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Abstract
We first establish some results involving Riemann–Liouville fractional integrals for
partially differentiable functions. Then we obtain some fractional Ostrowski type
inequalities for functions in class of functions Lp, L∞ and L1, respectively. We also give
some midpoint type inequalities as special cases of our main results.
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1 Introduction
For well over a century, the study of various types of integral inequalities has been the focus
of great attention by a number of mathematicians, interested both in pure and applied
mathematics. One of the many fundamental mathematical discoveries of Ostrowski [1] is
the following classical integral inequality associated with the differentiable mappings.

Theorem 1 Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative
f ′ : (a, b) → R is bounded on (a, b), i.e. ‖f ′‖∞ := supt∈(a,b) |f ′(t)| < ∞. Then we have the
inequality

∣
∣
∣
∣
f (x) –

1
b – a

∫ b

a
f (t) dt

∣
∣
∣
∣
≤

[
1
4

+
(x – a+b

2 )2

(b – a)2

]

(b – a)
∥
∥f ′∥∥∞,

for all x ∈ [a, b].

The constant 1
4 is the best possible.

The overall structure of the study takes the form of five sections including Introduction.
The remainder of this work is organized as follows: we first give the definition of Riemann–
Liouville fractional integrals and mention some work which focuses on Ostrowski inequal-
ity. In Sect. 2, we obtain some generalized identities for the twice partial differentiable
functions. Using the equalities obtained in Sect. 2, we establish some Ostrowski type in-
equalities for the functions belong to L∞ in Sect. 3, also we prove Ostrowski type inequal-
ities for the mappings belong to Lp and L1 in Sect. 4 and Sect. 5, respectively.
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Firstly, we give the definitions of Riemann–Liouville fractional integrals.

Definition 1 ([2]) Let f ∈ L1[a, b]. The Riemann–Liouville integrals Jα
a+f and Jα

b–f of order
α > 0 with a ≥ 0 are defined by

Jα
a+f (x) =

1
Γ (α)

∫ x

a
(x – t)α–1f (t) dt, x > a

and

Jα
b–f (x) =

1
Γ (α)

∫ b

x
(t – x)α–1f (t) dt, x < b

respectively. Here, Γ (α) is the Gamma function and J0
a+f (x) = J0

b–f (x) = f (x).

Now, we give the definitions Riemann–Liouville fractional integrals of two variable func-
tions:

Definition 2 ([3]) Let f ∈ L1([a, b] × [c, d]). The Riemann–Liouville fractional integrals
Jα,β
a+,c+, Jα,β

a+,d–, Jα,β
b–,c+ and Jα,β

b–,d– are defined by

Jα,β
a+,c+f (x, y) =

1
Γ (α)Γ (β)

∫ x

a

∫ y

c
(x – t)α–1(y – s)β–1f (t, s) ds dt, x > a, y > c,

Jα,β
a+,d–f (x, y) =

1
Γ (α)Γ (β)

∫ x

a

∫ d

y
(x – t)α–1(s – y)β–1f (t, s) ds dt, x > a, y < d,

Jα,β
b–,c+f (x, y) =

1
Γ (α)Γ (β)

∫ b

x

∫ y

c
(t – x)α–1(y – s)β–1f (t, s) ds dt, x < b, y > c,

and

Jα,β
b–,d–f (x, y) =

1
Γ (α)Γ (β)

∫ b

x

∫ d

y
(t – x)α–1(s – y)β–1f (t, s) ds dt, x < b, y < d.

Ostrowski inequalities for fractional integrals of two variable functions are obtained in
[4]. There are several papers on fractional Ostrowski type inequalities for one or two vari-
able functions, you can find some of them in Refs. [5–22].

2 Some identities for double integrals
Some equalities including Riemann–Liouville fractional integrals of two variable func-
tions are established in this section. These identities will be used to prove the inequalities
developed throughout this study.

