain the same inequality as above in the case when n is an even number.
Therefore the sequence {S(xn+1, xn+1, xn)} is decreasing and bounded. So there exists r ≥ 0
such that

lim
n→∞ S(xn+1, xn+1, xn) = lim

n→∞Θ(xn, xn, xn–1) = r ≥ 0. (3.10)

Letting n → ∞ in inequality (3.8), we obtain

ψ(r) ≤ ψ(r) – φ(r), (3.11)

which is a contradiction unless r = 0. Hence,

lim
n→∞ S(xn+1, xn+1, xn) = 0. (3.12)

Next we prove that {xn} is a Cauchy sequence. Because of (3.12) it is sufficient to show
that {x2n} is a Cauchy sequence. If not, then there exists ε > 0 for which we can find sub-
sequences {x2m(k)} and {x2n(k)} of {x2n} and increasing sequences of integers {2m(k)} and
{2n(k)} such that n(k) is the smallest index for which

n(k) > m(k) > k, (3.13)

S(x2m(k), x2m(k), x2n(k)) ≥ ε. (3.14)

Then

S(x2m(k), x2m(k), x2n(k)–1) < ε. (3.15)

Now using (3.14), (SM2), and Lemma 1.8, we have

ε ≤ S(x2m(k), x2m(k), x2n(k)) = S(x2n(k), x2n(k), x2m(k))

≤ 2S(x2n(k), x2n(k), x2n(k)–1) + S(x2m(k), x2m(k), x2n(k)–1)

≤ ε + 2S(x2n(k), x2n(k), x2n(k)–1) (by (3.15). (3.16)
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Letting k → ∞ in equation (3.16) and using (3.12), we get

lim
k→∞

S(x2m(k), x2m(k), x2n(k)) = ε. (3.17)

Again, with the help of (SM2) and Lemma 1.8, we have

S(x2m(k), x2m(k), x2n(k))

≤ 2S(x2m(k), x2m(k), x2m(k)–1) + S(x2n(k), x2n(k), x2m(k)–1)

≤ 2S(x2m(k), x2m(k), x2m(k)–1) + S(x2m(k)–1, x2m(k)–1, x2n(k)). (3.18)

Also, with the help of (SM2) and Lemma 1.8, we have

S(x2m(k)–1, x2m(k)–1, x2n(k))

≤ 2S(x2m(k)–1, x2m(k)–1, x2m(k)) + S(x2n(k), x2n(k), x2m(k))

= 2S(x2m(k)–1, x2m(k)–1, x2m(k)) + S(x2m(k), x2m(k), x2n(k)). (3.19)

Letting k → ∞ in equation (3.19) and using (3.12), (3.15), (3.17), and (3.18), we get

lim
k→∞

S(x2m(k)–1, x2m(k)–1, x2n(k)) = ε. (3.20)

Again, note that with the help of (SM2) and Lemma 1.8, we have

S(x2m(k), x2m(k), x2n(k)+1) ≤ 2S(x2m(k), x2m(k), x2m(k)–1)

+ S(x2n(k)+1, x2n(k)+1, x2m(k)–1)

≤ 2S(x2m(k), x2m(k), x2m(k)–1)

+ 2S(x2n(k)+1, x2n(k)+1, x2n(k))

+ S(x2m(k)–1, x2m(k)–1, x2n(k)). (3.21)

Also, with the help of (SM2) and Lemma 1.8, we have

S(x2m(k)–1, x2m(k)–1, x2n(k)) = S(x2n(k), x2n(k), x2m(k)–1)

≤ 2S(x2n(k), x2n(k), x2n(k)+1)

+ S(x2m(k)–1, x2m(k)–1, x2n(k)+1)

= 2S(x2n(k)+1, x2n(k)+1, x2n(k))

+ S(x2m(k)–1, x2m(k)–1, x2n(k)+1)

