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Abstract
This paper deals with some trapezoid and mid-point type inequalities on closed balls
in R

3. Three kinds of functions are considered: convex, Lipschitz, and bounded
functions. The spherical coordinates are used to obtain sharp inequalities. Also a
reverse result is given for the right-hand side of Hermite–Hadamard’s inequality
obtained on closed balls in R

3.
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1 Introduction and preliminaries
Consider the closed ball B̄(C, R) in the space R

3 with center C = (a, b, c) ∈ R
3 and radius

R > 0 defined as

B̄(C, R) =
{

(x, y, z) ∈R
3|(x – a)2 + (y – b)2 + (z – c)2 ≤ R2}.

Also consider σ (C, R) as the boundary (the surface) of B̄(C, R), i.e.,

σ (C, R) =
{

(x, y, z) ∈ R
3|(x – a)2 + (y – b)2 + (z – c)2 = R2}.

The following result has been proved in [1], which is the Hermite–Hadamard’s inequality
for convex functions defined on closed ball B̄(C, R).

Theorem 1.1 Let f : B̄(C, R) → R be a convex mapping on the ball B̄(C, R). Then we have
the inequality

f (C) ≤ 1
v(B̄(C, R))

∫∫∫

B̄(C,R)
f (x, y, z) dx dy dz ≤ 1

σ (B̄(C, R))

∫∫

σ (C,R)
f (x, y, z) dσ , (1)

where v(B̄(C, R)) = 4πR3

3 and σ (B̄(C, R)) = 1
4πR2 .
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The main purpose of this paper is estimating two bounds B1 and B2 such that

∣∣∣∣
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ ≤ B1, (2)

and

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣ ≤ B2. (3)

Depending on the properties of the function f and the radius R, different values will be
obtained for B1 and B2.

We call (2) a mid-point type inequality due to the following result obtained in [2] and
interpretation of Fig. 1.

Theorem 1.2 Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b], then we have

∣∣∣∣

∫ b

a
f (x) dx – (b – a)f

(
a + b

2

)∣∣∣∣ ≤ 1
8

(b – a)2(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (4)

According to (4), we have an estimate for the difference between the area under the
graph of f , i.e.,

∫ b
a f (x) dx, and the area of rectangle abcd, i.e., (b – a)f ( a+b

2 ) (see Fig. 1).
Also we call (3) a trapezoid type inequality due to the following result and Fig. 2.

Figure 1 Mid-point type inequality

Figure 2 Trapezoid type inequality
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Theorem 1.3 ([3]) Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′| is convex on [a, b], then the following inequality holds:

∣∣∣∣

∫ b

a
f (x) dx – (b – a)

f (a) + f (b)
2

∣∣∣∣ ≤ 1
8

(b – a)2(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (5)

According to (5), we can estimate the difference between the area of trapezoid abcd, i.e.,
(b – a) f (a)+f (b)

2 , and the area under the graph of f (see Fig. 2).
Note that to obtain (4) and (5), the absolute values of the derivative of f at bound-

ary points of interval [a, b] play a fundamental role. For more results about Hermite–
Hadamard’s inequality, we refer an interested reader to [4–18] and the references therein.

Before presenting our main results, here we obtain a new representation of (1) and also
give a reverse type theorem.

If we consider a convex function f : B̄(C, R) →R and the change of coordinates

T : D̄
(
(a, b), R

) × [0, 1] → B̄(C, R),

T (x, y,λ) =
(
x, y, (2λ – 1)

√
R2 – x2 – y2

)
,

(6)

where D̄((a, b), R) is a closed disk centered at the point (a, b) having radius R > 0, then we
obtain

∫∫∫

B̄(C,R)
f (x, y, z) dV

= 2
∫ R

–R

∫ √
R2–x2

–
√

R2–x2

∫ 1

0
f
(
(1 – λ)

(
x, y, –

√
R2 – x2 – y2

)
+ λ

(
x, y,

√
R2 – x2 – y2

))

× √
R2 – x2 – y2 dλdy dx

≤ 2
∫ R

–R

∫ √
R2–x2

–
√

R2–x2

∫ 1

0
(1 – λ)f

(
x, y, –

√
R2 – x2 – y2

)√
R2 – x2 – y2 dλdy dx

+ 2
∫ R

–R

∫ √
R2–x2

–
√

R2–x2

∫ 1

0
λf

(
x, y,

√
R2 – x2 – y2

)√
R2 – x2 – y2 dλdy dx

=
∫ R

–R

∫ √
R2–x2

–
√

R2–x2
f
(
x, y, –

√
R2 – x2 – y2

)√
R2 – x2 – y2 dy dx

+
∫ R

–R

∫ √
R2–x2

–
√

R2–x2
f
(
x, y,

√
R2 – x2 – y2

)√
R2 – x2 – y2 dy dx. (7)