Firstly, we define the following functions which will be used frequently:

Mα(a, b; x) :=
(x – a)α + (b – x)α

Γ (α + 1)
,

Nβ (c, d; y) :=
(y – c)β + (d – y)β

Γ (β + 1)
,

for (x, y) ∈ Λ := [a, b] × [c, d].
Now we prove the following equalities.
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Lemma 1 Let f : Λ →R be an absolutely continuous function such that the partial deriva-
tive of order 2 exists and is continuous on Λ in R

2. Then, for any (x, y) ∈ Λ, we have

1
Γ (α)Γ (β)

∫ b

a

∫ d

c
Ω(x, t, y, s)

[∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

]

ds dt

= Jα,β
a+,c+f (x, y) + Jα,β

a+,d–f (x, y) + Jα,β
b–,c+f (x, y) + Jα,β

b–,d–f (x, y)

– Nβ (c, d; y)
[

Jα
a+f (x, y) + Jα

b–f (x, y)
]

– Mα(a, b; x)
[

Jβ
c+,f (x, y) + Jβ

d–,f (x, y)
]

+ Mα(a, b; x)Nβ(c, d; y)f (x, y)

=: G1(x, y; a, b, c, d), (2.1)

where Ω(x, t, y, s) is defined by

Ω(x, t, y, s)

:=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x – t)α–1(y – s)β–1, a ≤ t < x and c ≤ s < y,

(x – t)α–1(s – y)β–1, a ≤ t < x and y ≤ s ≤ d,

(t – x)α–1(y – s)β–1, x ≤ t ≤ b and c ≤ s < y,

(t – x)α–1(s – y)β–1, x ≤ t ≤ b and y ≤ s ≤ d.

(2.2)

Proof It is easy to see that

∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

= f (t, s) – f (t, y) – f (x, s) + f (x, y)

=: F(x, t, y, s). (2.3)

By the above equality and the definition of Ω(x, t, y, s), we get

1
Γ (α)Γ (β)

∫ b

a

∫ d

c
Q(x, t, y, s)

[∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

]

ds dt

=
1

Γ (α)Γ (β)

∫ x

a

∫ y

c
(x – t)α–1(y – s)β–1F(x, t, y, s) ds dt

+
1

Γ (α)Γ (β)

∫ x

a

∫ d

y
(x – t)α–1(s – y)β–1F(x, t, y, s) ds dt

+
1

Γ (α)Γ (β)

∫ b

x

∫ y

c
(t – x)α–1(y – s)β–1F(x, t, y, s) ds dt

+
1

Γ (α)Γ (β)

∫ b

x

∫ d

y
(t – x)α–1(s – y)β–1F(x, t, y, s) ds dt.
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Applying the fundamental integral rules for the first integral in the right side of the above
identity, we find that

1
Γ (α)Γ (β)

∫ x

a

∫ y

c
(x – t)α–1(y – s)β–1F(x, t, y, s) ds dt

= Jα,β
a+,c+f (x, y) –

(y – c)β

Γ (β + 1)
Jα
a+,f (x, y)

–
(x – a)α

Γ (α + 1)
Jβ
c+,f (x, y) +

(x – a)α(y – c)β

Γ (α + 1)Γ (β + 1)
f (x, y).

Adding the resulting identities after calculating the other integrals, then the desired equal-
ity (2.1) can be attained. �

Lemma 2 Suppose that all the assumptions of the Lemma 1 hold. Then, for any (x, y) ∈ Λ,
we have

1
Γ (α)Γ (β)

∫ b

a

∫ d

c
Ω(t, s)

[∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

]

ds dt

= Jα,β
x+,y+f (b, d) + Jα,β

x+,y–f (b, c) + Jα,β
x–,y+f (a, d) + Jα,β

x–,y–f (a, c)

– Nβ (c, d; y)
[

Jα
x+f (b, y) + Jα

x–f (a, y)
]

– Mα(a, b; x)
[

Jβ
y+,f (x, d) + Jβ

y–,f (x, c)
]

+ Mα(a, b; x)Nβ(c, d; y)f (x, y)

=: G2(x, y; a, b, c, d), (2.4)

where Ω(t, s) is defined by

Ω(t, s)

:=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t – a)α–1(s – c)β–1, a ≤ t < x and c ≤ s < y,

(t – a)α–1(d – s)β–1, a ≤ t < x and y ≤ s ≤ d,

(b – t)α–1(s – c)β–1, x ≤ t ≤ b and c ≤ s < y,

(b – t)α–1(d – s)β–1, x ≤ t ≤ b and y ≤ s ≤ d.