≤ 2S(x2n(k)+1, x2n(k)+1, x2n(k))

+ 2S(x2m(k)–1, x2m(k)–1, x2m(k))

+ S(x2n(k)+1, x2n(k)+1, x2m(k))

= 2S(x2n(k)+1, x2n(k)+1, x2n(k))
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+ 2S(x2m(k), x2m(k), x2m(k)–1)

+ S(x2m(k), x2m(k), x2n(k)+1). (3.22)

Letting k → ∞ in equation (3.22) and using (3.12), (3.20), and (3.21), we get

lim
k→∞

S(x2m(k), x2m(k), x2n(k)+1) = ε. (3.23)

Also, from the definition of Θ and from equations (3.12), (3.17), and (3.23), we have

lim
n→∞Θ(x2m(k)–1, x2m(k)–1, x2n(k)) = ε. (3.24)

We now consider inequality (3.1). Putting x = x2m(k)–1, y = x2m(k)–1, and z = x2n(k), we have

ψ
(
S(x2m(k), x2m(k), x2n(k)+1)

)

= ψ
(
S(Fx2m(k)–1, Fx2m(k)–1, Hx2n(k))

)

≤ ψ
(
Θ(x2m(k)–1, x2m(k)–1, x2n(k))

)
– φ

(
Θ(x2m(k)–1, x2m(k)–1, x2n(k))

)

+ L1θ (x2m(k)–1, x2m(k)–1, x2n(k)). (3.25)

Letting k → ∞ in equation (3.25) and using (3.1), (3.20), (3.23), and (3.24), we get

ψ(ε) ≤ ψ(ε) – φ(ε) < ψ(ε),

a contradiction. This shows that {xn} is a Cauchy sequence in the complete S-metric space
(X, S). So, suppose xn → u as n → ∞. Now we prove that u = Fu = Hu. Indeed, suppose
u 	= Hu, then for S(u, u, Hu) > 0, there exists N1 ∈N such that for any n > N1, we have

S(x2n–1, x2n–1, u) <
1
4

S(u, u, Hu), (3.26)

S(x2n, x2n, x2n–1) <
1
4

S(u, u, Hu), (3.27)

S(x2n, x2n, u) <
1
4

S(u, u, Hu). (3.28)

Now, putting x = x2n–1, y = x2n–1, and z = u in equation (3.1), we obtain

ψ
(
S(x2n, x2n, Hu)

)

= ψ
(
S(Fx2n–1, Fx2n–1, Hu)

)

≤ ψ
(
Θ(x2n–1, x2n–1, u)

)
– φ

(
Θ(x2n–1, x2n–1, u)

)
+ L1θ (x2n–1, x2n–1, u), (3.29)

where

Θ(x2n–1, x2n–1, u)

= max

{
S(x2n–1, x2n–1, u), S(x2n–1, x2n–1, Fx2n–1), S(u, u, Hu),



Nashine et al. Journal of Inequalities and Applications        (2020) 2020:139 Page 17 of 27

1
2
[
S(x2n–1, x2n–1, Hu) + S(u, u, Hx2n–1)

]}

= max

{
S(x2n–1, x2n–1, u), S(x2n–1, x2n–1, x2n), S(u, u, Hu),

1
2
[
S(x2n–1, x2n–1, Hu) + S(u, u, x2n)

]
}

= max

{
S(x2n–1, x2n–1, u), S(x2n, x2n, x2n–1), S(u, u, Hu),

1
2
[
S(x2n–1, x2n–1, Hu) + S(x2n, x2n, u)

]}

(
by condition (SM2)

)

= max

{
S(x2n–1, x2n–1, u), S(x2n, x2n, x2n–1), S(u, u, Hu),

1
2
[
2S(x2n–1, x2n–1, u) + S(u, u, Hu) + S(x2n, x2n, u)

]
}

(
by Lemma 1.8 and condition(SM2)

)
. (3.30)