Choosing z =
√

R2 – x2 – y2 in the latter integrals, the fact that
√

1 + ( ∂z
∂x )2 + ( ∂z

∂y )2 =
R√

R2–x2–y2
= R

z , and using the surface integral formula for σ (C, R) imply that

∫∫∫

B̄(C,R)
f (x, y, z) dV ≤ 1

R

∫∫

σ (C,R)
f (x, y, z)z2 dσ . (8)

Inequality (8) gives another representation for (1).
In a special case for a convex function f : D̄((a, b), R) → R we get

∫∫

D̄((a,b),R)
f (x, y) dA ≤ 1

R

∫

σ ((a,b),R)
f (x, y)y2 dσ .
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Now for a reverse type result, consider a continuous function f defined on a convex subset
V ⊂R

3 such that (8) holds for all closed balls included in V . Then f is convex on V because
otherwise there would exist X ,Y ∈ V and λ ∈ (0, 1) such that

f
(
λX + (1 – λ)Y

)
> λf (X ) + (1 – λ)f (Y). (9)

Since f is continuous on V , we can find R > 0 and a point Z = (ā, b̄, c̄) in a convex combina-
tion of X and Y such that (9) holds on the whole of B̄((ā, b̄, c̄), R) ⊂ V . So by the change of
coordinates (6) and structure presented in (7) for D̄((ā, b̄), R) and B̄((ā, b̄, c̄), R), we obtain
that

∫∫∫

B̄((ā,b̄,c̄),R)
f (x, y, z) dV >

1
R

∫∫

σ ((ā,b̄,c̄),R)
f (x, y, z)z2 dσ ,

which is a contradiction and this proves the convexity of f on V .
In the following sections we consider convex, Lipschitz, and bounded functions to ob-

tain some trapezoid and mid-point type inequalities on a closed ball. We use the spherical
coordinates in calculating the integrals.

2 Convex functions
In this section we obtain trapezoid and mid-point type inequalities for the case that the
partial derivative absolute values of a considered function with respect to the radius in
spherical coordinates is convex. We need the following lemma.

Lemma 2.1 For an integrable function f : B̄(C, R) →R, we have

∫∫∫

B̄(C,R)
f (x, y, z) dV

=
∫ 2π

0

∫ π

0

∫ R

0
f (a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)

× ρ2 sinϕ dρ dϕ dθ , (10)

and
∫∫

σ (C,R)
f (x, y, z) dσ

=
∫ 2π

0

∫ π

0
f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)R2 sinϕ dϕ dθ

=
3
R

∫ 2π

0

∫ π

0

∫ R

0
f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)

× ρ2 sinϕ dρ dϕ dθ . (11)

Proof Consider the spherical transformation

⎧
⎪⎪⎨

⎪⎪⎩

x(ρ,ϕ, θ ) = a + ρ cos θ sinϕ,

y(ρ,ϕ, θ ) = b + ρ sin θ sinϕ,

z(ρ,ϕ, θ ) = c + ρ cosϕ,

ρ ∈ [0, R],ϕ ∈ [0,π ], θ ∈ [0, 2π ].
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It is obvious that the Jacobian of this transformation is J = ρ2 sinϕ. So we have (10).
For (11), consider the curve η : [0,π ] × [0, 2π ] → R

3 defined by

η(θ ,ϕ) :

⎧
⎪⎪⎨

⎪⎪⎩

x(ϕ, θ ) = a + R cos θ sinϕ,

y(ϕ, θ ) = b + R sin θ sinϕ,

z(ϕ, θ ) = c + R cosϕ,

ϕ ∈ [0,π ], θ ∈ [0, 2π ].

It is clear that η([0,π ] × [0, 2π ]) = σ (C, R) and then by integrating with respect to the
surface (arc length) we get

∫∫

σ (C,R)
f (x, y, z) dσ

=
∫∫

σ (C,R)
f (η) dl(η)

=
∫ 2π

0

∫ π

0
f
(
x(ϕ, θ ), y(ϕ, θ ), z(ϕ, θ )

)

×
([

∂x(ϕ, θ )
∂θ

]2

+
[

∂y(ϕ, θ )
∂θ

]2

+
[

∂z(ϕ, θ )
∂θ

]2) 1
2

×
([

∂x(ϕ, θ )
∂ϕ

]2

+
[

∂y(ϕ, θ )
∂ϕ

]2

+
[

∂z(ϕ, θ )
∂ϕ

]2) 1
2

dϕ dθ

=
∫ 2π

0

∫ π

0
f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)R2 sinϕ dϕ dθ

=
3
R

∫ 2π

0

∫ π

0

∫ R

0
f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)ρ2 sinϕ dρ dϕ dθ .