(2.5)

Proof The proof of the equality (2.4) follows the same lines as the proof of Lemma 1. �

Lemma 3 Suppose that all the assumptions of the Lemma 1 hold. Then, for any (x, y) ∈ Λ,
we have

1
4Γ (α)Γ (β)

{∫ b

a

∫ d

c

[

(t – a)α–1 + (b – t)α–1]

× [

(s – c)β–1 + (d – s)β–1]
[∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

]

ds dt
}

=
Jα,β
b–,d–f (a, c) + Jα,β

b–,c+f (a, d) + Jα,β
a+,d–f (b, c) + Jα,β

a+,c+–f (b, d)
4
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–
1
2

(d – c)β

Γ (β + 1)
[

Jα
b–f (a, y) + Jα

a+f (b, y)
]

–
1
2

(b – a)α

Γ (α + 1)
[

Jβ

d–,f (x, c) + Jβ
c+,f (x, d)

]

+
(b – a)α(d – c)β

Γ (α + 1)Γ (β + 1)
f (x, y)

= G3(x, y; a, b, c, d). (2.6)

Proof If we handle integral of the first expression in left side of (2.6), from the equality
(2.3), then we have

1
Γ (α)Γ (β)

∫ b

a

∫ d

c
(t – a)α–1(y – c)β–1F(x, t, y, s) ds dt

= Jα,β
b–,d–f (a, c) –

(d – c)β

Γ (β + 1)
Jα
b–f (a, y)

–
(b – a)α

Γ (α + 1)
Jβ

d–,f (x, c) +
(b – a)α(d – c)β

Γ (α + 1)Γ (β + 1)
f (x, y).

Adding the resulting identities side by side after the other expressions have been similarly
examined, the required equality can be easily derived. �

3 The case when fςτ ∈ L∞(Λ)
In this section, we observe some double integral inequalities involving Riemann–Liouville
fractional expressions by considering identities given in the previous section and the func-
tions that are element of L∞.

Theorem 2 Let f : Λ → R be an absolutely continuous function such that the partial
derivative of order 2 exists and is bounded, i.e.,

‖fςτ‖∞ = sup
(ς ,τ )∈(a,b)×(c,d)

∣
∣
∣
∣

∂2f (ς , τ )
∂ς ∂τ

∣
∣
∣
∣

< ∞

for all (ς , τ ) ∈ Λ. Then one has

∣
∣G1(x, y; a, b, c, d)

∣
∣ ≤ Mα+1(a, b; x)Nβ+1(c, d; y)‖fςτ‖∞ (3.1)

for all (x, y) ∈ Λ.

Proof Taking the absolute value of both sides of the equality (2.1), because fςτ is a bounded
function on Λ, it follows that

∣
∣G1(x, y; a, b, c, d)

∣
∣

≤ ‖fςτ‖∞
1

Γ (α)Γ (β)

∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣|t – x||s – y|ds dt.

Using the definition of Ω(x, t, y, s) and elementary analysis operations, the desired result
can be easily obtained. �
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Corollary 1 If we choose x = a+b
2 and y = c+d

2 in (3.1), then we have the midpoint inequality

∣
∣
∣
∣
Jα,β
a+,c+f

(
a + b

2
,

c + d
2

)

+ Jα,β
a+,d–f

(
a + b

2
,

c + d
2

)

+ Jα,β
b–,c+f

(
a + b

2
,

c + d
2

)

+ Jα,β
b–,d–f

(
a + b

2
,

c + d
2

)

–
(d – c)β

2β–1Γ (β + 1)