Using equations (3.26), (3.27), and (3.28) in (3.30), we obtain

Θ(x2n–1, x2n–1, u) ≤ max

{
1
4

S(u, u, Hu),
1
4

S(u, u, Hu), S(u, u, Hu),

1
2

[
2 · 1

4
S(u, u, Hu) + S(u, u, Hu) +

1
4

S(u, u, Hu)
]}

,

that is,

Θ(x2n–1, x2n–1, u) ≤ S(u, u, Hu) (3.31)

and

θ (x2n–1, x2n–1, u) = min
{

S(x2n–1, x2n–1, Fx2n–1), S(x2n–1, x2n–1, Hx2n–1),

S(x2n–1, x2n–1, Hx2n–1), S(x2n–1, x2n–1, Fu)
}

= min
{

S(x2n–1, x2n–1, x2n), S(x2n–1, x2n–1, x2n),

S(x2n–1, x2n–1, x2n), S(x2n–1, x2n–1, Fu)
}

. (3.32)

Now using equations (3.31) and (3.32) in (3.29), we obtain

ψ
(
S(x2n, x2n, Hu)

) ≤ ψ
(
S(u, u, Hu)

)
– φ

(
S(u, u, Hu)

)

+ L1 min
{

S(x2n–1, x2n–1, x2n), S(x2n–1, x2n–1, x2n),

S(x2n–1, x2n–1, x2n), S(x2n–1, x2n–1, Fu)
}

. (3.33)

Letting n → ∞ in inequality (3.33), we obtain

ψ
(
S(u, u, Hu)

) ≤ ψ
(
S(u, u, Hu)

)
– φ

(
S(u, u, Hu)

)
, (3.34)
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which is a contradiction unless S(u, u, Hu) = 0. Hence, we conclude that u = Hu. This
shows that u is a fixed point of H . Note that

S(u, u, Fu) ≤ 2S(u, u, Hu) + S(Fu, Fu, Hu)

= 2S(u, u, u) + S(Hu, Hu, Fu) (by Lemma 1.8)

< S(u, u, Fu),

which is a contradiction. Hence S(u, u, Fu) = 0, that is, u = Fu. Thus u is a common fixed
point of F and H .

Now to show that the common fixed point of F and H is unique, suppose v is another
common fixed point of F and H such that v = Fv = Hv with v 	= u. From (3.1), we have

ψ
(
S(u, u, v)

)
= ψ

(
S(Fu, Fu, Hv)

)

≤ ψ
(
Θ(u, u, v)

)
– φ

(
Θ(u, u, v)

)
+ L1θ (u, u, v)

≤ ψ
(
S(u, u, v)

)
– φ

(
S(u, u, v)

) (
since θ (u, u, v) = 0

)
,

which is a contradiction unless S(u, u, v) = 0. Thus we conclude that u = v. This shows that
the common fixed point of F and H is unique. �

If L1 = 0 in Theorem 3.1, then we obtain the following result.

Corollary 3.2 Let (X, S) be a complete S-metric space and F , H : X → X be two self map-
pings satisfying the inequality

ψ
(
S(Fx, Fy, Hz)

) ≤ ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
(3.35)

for all x, y, z ∈ X, where M, ψ and φ are defined as in Theorem 3.1. Then there exists a
unique point u ∈ X such that u = Fu = Hu.

Proof Follows from Theorem 3.1 by taking L1 = 0. �

Remark 3.3 Corollary 3.2 extends Theorem 2.1 of Doric [3] for a complete metric space
to that in the setting of a complete S-metric space considered in this paper.

If L1 = 0 and F = H = T in Theorem 3.1, then we obtain the following result.