This proves (11). �

The following is a sharp trapezoid type inequality related to (1), where we consider a
function with convex partial derivative (with respect to the radius ρ) absolute values de-
fined on B̄(C, R).

Theorem 2.2 ForV ⊂R
3, suppose that B̄(C, R) ⊂ V◦ whereV◦ is the interior ofV . Consider

f : B̄(C, R) →R which has continuous partial derivatives with respect to the variables ρ , ϕ,
and θ on B̄(C, R) in spherical coordinates. If | ∂f

∂ρ
| is convex on B̄(C, R), then

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣

≤ 1
16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (12)

Furthermore, inequality (12) is sharp.

Proof For fixed ϕ ∈ [0,π ] and θ ∈ [0, 2π ] and arbitrary ρ ∈ [0, R], since

([
∂x(ρ,ϕ, θ )

∂ρ

]2

+
[

∂y(ρ,ϕ, θ )
∂ρ

]2

+
[

∂z(ρ,ϕ, θ )
∂ρ

]2) 1
2

= 1,
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by integration by parts we have

∫ R

0

∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)ρ3 sinϕ dρ

= R3f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)

– 3
∫ R

0
f (a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)ρ2 sinϕ dρ. (13)

So integrating with respect to ϕ ∈ [0,π ] and θ ∈ [0, 2π ] in (13), along with (10) and (11)
obtained in Lemma 2.1 and the convexity of | ∂f

∂ρ
| on B̄(C, R), implies that

∣∣∣∣R
∫∫

σ (C,R)
f (x, y, z) dσ – 3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣

≤
∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
∂f
∂ρ

∣∣∣∣(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)ρ3 sinϕ dρ dϕ dθ

≤
∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
∂f
∂ρ

∣∣∣∣

((
1 –

ρ

R

)
(a, b, c)

+
ρ

R
(a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)

)

× ρ3 sinϕ dρ dϕ dθ

≤
∫ 2π

0

∫ π

0

∫ R

0
ρ3

(
1 –

ρ

R

)∣∣∣∣
∂f
∂ρ

∣∣∣∣(a, b, c) sinϕ dρ dϕ dθ

+
∫ 2π

0

∫ π

0

∫ R

0

ρ4

R

∣∣∣∣
∂f
∂ρ

∣∣∣∣(a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)

× sinϕ dρ dϕ dθ

=
πR4

5

∣∣∣∣
∂f
∂ρ

∣∣∣∣(a, b, c) +
R2

5

∫ ∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (14)

By considering the left-hand side of (1) for | ∂f
∂ρ

| and applying it in (14), we have

∣∣∣∣R
∫∫

σ (C,R)
f (x, y, z) dσ – 3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣

≤ R2

20

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ +
R2

5

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ

=
R2

4

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (15)

By dividing (15) with 4πR3, we obtain the desired result (12).
To show the sharpness of (12), consider the function f : B̄(C, R) → R defined as

f (x, y, z) = R –
√

(x – a)2 + (y – b)2 + (z – c)2.
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Using spherical coordinates, we have f (ρ,ϕ, θ ) = R – ρ , for ρ ∈ [0, R], ϕ ∈ [0,π ] and θ ∈
[0, 2π ]. With some calculations we obtain that

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

=
1

4
3πR3

∫ 2π

0

∫ π

0

∫ R

0
(R – ρ)ρ2 sinϕ dρ dϕ dθ =

R
4

, (16)

and
∫∫

σ (C,R)
f (x, y, z) dσ = 0. (17)

On the other hand, since | ∂f
∂ρ

| = 1,

1
16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ =
R
4

.

From (16) and (17) we have the sharpness of (12). �

Now we obtain the midpoint type inequality related to (1), where the partial derivative
absolute value of considered function defined on B̄(C, R) is convex.