[

Jα
a+f

(
a + b

2
,

c + d
2

)

+ Jα
b–f

(
a + b

2
,

c + d
2

)]

–
(b – a)α

2α–1Γ (α + 1)

[

Jβ
c+,f

(
a + b

2
,

c + d
2

)

+ Jβ

d–,f
(

a + b
2

,
c + d

2

)]

+
(b – a)α(d – c)β

2α+β–2Γ (α + 1)Γ (β + 1)
f
(

a + b
2

,
c + d

2

)∣
∣
∣
∣

≤ (b – a)α+1(d – c)β+1

2α+βΓ (α + 2)Γ (β + 2)
‖fςτ‖∞.

Theorem 3 Suppose that all the assumptions of Theorem 2 hold. Then we have

∣
∣G2(x, y; a, b, c, d)

∣
∣ ≤ Mα+1(a, b; x)Nβ+1(c, d; y)‖fςτ‖∞ (3.2)

for any (x, y) ∈ Λ.

Proof This proof follows the same strategy which was used in the proof of Theorem 2 by
considering the equality (2.4). �

Corollary 2 With the assumption of Theorem 3, one has the midpoint type inequality

∣
∣
∣
∣
Jα,β

a+b
2 +, c+d

2 +
f (b, d) + Jα,β

a+b
2 +, c+d

2 –
f (b, c) + Jα,β

a+b
2 –, c+d

2 +
f (a, d) + Jα,β

a+b
2 –, c+d

2 –
f (a, c)

–
(d – c)β

2β–1Γ (β + 1)

[

Jα
a+b

2 +
f
(

b,
c + d

2

)

+ Jα
a+b

2 –
f
(

a,
c + d

2

)]

–
(b – a)α

2α–1Γ (α + 1)

[

Jβ
c+d

2 +,
f
(

a + b
2

, d
)

+ Jβ
c+d

2 –,
f
(

a + b
2

, c
)]

+
(b – a)α(d – c)β

2α+β–2Γ (α + 1)Γ (β + 1)
f
(

a + b
2

,
c + d

2

)∣
∣
∣
∣

≤ (b – a)α+1(d – c)β+1

2α+βΓ (α + 2)Γ (β + 2)
‖fςτ‖∞.

Theorem 4 Suppose that all the assumptions of Theorem 2 hold. Then, for all (x, y) ∈ Λ,
one has

∣
∣G3(x, y; a, b, c, d)

∣
∣

≤ 1
4Γ (α)Γ (β)

[

Rα(x; a, b) + Sα(x; a, b)
]

× [

Rβ (y; c, d) + Sβ (y; c, d)
]‖fςτ‖∞, (3.3)
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where

Rλ(ξ ; u, v) = 2
(ξ – u)λ+1

λ(λ + 1)
+ (v – u)λ

(
v – u
λ + 1

–
ξ – u

λ

)

and

Sλ(ξ ; u, v) = 2
(v – ξ )λ+1

λ(λ + 1)
+ (v – u)λ

(
v – u
λ + 1

–
v – ξ

λ

)

.

Proof Should we take the absolute value of (2.6), from the modulus property of the inte-
gral, then we have the inequality

∣
∣G3(x, y; a, b, c, d)

∣
∣ (3.4)

≤ ‖fςτ‖∞
1
4

1
Γ (α)Γ (β)

{∫ b

a

∫ d

c

[

(t – a)α–1 + (b – t)α–1]

× [

(s – c)β–1 + (d – s)β–1]|t – x||s – y|ds dt
}

.