Corollary 3.4 Let (X, S) be a complete S-metric space and T : X → X be a self-mapping
satisfying the inequality

ψ
(
S(T x,T y,T z)

) ≤ ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)

for all x, y, z ∈ X, where

Θ(x, y, z) = max

{
S(x, y, z), S(y, y,T x), S(z, z,T z),

1
2
[
S(y, y,T z) + S(z, z,T y)

]
}

,

and where ψ and φ are defined as in Theorem 3.1. Then T has a unique fixed point in X.
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Proof Follows from Theorem 3.1 by taking L1 = 0 and F = H = T . �

Remark 3.5 Corollary 3.4 extends Theorem 2.2 of Doric [3] for a complete metric space
to that in the setting of a complete S-metric space considered in this paper.

If L1 = 0 and

Θ(x, y, z) = max

{
S(x, y, z), S(y, y, Fx), S(z, z, Hz),

1
2
[
S(y, y, Hz) + S(z, z, Hy)

]
}

= S(x, y, z)

in Theorem 3.1, then we obtain the following result as a corollary.

Corollary 3.6 Let (X, S) be a complete S-metric space and F , H : X → X be two self-
mappings satisfying the inequality

ψ
(
S(Fx, Fy, Hz)

) ≤ ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
(3.36)

for all x, y, z ∈ X, where ψ and φ are defined as in Theorem 3.1. Then there exists a unique
point u ∈ X such that u = Fu = Hu.

Remark 3.7 Corollary 3.6 extends result of Dutta and Choudhury [4, Theorem 2.1] for a
metric space to an S-metric space for a pair of maps.

Remark 3.8 If

Θ(x, y, z) = max

{
S(x, y, z), S(y, y, Fx), S(z, z, Hz),

1
2
[
S(y, y, Hz) + S(z, z, Hy)

]
}

= S(x, y, z)

and F = H = T in Theorem 3.1, then we obtain Theorem 2.2.

Remark 3.9 If

Θ(x, y, z) = max

{
S(x, y, z), S(y, y, Fx), S(z, z, Hz),

1
2
[
S(y, y, Hz) + S(z, z, Hy)

]}

= S(x, y, z),

L1 = 0, F = H = T , and ψ as the identity map in Theorem 3.1, then we obtain Corollary 2.5.
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Remark 3.10 If we take

Θ(x, y, z) = max

{
S(x, y, z), S(y, y, Fx), S(z, z, Hz),

1
2
[
S(y, y, Hz) + S(z, z, Hy)

]
}

= S(x, y, z),

L1 = 0, and F = H = T in Theorem 3.1, then we obtain Corollary 2.3 of this paper.

3.1 Illustrations
Example 3.11 Let X = [0, 1]. We define S : X3 →R+ by

S(x, y, z) =

⎧
⎨

⎩
0 if x = y = z,

max{x, y, z} if otherwise,

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. We define F , H : X → X and ψ ,
φ on R+ by F(x) = x

2 , H(x) = x
3 , ψ(t) = 4

3 t2 and φ(t) = 1
3 t2 for all x ∈ X and t ∈R+.

Without loss of generality, we assume that x > y > z. Then choosing x = 1, y = 1
2 , and

z = 1
4 , we have

S(Fx, Fy, Hz) = max

{
x
2

,
y
2

,
z
3

}
=

x
2

,

S(x, y, z) = max{x, y, z} = x,

S(z, z, Hz) = max

{
z, z,

z
3

}
= z,

S(y, y, Fx) = max

{
y, y,

x
2

}
= y,

S(y, y, Hz) = max

{
y, y,

z
3

}
= y,

S(z, z, Fy) = max

{
z, z,

y
2

}
= z,

and

Θ(x, y, z) = max

{
x, y, z,

1
2

[y + z]
}

= x.

Now, we consider

ψ
(
S(Fx, Fy, Hz)

)
=

x2

3
≤ x2 =

[
Θ(x, y, z)

]2

=
4
3
[
Θ(x, y, z)

]2 –
1
3
[
Θ(x, y, z)

]2

= ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
,
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that is,

ψ
(
S(Fx, Fy, Hz)

) ≤ ψ
(
Θ(x, y, z)

)
– φ

(
Θ(x, y, z)

)
.