Theorem 2.3 Suppose that B̄(C, R) ⊂ V◦, where V ⊂ R
3. Consider f : B̄(C, R) → R which

has continuous partial derivatives with respect to the variables ρ , ϕ, and θ on B̄(C, R) in
spherical coordinates. If | ∂f

∂ρ
| is convex on B̄(C, R), then

∣∣∣∣
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ ≤ 5
16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (18)

Proof Similar to the proof of Theorem 2.2, for fixed ϕ ∈ [0,π ] and θ ∈ [0, 2π ], we have

∫ R

0

∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) sinϕ dρ

= f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ) sinϕ – f (C) sinϕ. (19)

Integration with respect to the variables ϕ ∈ [0,π ] and θ ∈ [0, 2π ] in (19) implies that

∫ 2π

0

∫ π

0

∫ R

0

∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) sinϕ dρ dϕ dθ

=
1

R2

∫∫

σ (C,R)
f (x, y, z) dσ – 4π f (C).

So from the convexity of | ∂f
∂ρ

| we get

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C)

∣∣∣∣
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≤ 1
4π

∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
∂f
∂ρ

∣∣∣∣(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ) sinϕ dρ dϕ dθ

≤ 1
4π

∫ 2π

0

∫ π

0

∫ R

0

(
1 –

ρ

R

)∣∣∣∣
∂f
∂ρ

∣∣∣∣(C) sinϕ dρ dϕ dθ

+
1

4π

∫ 2π

0

∫ π

0

∫ R

0

ρ

R

∣∣∣∣
∂f
∂ρ

∣∣∣∣(a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ)

× sinϕ dρ dϕ dθ

=
R
2

∣∣∣∣
∂f
∂ρ

∣∣∣∣(C) +
1

8πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (20)

It follows from triangle inequality, (20), (12) and (1)(for | ∂f
∂ρ

|) that

∣∣∣∣
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣

≤ 1
16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ +
R
2

∣∣∣∣
∂f
∂ρ

∣∣∣∣(C) +
1

8πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ

≤ 3
16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ +
1

8πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ

=
5

16πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ ,

which implies the desired result. �

Corollary 2.4 ([17]) Consider a set I ⊂ R
2 with D(C, R) ⊂ I◦. Suppose that the mapping

f : D(C, R) → R has continuous partial derivatives in the disk D(C, R) with respect to the
variables r and θ in polar coordinates. If for any constant θ ∈ [0, 2π ], the function | ∂f

∂r | is
convex with respect to the variable r on [0, R] then

∣∣∣∣
1

2πR

∫

∂(C,R)
f (γ ) dl(γ ) –

1
πR2

∫∫

D(C,R)
f (x, y) dx dy

∣∣∣∣ ≤ 1
6π

∫

∂(C,R)

∣∣∣∣
∂f
∂r

∣∣∣∣(γ ) dl(γ ),

∣∣∣∣
1

πR2

∫∫

D(C,R)
f (x, y) dx dy – f (C)

∣∣∣∣ ≤ 2
3π

∫

∂(C,R)

∣∣∣∣
∂f
∂r

∣∣∣∣(γ ) dl(γ ).

Remark 2.5 In the proof of Theorem 2.3, we can find the following inequality:

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C)

∣∣∣∣

≤ R
2

∣∣∣∣
∂f
∂ρ

∣∣∣∣(C) +
1

8πR

∫∫

σ (C,R)

∣∣∣∣
∂f
∂ρ

∣∣∣∣(x, y, z) dσ . (21)

Although (18) is not sharp, if we consider f (x, y, z) =
√

x2 + y2 + z2 for x, y, z ∈ B̄(C, R), we
will find that inequality (21) is sharp.
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Remark 2.6 If we drop out the convexity condition of | ∂f
∂ρ

| in Theorems 2.2, 2.3, and con-
sider the condition

∥∥∥∥
∂f
∂ρ

∥∥∥∥∞B̄(C,R)

= sup
w∈B̄(C,R)

∣∣f (w)
∣∣ < ∞,

instead of that, then we get the following Ostrowski type inequalities (see [19, 20]) on a
closed ball:

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣ ≤
R‖ ∂f

∂ρ
‖∞B̄(C,R)

4
,

and
∣∣∣∣

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ ≤ R
∥∥∥∥

∂f
∂ρ

∥∥∥∥∞B̄(C,R)

.

3 Lipschitz functions
In this section we consider Lipschitz functions with respect to the Euclidian norm to ob-
tain some trapezoid and mid-point type inequalities on B̄(C, R).

Definition 3.1 ([21]) A function f : V ⊂ R
3 → R is said to satisfy a Lipschitz condition

(briefly, f is L-Lipschitz) on V with respect to a norm ‖ · ‖, if there exists a constant L > 0
such that

∣∣f (x) – f (y)
∣∣ ≤L‖x – y‖,

for any x, y ∈ V .