Calculating the double integral given in the right side of (3.4), the desired inequality (3.3)
can be easily obtained. �

Corollary 3 Suppose that all the assumptions of Theorem 4 hold. If we choose x = a+b
2 and

y = c+d
2 , then we have

∣
∣
∣
∣

Jα,β
b–,d–f (a, c) + Jα,β

b–,c+f (a, d) + Jα,β
a+,d–f (b, c) + Jα,β

a+,c+–f (b, d)
4

–
1
2

(d – c)β

Γ (β + 1)

[

Jα
b–f

(

a,
c + d

2

)

+ Jα
a+f

(

b,
c + d

2

)]

–
1
2

(b – a)α

Γ (α + 1)

[

Jβ

d–,f
(

a + b
2

, c
)

+ Jβ
c+,f

(
a + b

2
, d

)]

+
(b – a)α(d – c)β

Γ (α + 1)Γ (β + 1)
f
(

a + b
2

,
c + d

2

)∣
∣
∣
∣

≤ (b – a)α+1(d – c)β+1

Γ (α + 2)Γ (β + 2)

[
1

2α
+

α – 1
2

][
1

2β
+

β – 1
2

]

‖fςτ‖∞.

4 The case when fςτ ∈ Lp(Λ)
In this section, we examine how to obtain inequalities for mappings which are elements
of the space Lp.

Theorem 5 Let f : Λ → R be an absolutely continuous function such that the partial
derivative of order 2 exists on (a, b) × (c, d). If ∂2f (ς ,τ )

∂ς ∂τ
∈ Lp(Λ) for p > 1 with 1

p + 1
q = 1,

i.e.,

‖fςτ‖p =
(∫ b

a

∫ d

c

∣
∣
∣
∣

∂2f (ς , τ )
∂ς ∂τ

∣
∣
∣
∣

p

dτ dς

) 1
p

< ∞
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for all (ς , τ ) ∈ Λ, then we have the inequality

∣
∣G1(x, y; a, b, c, d)

∣
∣

≤ [(x – a)α+ 1
q + (b – x)α+ 1

q ][(y – c)β+ 1
q + (d – y)β+ 1

q ]
Γ (α)Γ (β)(α + 1/q)(β + 1/q)

‖fςτ‖p (4.1)

for all (x, y) ∈ Λ.

Proof If we take the absolute value of both sides of the equality (2.1) and later apply the
Hölder inequality, from the assumption of the function f , we have

Γ (α)Γ (β)
∣
∣G1(x, y; a, b, c, d)

∣
∣

≤
∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣

∣
∣
∣
∣

∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς ∂τ

dτ dς

∣
∣
∣
∣
ds dt

≤
∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣|t – x| 1

q |s – y| 1
q

∣
∣
∣
∣

∫ t

x

∫ s

y

∣
∣
∣
∣

∂2f (ς , τ )
∂ς ∂τ

∣
∣
∣
∣

p

dτ dς

∣
∣
∣
∣

1
p

ds dt

=
∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣|t – x| 1

q |s – y| 1
q ‖fςτ‖[t,x]×[s,y],p ds dt

≤ ‖fςτ‖p

∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣|t – x| 1

q |s – y| 1
q ds dt.

If the last integral of above expression is observed by considering the definition of
Ω(x, t, y, s), then one attains the required inequality (4.1) which completes the proof. �

Theorem 6 Assume that all the assumptions of Theorem 2 hold. If ∂2f (ς ,τ )
∂ς ∂τ

∈ Lp(Λ) for p > 1
with 1

p + 1
q = 1, then one has

∣
∣G2(x, y; a, b, c, d)

∣
∣

≤ [Γ (1 + 1/q)]2

Γ (α + 1 + 1/q)Γ (β + 1 + 1/q)
‖fςτ‖p

× [

(x – a)α+ 1
q + (b – x)α+ 1

q
][

(y – c)β+ 1
q + (d – y)β+ 1

q
]

for any (x, y) ∈ Λ.