Thus inequality (3.35) of Corollary 3.2 holds. Hence F and H satisfy all the hypothesis of
Corollary 3.2 and 0 is the unique common fixed point of F and H .

Example 3.12 Let X = [0, 1]. We define S : X3 →R+ by

S(x, y, z) =

⎧
⎨

⎩
0 if x = y = z,

max{x, y, z} if otherwise,

for all x, y, z ∈ X. Then (X, S) is a complete S-metric space. We define F , H : X → X and ψ ,
φ on R+ by F(x) = x

2 , H(x) = 0, ψ(t) = 2t2 and φ(t) = t2 for all x ∈ X and t ∈ R+.
Without loss of generality, we assume that x > y > z. Then

S(Fx, Fy, Hz) = max

{
x
2

,
y
2

, 0
}

=
x
2

and

S(x, y, z) = max{x, y, z} = x.

Now, we consider

ψ
(
S(Fx, Fy, Hz)

)
= 2.

x2

4
=

x2

2
,

ψ
(
S(x, y, z)

)
= 2x2 and φ

(
S(x, y, z)

)
= x2.

Therefore, we have

ψ
(
S(Fx, Fy, Hz)

)
=

x2

2
≤ 2x2 – x2 = x2 = ψ

(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
.

Thus inequality (3.36) of Corollary 3.6 holds. Hence F and H satisfy all the hypothesis of
Corollary 3.6 and 0 is the unique common fixed point of F and H .

Example 3.13 Let X = [0, 1] and let S be the usual S-metric, that is, S(x, y, z) = |x–z|+ |y–z|
for all x, y, z ∈ X be the S-metric on X. Then (X, S) is a complete S-metric space. We define
F , H : X → X and ψ , φ on R+ by F(x) = x – x2, H(x) = x, ψ(t) = t and φ(t) = t2

6 for all x ∈ X
and t ∈R+. Without loss of generality, we assume that x > y > z. Then choosing x = 1, y = 1

2 ,
and z = 1

4 , we have

S(Fx, Fy, Hz) = |Fx – Hz| + |Fy – Hz|
=

∣
∣(x – x2) – z

∣
∣ +

∣
∣(y – y2) – z

∣
∣

=
[(

x – x2) – z
]

+
[(

y – y2) – z
]
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=
[
(x – z) + (y – z)

]
–

(
x2 + y2)

≤ [
(x – z) + (y – z)

]
– (x – y)2

≤ [
(x – z) + (y – z)

]
–

1
6
[
(x – z) + (y – z)

]2

= S(x, y, z) – φ
(
S(x, y, z)

)

= ψ
(
S(x, y, z)

)
– φ

(
S(x, y, z)

)
.

Thus inequality (3.36) of Corollary 3.6 holds. Hence F and H satisfy all the hypothesis of
Corollary 3.6 and 0 is the unique common fixed point of F and H .

4 Applications
Three decades ago, the rise of the character of cancer infections has critically long-drawn-
out. For every three persons, one of them had cancer attributable to infections. Simulta-
neously, the prevention of infection-connected cancers is shifting from a cancer control
to infection control, for example, vaccination and the detection of infected persons. In
livelihood of this modification, the usage of infection diffusion models has entered the
field of infection-connected cancer. These simulations are valuable to realize the infection
transmission procedures, to evaluate the important parameters that manage the extent of
infection, and to describe the possible impact of different precautionary measures.