If f : B̄(C, R) is Lipschitz with respect to the Euclidian norm with the constant L >
0, then for any x = (a + ρ1 cos θ1 sinϕ1, b + ρ1 sin θ1 sinϕ1, c + ρ1 cosϕ1) and y = (a +
ρ2 cos θ2 sinϕ2, b + ρ2 sin θ2 sinϕ2, c + ρ2 cosϕ2), with some calculations we obtain that

∣∣f (x) – f (y)
∣∣ ≤L

√
ρ2

1 + ρ2
2 – 2ρ1ρ2M(ϕ1,ϕ2, θ1, θ2),

where M(ϕ1,ϕ2, θ1, θ2) = [sinϕ1 sinϕ2 cos(θ1 – θ2) + cosϕ1 cosϕ2], ρ1,ρ2 ∈ [0, R], θ1, θ2 ∈
[0, 2π ] and ϕ1,ϕ2 ∈ [0,π ]. Also it is obvious that if f : V ⊆ R

3 → R is Lipschitz with a
constant L > 0 on V , then it is continuous and so integrable on V . We need the following
result.

Lemma 3.2 For any ϕi ∈ [0,π ] and θi ∈ [0, 2π ] (i ∈ {1, 2}) we have

–1 ≤ cos(ϕ1 + ϕ2) ≤M(ϕ1,ϕ2, θ1, θ2) ≤ cos(ϕ1 – ϕ2) ≤ 1.

Proof For any θ1, θ2 ∈ [0, 2π ] it is obvious that cos(θ1 – θ2) ≤ 1. On the other hand, since
for any ϕ1,ϕ2 ∈ [0,π ], sinϕ1 sinϕ2 is nonnegative,

sinϕ1 sinϕ2 cos(θ1 – θ2) ≤ sinϕ1 sinϕ1.
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So

M(ϕ1,ϕ2, θ1, θ2) = sinϕ1 sinϕ2 cos(θ1 – θ2) + cosϕ1 cosϕ2

≤ sinϕ1 sinϕ2 + cosϕ1 cosϕ2 = cos(ϕ1 – ϕ2) ≤ 1.

Similarly, we can prove that M(ϕ1,ϕ2, θ1, θ2) ≥ cos(ϕ1 + ϕ2) ≥ –1. �

The following trapezoid type inequality related to (1) for L-Lipschitz functions on
B̄(C, R) holds.

Theorem 3.3 Let f : B̄(C, R) →R be an L-Lipschitz function. Then

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣ ≤ LR
4

. (22)

Inequality (22) is sharp.

Proof Since f is Lipschitz with constant L > 0 on B̄(C, R), we get

∣∣∣∣

∫ 2π

0

∫ π

0

∫ R

0
f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

–
∫ 2π

0

∫ π

0

∫ R

0
f (a + R cos θ sinϕ, b + R sin θ cosϕ, c + R cosϕ)ρ2 sinϕ dρ dϕ dθ

∣∣∣∣

≤L
∫ 2π

0

∫ π

0

∫ R

0

∥∥(
(ρ – R) cos θ sinϕ, (ρ – R) sin θ sinϕ, (ρ – R) cosϕ

)∥∥

× ρ2 sinϕ dρ dϕ dθ

= L
∫ 2π

0

∫ π

0

∫ R

0
(R – ρ)ρ2 sinϕ dρ dϕ dθ =

LπR4

3
. (23)

Now by replacing (10) and (11) in (23) and then dividing the result by 4
3πR3, we deduce

the desired result.
To prove the sharpness of (22), consider the function f : B̄(C, R) →R defined by

f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) = L(R – ρ),

for L > 0, ρ ∈ [0, R], ϕ ∈ [0,π ], and θ ∈ [0, 2π ]. The function f is Lipschitz with con-
stant L. Consider x = (a + ρ1 cos θ1 sinϕ1, b + ρ1 sin θ1 sinϕ1, c + ρ1 cosϕ1) and y = (a +
ρ2 cos θ2 sinϕ2, b + ρ2 sin θ2 sinϕ2, c + ρ2 cosϕ2), for ρ1,ρ2 ∈ [0, R], ϕ1,ϕ2 ∈ [0,π ], θ1, θ2 ∈
[0, 2π ]. Then by Lemma 3.2 we have

∣∣f (x) – f (y)
∣∣

=
∣∣f (a + ρ1 cos θ1 sinϕ1, b + ρ1 sin θ1 cosϕ1, c + ρ1 cosϕ1)

– f (a + ρ2 cos θ2 sinϕ2, b + ρ2 sin θ2 cosϕ2, c + ρ2 cosϕ2)
∣∣

= L|ρ2 – ρ1| = L
√

ρ2
1 + ρ2

2 – 2ρ1ρ2 ≤L
√

ρ2
1 + ρ2

2 – 2ρ1ρ2M(ϕ1,ϕ2, θ1, θ2)
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= L
∥∥(a + ρ1 cos θ1 sinϕ1, b + ρ1 sin θ1 cosϕ1, c + ρ1 cosϕ1)

– (a + ρ2 cos θ2 sinϕ2, b + ρ2 sin θ2 cosϕ2, c + ρ2 cosϕ2)
∥∥ = L‖x – y‖.