Proof If similar methods to the proof of Theorem 5 are followed by taking into account
the equality (2.4), because of the definition of Ω(t, s), then one has

Γ (α)Γ (β)
∣
∣G2(x, y; a, b, c, d)

∣
∣

≤ ‖fςτ‖p

∫ b

a

∫ d

c

∣
∣Ω(t, s)

∣
∣|t – x| 1

q |s – y| 1
q ds dt

= ‖fςτ‖p

∫ x

a

∫ y

c
(t – a)α–1(s – c)β–1|t – x| 1

q |s – y| 1
q ds dt

+ ‖fςτ‖p

∫ x

a

∫ d

y
(t – a)α–1(d – s)β–1|t – x| 1

q |s – y| 1
q ds dt
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+ ‖fςτ‖p

∫ b

x

∫ y

c
(b – t)α–1(s – c)β–1|t – x| 1

q |s – y| 1
q ds dt

+ ‖fςτ‖p

∫ b

x

∫ d

y
(b – t)α–1(d – s)β–1|t – x| 1

q |s – y| 1
q ds dt.

The above integrals can be readily calculated by utilizing the fact that

∫ μ

λ

(ξ – λ)ρ–1(μ – ξ )σ–1 dξ = (μ – λ)ρ+σ–1
∫ 1

0
uρ–1(1 – u)σ–1 du

= (μ – λ)ρ+σ–1B(ρ,σ ),

which is obtained by using the change of variable ξ = (1 – u)λ + uμ, and where B(·, ·) is
Beta function. Hence, the proof is finished. �

We also note that if we choose x = a+b
2 and y = c+d

2 in two inequalities presented in this
section, then we reach new midpoint type results different from inequalities given in corol-
laries of the previous section.

5 The case when fςτ ∈ L1(Λ)
Now, we investigate how to results in the case when f element of L1.

Theorem 7 Let f : Λ → R be an absolutely continuous function such that the partial
derivative of order 2 exists on (a, b) × (c, d). If ∂2f (ς ,τ )

∂ς ∂τ
∈ L1(Λ), i.e.,

‖fςτ‖1 =
∫ b

a

∫ d

c

∣
∣
∣
∣

∂2f (ς , τ )
∂ς ∂τ

∣
∣
∣
∣
dτ dς < ∞

for all (ς , τ ) ∈ Λ, then we have the inequalities

∣
∣G1(x, y; a, b, c, d)

∣
∣ ≤ Mα(a, b; x)Nβ(c, d; y)‖fςτ‖1 (5.1)

and

∣
∣G2(x, y; a, b, c, d)

∣
∣ ≤ Mα(a, b; x)Nβ(c, d; y)‖fςτ‖1 (5.2)

for all (x, y) ∈ Λ.

Proof If we take the absolute value of both sides of the equality (2.1), due to the assumption
of the function f , we have

∣
∣G1(x, y; a, b, c, d)

∣
∣

≤ 1
Γ (α)Γ (β)

∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣

∣
∣
∣
∣

∫ t

x

∫ s

y

∂2f (ς , τ )
∂ς∂τ

dτ dς

∣
∣
∣
∣
ds dt

≤ ‖fςτ‖1
1

Γ (α)Γ (β)

∫ b

a

∫ d

c

∣
∣Ω(x, t, y, s)

∣
∣ds dt.
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Later, utilizing the definition of Ω(x, t, y, s), the desired inequality (5.1) can be readily at-
tained. If we follow the same line as the proof of (5.1) by taking into account the equality
(2.4), then we can also obtain the inequality (5.2). The proof is thus completed. �

Theorem 8 Suppose that all the assumptions of Theorem 7 hold. If ∂2f (ς ,τ )
∂ς ∂τ

∈ L1(Λ), then
one has

∣
∣G3(x, y; a, b, c, d)

∣
∣ ≤ (b – a)α(d – c)β

Γ (α + 1)Γ (β + 1)
‖fςτ‖1 (5.3)

for all (x, y) ∈ Λ.

Proof Taking the absolute value of (2.6), from the modulus property of the integral, we
find that

∣
∣G3(x, y; a, b, c, d)

∣
∣

≤ 1
4Γ (α)Γ (β)

‖fςτ‖1

×
∫ b

a

∫ d

c

[

(t – a)α–1 + (b – t)α–1][(s – c)β–1 + (d – s)β–1]ds dt.

Calculating the above double integral, the required inequality (5.3) can be easily ob-
tained. �
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