The dynamic equation of growth takes the from of a differential equation χ ′(t) = χ (χ (t))
(see [8]). Later Yang and Zhang [9] introduced the growth equation of the form χ ′(t) =
Φ(χ (χ (t))). The fractional differential formula in terms of Riemann–Liouville operator
was given by Ibrahim [10] to study the existence and uniqueness of a solution, and the
entropy solution was discussed by Ibrahim and Jalab in [11]. In this study, we shall use a
new fractional calculus called conformable calculus (CC). In general, CC is introduced as
follows:

Definition 4.1 (Conformable Differential Operator (CDO)) Let β be a fractional power
such that β ∈ [0, 1]. CDO Dβ is conformable if D0 is the identity operator and D1 is the
classical differential operator. In particular, the operator

Dβχ (t) =
(
t1–β

)dχ (t)
dt

=
(
t1–β

)
χ ′(t)

is conformable if for a differentiable function χ (t),

D0χ (t) = χ (t) and D1χ (t) =
d
dt

χ (t) = χ ′(t).

Moreover, in the theory of control systems, a proportional-differential controller for
controlling resultant υ at time t with two tuning criteria has the form

υ(t) = νpΣ(t) + νd
d
dt

Σ(t), (4.1)

where νp is the proportional gain, νd is the derivative gain, and Σ is the error between the
state variable and the process variable. Based on (4.1), Anderson and Ulness [12] intro-
duced the following definition.
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Definition 4.2 For two continuous functions ν0,ν1 : [0, 1] ×R → (0,∞), define

Dβχ (t) = ν1(β , t)χ (t) + ν0(β , t)χ ′(t) (4.2)

such that ν1(β , t) 	= –ν0(β , t),

lim
β→0

ν1(β , t) = 1, lim
β→1

ν1(β , t) = 0, ν1(β , t) 	= 0,∀t,β ∈ (0, 1)

and

lim
β→0

ν0(β , t) = 0, lim
β→1

ν0(β , t) = 1, ν0(β , t) 	= 0,∀t,β ∈ (0, 1).

Note that CC satisfies the integral equation

∫
Dβχ (t) dβ t = χ (t) + ce0(t, t0), (4.3)

where c ∈ R, dβ t = dt
ν0(t) ,ν 	= 0 and e0(t, τ ) = exp(–

∫ t
τ

ν1(β ,ς )
ν0(β ,ς )) dς ). The above definition was

extended to the complex domain in [13].
In this application, we aim to employ Theorem 2.2 to establish the existence and unique-

ness of a solution of the conformable equation

Dβχ (t) = ν1(β , t)χ (t) + ν0(β , t)χ ′(t)

= ν1(β , t)χ (t) + ν0(β , t)Φ(χ
(
χ (t)

)
, (4.4)

where χ ,Φ : [0,∞) → [0,∞) are continuous nondecreasing functions such that χ (t) > 0
for all t ∈ (0,∞) and Φ(0) = χ (0) = 0. It is clear that, when ν → 1, we obtain Yang and
Zhang formula [9], and when Φ(y) = y, we get Eder formula [8]. In our discussion, we shall
select one of the following formulas of ν1 and ν0:

ν1(β , t) = (1 – β)tβ , ν0(β , t) = βt1–β , t ∈ (0,∞), (4.5)

ν1(β , t) = (1 – β)|t|β , ν0(β , t) = β|t|1–β , (4.6)

ν1(β , t) = cos

(
βπ

2

)
tβ , ν0(β , t) = sin

βπ

2
t1–β , t ∈ (0,∞), (4.7)

or

ν1(β , t) = cos

(
βπ

2

)
|t|β , ν0(β , t) = sin

βπ

2
|t|1–β , t ∈ R\{0}.

Furthermore, constant functions can be realized by using the gamma function as follows:

ν1(β , t) =
(1 – β)

Γ (β + 1)
, ν0(β , t) =

β

Γ (β + 1)
.