It is not hard to see that f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) ≥ 0 for all 0 ≤ ρ ≤
R, 0 ≤ ϕ ≤ π , and 0 ≤ θ ≤ 2π . Also for the case ρ = R, we have f (a + R cos θ sinϕ, b +
R sin θ cosϕ, c + R cosϕ) = 0. So we have

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣

=
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

=
L

4
3πR3

∫ 2π

0

∫ π

0

∫ R

0
(R – ρ)ρ2 sinϕ dρ dϕ dθ =

LR
4

. �

For L-Lipschitz functions we can obtain a mid-point type inequality as follows:

Theorem 3.4 Let f : B̄(C, R) →R be an L-Lipschitz function. Then

∣∣∣∣
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ ≤ 3LR
4

. (24)

Inequality (24) is sharp.

Proof Since the function f is L-Lipschitz on B̄(C, R), we have

∣∣f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) – f (C)
∣∣

≤L
∥∥(ρ cos θ sinϕ,ρ sin θ cosϕ,ρ cosϕ)

∥∥ = Lρ,

for all ρ ∈ [0, R], ϕ ∈ [0,π ], and θ ∈ [0, 2π ]. It follows that

∣∣∣∣

∫ 2π

0

∫ π

0

∫ R

0
f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

–
∫ 2π

0

∫ π

0

∫ R

0
f (a, b, c)ρ2 sinϕ dρ dϕ dθ

∣∣∣∣

≤
∫ 2π

0

∫ π

0

∫ R

0

∣∣f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) – f (C)
∣∣

× ρ2 sinϕ dρ dϕ dθ

≤L
∫ 2π

0

∫ π

0

∫ R

0
ρ3 sinϕ dρ dϕ dθ = LπR4.

So we obtain that
∣∣∣∣

∫∫∫

B̄(C,R)
f (x, y, z) dV –

4
3
πR3f (C)

∣∣∣∣ ≤LπR4,

which implies the desired result.
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Now consider the function f : B̄(C, R) →R defined by

f (a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) = Lρ,

for L > 0, 0 ≤ ρ ≤ R, 0 ≤ ϕ ≤ π , and 0 ≤ θ ≤ 2π . It is obvious that f (C) = 0. By a similar
method used in the proof of Theorem 3.3, the function f is L-Lipschitz. So we have

∣∣∣∣
1

4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ =
L

4
3πR3

∫ 2π

0

∫ π

0

∫ R

0
ρ3 sinϕ dρ dϕ dθ =

3LR
4

,

showing that inequality (24) is sharp. �

Remark 3.5 Consider an open set V ⊂R
3 including B̄(C, R). For convex function f defined

on V , from Theorem D of Sect. 41 in [21] we have that f is L-Lipschitz on B̄(C, R) and so
from inequalities (22) and (24), along with inequality (1), we get the following results:

0 ≤ 1
4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV ≤ LR

3
,

and

0 ≤ 1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C) ≤ 2LR

3
.

In the following, as an example we obtain a Lipschitz constant L for a real-valued func-
tion defined on a closed ball in R

3.

Example 3.6 Consider W = f (x, y, z) = (x – a)n + (y – b)n + (z – c)n, n ∈N, (x, y, z) ∈ B̄(C, R).
To find a Lipschitz constant for f , we will do some calculations as follows.For A, B ∈
B̄(C, R), consider the path ψ : [0, 1] → B̄(C, R) from B to A in B̄(C, R) as

ψ(t) = tA + (1 – t)B,

for t ∈ [0, 1]. Now using the fundamental theorem of calculus, we obtain that

∣∣f (A) – f (B)
∣∣ =

∣∣f
(
ψ(1)

)
– f

(
ψ(0)

)∣∣ =
∣∣∣∣

∫ 1

0

df (ψ(t))
dt

dt
∣∣∣∣.