Denoting X = R and in view of (4.3) and (4.4), we define an operator Q; X → X as follows:

(Qχ )(t) =
∫ t

0
(ν1(β , t)χ (t) + ν0(β , t)Φ

(
χ

(
χ (t)

))
dβς + ce0(t, t0). (4.8)
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Since χ ∈ X, Q is a self-mapping. In addition, define a function S : X3 →R
+ by

S(χ1,χ2,χ3) = max
{|χı – χj | : ı, j = 1, 2, 3, ı 	= j

}
,

where χ1(t) = χ (t),χ2(t) = χ (χ (t)) and χ3(t) = χ (χ (χ (t))) := Φ(χ (χ (t))). Obviously,
S(χ1,χ2,χ3) = 0 for χ1 = χ2 = χ3; also, we have

S(χ1,χ1,χi) + S(χ2,χ2,χj) + S(χ3,χ3,χk)

= max
i=2,3

{|χ1 – χi|
}

+ max
j=1,3

{|χ2 – χj|
}

+ max
k=1,2

{|χ3 – χk|
}

= max
{|χ1 – χ2|, |χ1 – χ3

}
+ max

{|χ2 – χ1|, |χ2 – χ3
}

+ max
{|χ3 – χ1|, |χ3 – χ2|

}

= 2 max
{|χ1 – χ2|, |χ2 – χ3|, |χ3 – χ1|

}

> max
{|χ1 – χ2|, |χ2 – χ3|, |χ3 – χ1|

}

= max
{|χı – χj | : ı, j = 1, 2, 3, ı 	= j

}

= S(χ1,χ2,χ3). (4.9)

Hence, the metric S(χ1,χ2,χ3) is an S-metric on the set X.

Theorem 4.3 Consider the conformable equation (4.4). If

∣∣Φ(χ
(
χ (t)

)
– Φ(η

(
η(t)

)∣∣ < �
∣∣χ (t) – η(t)

∣∣

for some positive constant � < 1–(1–β)Tβ

βT1–β , T < ∞, then Q has a unique fixed point in X.

Proof Let the functions ν0 and ν1 be given by

ν1(β , t) = (1 – β)tβ , ν0(β , t) = βt1–β , t ∈ (0,T),T < ∞.

Then, by utilizing the inequality of �, we have

S
(
Qχ1(t), Qχ2(t), Qχ3(t)

)

= max
{∣∣Qχı(t) – Qχj (t)

∣
∣ : ı, j = 1, 2, 3, ı 	= j

}

≤ max

{∣∣ν1(β , t)χı(t) + ν0(β , t)Φ(χı

(
χı(t)

)

– (ν1(β , t)χj (t) + ν0(β , t)Φ
(
χj

(
χj (t)

))∣∣T
β

β2 : ı, j = 1, 2, 3, ı 	= j

}

≤ max

{
ν1(β , t)|χı – χj |T

β

β2 + ν0(β , t)�|χı – χj |T
β

β2 : ı, j = 1, 2, 3, ı 	= j

}

= max

{[
(1 – β)Tβ + βT1–β�

]Tβ

β2 |χı – χj | : ı, j = 1, 2, 3, ı 	= j

}

:= rS(χ1,χ2,χ3).
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Hence, Q is bounded in the unit ball Br of radius 0 < r < 1. We proceed to discover more
properties of the operator Q. Let t, τ ∈ (0,T) be such that t > τ . Then χ (t) > χ (τ ) (increas-
ing function). A computation yields that

S(Qχ1(t), Qχ2(t), Qχ3(t) –
(
Qχ1(τ ), Qχ2(τ ), Qχ3(τ )

)

= S
(
Q

(
χ1(t) – χ1(τ )

)
, Q

(
χ2(t) – χ2(τ )

)
, Q

(
χ3(t) – χ3(τ )

))

= S
(
Qχ1(t – τ ), Qχ2(t – τ ), Qχ3(t – τ )

)

≤ S
(
Qχ1(t), Qχ2(t), Qχ3(t)

)

≤ rS(χ1,χ2,χ3).

Thus, Q is equicontinuous on Br . Moreover, by letting χl(t) – ηl(t) = ξl(t), l = 1, 2, 3, we
attain that

S
(
Q

(
χ1(t) – η1(t)

)
, Q

(
χ2(t) – η2(t)

)
, Q

(
χ3(t) – η3(t)

))

= S
(
Q

(
ξ1(t)

)
, Q

(
ξ2(t)

)
, Q

(
ξ3(t)

))

≤ max

{∣∣ν1(β , t)ξı(t) + ν0(β , t)Φ(ξı

(
χı(t)

)

– (ν1(β , t)ξj (t) + ν0(β , t)Φ
(
ξj

(
ξj (t)

))∣∣T
β

β2 : ı, j = 1, 2, 3, ı 	= j

}

≤ max

{
ν1(β , t)|ξı – ξj |T

β

β2 + ν0(β , t)�|ξı – ξj |T
β

β2 : ı, j = 1, 2, 3, ı 	= j

}

≤ max

{
(1 – β)Tβ |ξı – ξj |T

β

β2 + βT1–β�|ξı – ξj |T
β

β2 : ı, j = 1, 2, 3, ı 	= j

}

= max

{[
(1 – β)Tβ + βT1–β(β , t)�

]Tβ

β2 |ξı – ξj | : ı, j = 1, 2, 3, ı 	= j

}

≤ rS(ξ1, ξ2, ξ3) ≤ rS(χ1,χ2,χ3).

Therefore, the operator Q is continuous in Br . This implies that Q has a fixed point Qχ = χ .
Next we aim to check inequality (2.1). Suppose that there are two continuous and non-

decreasing functions ψ ,φ : [0,∞) → [0,∞) with the properties: ψ(t),φ(t) > 0 for t > 0 and
ψ(t) = φ(t) = 0 if and only if t = 0. Now, by putting ψ(ρ) = ρ/r and φ(ρ) = ρ(1–r)

r , from the
boundedness of Q and (4.9), we conclude that

ψ
(
SQ(χ1,χ1,χi)

)

=
SQ(χ1,χ1,χi)

r
≤ S(χ1,χ2,χ3)

≤ S(χ1,χ1,χi) + S(χ2,χ2,χj) + S(χ3,χ3,χk)

= ψ
(
S(χ1,χ1,χi)

)
– φ

(
S(χ1,χ1,χi)

)
+ S(χ2,χ2,χj) + S(χ3,χ3,χk)

≤ ψ
(
S(χ1,χ1,χi)

)
– φ

(
S(χ1,χ1,χi)

)

+ min
{
S(χ2,χ2, Qχ2),S(χ2,χ2, Qχ1),S(χ1,χ1, Qχ1),S(χ1,χ1, Qχ2)

}
.
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Hence, with L1 = 1 we get inequality (2.1). Then, in view of Theorem 2.2, we conclude that
Q has a unique fixed point lying in Br , r < 1. �

4.1 Numerical example
Consider the following data: t ∈ (0, 1],β = 0.5,Φ(w) = 0.5w, and the conformable iterative
equation

D0.5χ (t) = ν1(β , t)χ (t) + ν0(β , t)χ ′(t)

= ν1(0.5, t)χ (t) + 0.5ν0(0.5, t)(χ
(
χ (t)

)
, (4.10)

It is easy to compute � = 0.5 < 1. Then equation (4.10) has a unique solution (see Theo-
rem 4.3) in the unit ball Br , where r = [(1 – β)Tβ + βT1–β�] = 0.75. By using this method,
one can generalize to other types of differential equations to improve the solutions.

5 Conclusion
In this paper, we have defined (ψ – φ)-almost weakly contractive maps in S-metric spaces
and established several unique fixed point and unique common fixed point theorems in
the framework of complete S-metric spaces. Also we have given some examples in support
of our results. They extend, generalize, and unify the corresponding results of [3–5], and
many others from the existing literature to those in the setting of complete S-metric spaces
considered in this paper.
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