On the other hand, from the chain rule for differentiation, we get

df (ψ(t))
dt

= ∇f
(
ψ(t)

) · dψ

dt
= ∇f

(
ψ(t)

)
(A – B),

where ∇f is the gradient vector of f . So using the Euclidean norm ‖ · ‖, we obtain

∣∣∣∣

∫ 1

0

df (ψ(t))
dt

dt
∣∣∣∣ =

∣∣∣∣

∫ 1

0
∇f

(
ψ(t)

)
(A – B) dt

∣
∣∣∣ ≤ ‖A – B‖

∫ 1

0

∥∥∇f
(
ψ(t)

)∥∥dt

≤ ‖A – B‖ sup
u∈B̄(C,R)

∥∥∇f (u)
∥∥,
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which implies

∣∣f (A) – f (B)
∣∣ ≤ ‖A – B‖ sup

u∈B̄(C,R)

∥∥∇f (u)
∥∥.

This shows that L = supu∈B̄(C,R) ‖∇f (u)‖ (if it exists) is a Lipschitz constant for f . Now for
any w = (x, y, z) ∈ B̄(C, R), we have

∇f (w) = n
(
(x – a)n–1, (y – b)n–1, (z – c)n–1),

and then

∥∥∇f (u)
∥∥ = n

√(
(x – a)n–1

)2 +
(
(y – b)n–1

)2 +
(
(z – c)n–1

)2

≤ n
√(

(x – a)2 + (y – b)2 + (z – c)2
)n–1 = nRn–1.

So we can choose L = supu∈B̄(C,R) ‖∇f (u)‖ = nRn–1 as a Lipschitz constant for f on B̄(C, R).

Using the above example, we have the following result:

Example 3.7 For n ∈N\{1}, consider the function f (ρ,ϕ, θ ) = (x0 –ρ)n +(y0 –ρ)n +(z0 –ρ)n

defined on B̄((x0, y0, z0), R) such that x0, y0, z0 > 0, 0 < R ≤ min{x0, y0, z0} and 0 ≤ ρ ≤ R. It
follows that

∇
(

∂f
∂ρ

)
(ρ,ϕ, θ ) = n(n – 1)

(
(x0 – ρ)n–2 + (y0 – ρ)n–2 + (z0 – ρ)n–2, 0, 0

)
,

and then

L = n(n – 1)
(
xn–2

0 + yn–2
0 + zn–2

0
)
,

is a Lipschitz constant for ∇( ∂f
∂ρ

). On the other hand, it is not hard to prove that

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C)

∣∣∣∣ ≤ LR2

2
. (25)

So by (25), we have the following numerical inequality:

∣∣((x0 – R)n + (y0 – R)n + (z0 – R)n) –
(
xn

0 + yn
0 + zn

0
)∣∣

≤ n(n – 1)(xn–2
0 + yn–2

0 + zn–2
0 )R2

2
.

Remark 3.8 For any function f : B̄(C, R) →R, we can apply the structure mentioned in the
above example to obtain a Lipschitz constant L = supz∈B̄(C,R) ‖∇f (z)‖ with respect to the
Euclidian norm ‖ · ‖, provided that the gradient vector of f exists everywhere in B̄(C, R)
and also L < ∞.

Remark 3.9 In Theorems 3.3 and 3.4, if we consider that ∂f
∂ρ

: B̄(C, R) → R is L-Lipschitz
and f : B̄(C, R) → R is integrable, then by (13) and (19) we can obtain (the details are



Rostamian Delavar Journal of Inequalities and Applications        (2020) 2020:114 Page 14 of 17

omitted)

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣ ≤ 1
5
LR2,

and
∣∣∣∣

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C)

∣∣∣∣ ≤ 7
10

LR2.

4 Bounded functions
In the last section we investigate trapezoid and mid-point type inequalities where consid-
ered functions are bounded.

Theorem 4.1 Suppose that V ⊂R
3, B̄(C, R) ⊂ V◦ and f : B̄(C, R) →R has continuous par-

tial derivatives with respect to the variables ρ , ϕ, and θ on B̄(C, R) in spherical coordinates.
If ∂f

∂ρ
is bounded on B̄(C, R), then

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

∣∣∣∣

≤
(UB – LB + |LB + UB|

8

)
R, (26)

where LB and UB are lower and upper bounds of ∂f
∂ρ

on B̄(C, R), respectively.

Proof Consider UB and LB as the upper and lower bounds of an arbitrary function g de-
fined on a set V ⊂R

3, respectively. Then for all x, y, z ∈ V , we have

LB –
LB + UB

2
≤ g(x, y, z) –

LB + UB

2
≤ UB –

LB + UB

2
,

which implies that

∣∣∣∣g(x, y, z) –
LB + UB

2

∣∣∣∣ ≤ UB – LB

2
, (27)

for all x, y, z ∈ V . On the other hand, from (13) we get

∫ 2π

0

∫ π

0

∫ R

0

∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)ρ3 sinϕ dρ dϕ dθ

–
∫ 2π

0

∫ π

0

∫ R

0

LB + UB

2
ρ3 sinϕ dρ dϕ dθ

=
∫ 2π

0

∫ π

0
R3f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ) dϕ dθ

– 3
∫ 2π

0

∫ π

0

∫ R

0
f (a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

– πR4 LB + UB

2
.
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Now if in (27) we consider g = ∂f
∂ρ

, V = B̄(C, R), and utilize Lemma 2.1, then we obtain that

∣∣∣∣R
∫∫

σ (C,R)
f (x, y, z) dσ – 3

∫∫∫

B̄(C,R)
f (x, y, z) dV – πR4 LB + UB

2

∣∣∣∣

≤
∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ) –
LB + UB

2

∣∣∣∣

× ρ3 sinϕ dρ dϕ dθ

≤
∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
UB – LB

2

∣∣∣∣ρ
3 sinϕ dρ dϕ dθ =

UB – LB

2
πR4.

Finally, by the use of the triangle inequality and dividing the result by 4πR3, we obtain
inequality (26). �

Theorem 4.2 Suppose that V ⊂R
3, B̄(C, R) ⊂ V◦ and f : B̄(C, R) →R has continuous par-

tial derivatives with respect to the variables ρ , ϕ, and θ on B̄(C, R) in spherical coordinates.
If ∂f

∂ρ
is bounded on B̄(C, R), then

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C)

∣∣∣∣ ≤
(UB – LB + |LB + UB|

2

)
R, (28)

where LB and UB are lower and upper bounds of ∂f
∂ρ

on B̄(C, R), respectively.

Proof Consider LB and UB as the upper and lower bounds of ∂f
∂ρ

. By (19), the following
relations hold:

∫ 2π

0

∫ π

0

∫ R

0

[
∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ cosϕ, c + ρ cosϕ) –
LB + UB

2

]

× sinϕ dρ dϕ dθ

=
∫ 2π

0

∫ π

0
f (a + R cos θ sinϕ, b + R sin θ sinϕ, c + R cosϕ) sinϕ dϕ dθ

–
∫ 2π

0

∫ π

0
f (C) sinϕ dϕ dθ –

LB + UB

2
R

∫ 2π

0

∫ π

0
sinϕ dϕ dθ

=
1

R2

∫∫

σ (C,R)
f (x, y, z) dσ – 4π f (C) – 2π (LB + UB)R.

This implies that

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C) –

LB + UB

2
R
∣∣∣∣

≤ 1
4π

∫ 2π

0

∫ π

0

∫ R

0

∣∣∣∣
∂f
∂ρ

(a + ρ cos θ sinϕ, b + ρ sin θ sinϕ, c + ρ cosϕ) –
LB + UB

2

∣∣∣∣

× sinϕ dρ dϕ dθ =
UB – LB

2
R.
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Finally, by using the triangle inequality, we get

∣∣∣∣
1

4πR2

∫∫

σ (C,R)
f (x, y, z) dσ – f (C)

∣∣∣∣ ≤
(UB – LB + |LB + UB|

2

)
R. �

Remark 4.3 If f : B̄(C, R) → R is a convex function and bounded from above on B̄(C, R)
(UB exists), then f is bounded on B̄(C, R) because for an arbitrary X ∈ B̄(0, R) and C =
1
2 (X + C) + 1

2 (–X + C), from the convexity of f we have 2f (C) – f (–X + C) ≤ f (X + C). This
implies that 2f (C) – UB ≤ f (X + C) where X + C and –X + C belong to B̄(C, R). Now it is
enough to set LB = 2f (C) – UB.

So if ∂f
∂ρ

: B̄(C, R) →R is convex and bounded from above, then by (26), (28), and (1), the
following inequalities hold:

0 ≤ 1
4πR2

∫∫

σ (C,R)
f (x, y, z) dσ –

1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV

≤
(UB – LB + |LB + UB|

8

)
R,

and

0 ≤ 1
4
3πR3

∫∫∫

B̄(C,R)
f (x, y, z) dV – f (C) ≤

(UB – LB + |LB + UB|
2

)
R,

where LB and UB are lower and upper bounds of ∂f
∂ρ

on B̄(C, R), respectively.
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