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Abstract
The spectral conjugate gradient methods are very interesting and have been proved
to be effective for strictly convex quadratic minimisation. In this paper, a new spectral
conjugate gradient method is proposed to solve large-scale unconstrained
optimisation problems. Motivated by the advantages of approximate optimal stepsize
strategy used in the gradient method, we design a new scheme for the choices of the
spectral and conjugate parameters. Furthermore, the new search direction satisfies
the spectral property and sufficient descent condition. Under some suitable
assumptions, the global convergence of the developed method is established.
Numerical comparisons show better behaviour of the proposed method with respect
to some existing methods for a set of 130 test problems.
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1 Introduction
Consider the following unconstrained optimisation:

min f (x), x ∈ R
n, (1)

where f : Rn →R is continuously differentiable and bounded from below. Conjugate gra-
dient method is one of the most effective line search methods for solving unconstrained
optimisation problem (1) due to its features of low memory requirement and simple com-
putation. Let x0 be an arbitrary initial approximate solution of problem (1). The iterative
formula of conjugate gradient is given by

xk+1 = xk + αkdk , k ≥ 0. (2)

The search direction dk is defined by

dk =

⎧
⎨

⎩

–g0, if k = 0,

–gk + βkdk–1, if k ≥ 1,
(3)
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where gk = ∇f (xk) is the gradient of f (x) at xk and βk is a conjugate parameter. Different
choices of βk correspond to different conjugate gradient methods. Well-known formulas
for βk can be found in [8, 12–14, 17, 26]. The stepsize αk > 0 is usually obtained by the
Wolfe line search

f (xk + αkdk) ≤ f (xk) + c1αkgT
k dk , (4)

gT
k+1dk ≥ c2gT

k dk , (5)

where 0 < c1 ≤ c2 < 1. In order to exclude the points that are far from stationary points
of f (x) along the direction dk , the strong Wolfe line search is used, which requires αk to
satisfy (4) and

∣
∣gT

k+1dk
∣
∣ ≤ c2

∣
∣gT

k dk
∣
∣. (6)

Combining the conjugate gradient method and spectral gradient method [3], a spectral
conjugate gradient method (SCG) was proposed by Bergin et al. [5]. Let sk–1 = xk – xk–1 =
αk–1dk–1 and yk–1 = gk – gk–1. The direction dk is termed as

dk = –θkgk + βksk–1, (7)

where the spectral parameter θk and the conjugate parameter βk are defined by

θk =
sT

k–1sk–1

sT
k–1yk–1

, βk =
(θkyk–1 – sk–1)Tgk

dT
k–1yk–1

,

respectively. Obviously, if θk = 1, the method is one of the classical conjugate gradient
methods; if βk = 0, the method is the spectral gradient method.

The SCG [5] was modified by Yu et al. [32] in order to achieve the descent directions.
Moreover, there are other ways to determine θk and βk . For instance, based on the de-
scent condition, Wan et al. [29] and Zhang et al. [35] presented the modified PRP and FR
spectral conjugate gradient method, respectively. Due to the strong convergence of the
Newton method, Andrei [1] proposed an accelerated conjugate gradient method, which
took advantage of the Newton method to improve the performance of the conjugate gra-
dient method. Following this idea, Parvaneh et al. [24] proposed a new SCG, which is
a modified version of the method suggested by Jian et al. [15]. Masoud [21] introduced
a scaled conjugate gradient method which inherited the good properties of the classical
conjugate gradient. More references in this field can be seen in [6, 10, 20, 28, 34].

Recently, Liu et al. [18, 19] introduced approximate optimal stepsizes (αAOS
k ) for gradient

method. They constructed a quadratic approximation model of f (xk – αgk)

ϕ(α) ≡ f (xk – αgk) = f (xk) – α‖gk‖2 +
1
2
α2gT

k Bkgk ,

where the approximation Hessian matrix Bk is symmetric and positive definite. By min-
imising ϕ(α), they obtained αAOS

k = ‖gk‖2

gT
k Bk gk

and proposed the approximate optimal gradient

methods. If Bk = sT
k–1yk–1
‖sk–1‖2 I is selected, then the αAOS

k reduces to αBB1
k , and the corresponding
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method is BB method [3]. If Bk = 1/ᾱBB
k I is chosen, where ᾱBB

k is some modified BB step-
size, then the αAOS

k reduces to ᾱBB
k , and the corresponding method is some modified BB

method [4, 7, 30]. And if Bk = 1/tI , t > 0, then the αAOS
k is the fixed stepsize t, and the cor-

responding method is the gradient method with fixed stepsize [16, 22, 33]. In this sense,
the approximate optimal gradient method is a generalisation of the BB methods.

In this paper, we propose a new spectral conjugate gradient method based on the idea
of the approximate optimal stepsize. Compared with the SCG method [5], the proposed
method generates the sufficient descent direction per iteration and does not require more
computation costs. Under some assumption conditions, the global convergence of the pro-
posed method is established.

The rest of this paper is organised as follows. In Sect. 2, a new spectral conjugate gradient
algorithm is presented and its computational costs are analysed. The global convergence
of the proposed method is established in Sect. 3. In Sect. 4, some numerical experiments
are used to show that the proposed method is superior to the SCG [5] and DY [8] methods.
Conclusions are drawn in Sect. 5.

2 The new spectral conjugate gradient algorithm
In this section, we propose a new spectral conjugate gradient method with the form of
(7). Let d̄k be a classical conjugate gradient direction. We firstly consider the approximate
model of f (xk + αd̄k)

ψ(α) ≡ f (xk + αd̄k) = f (xk) + αgT
k d̄k +

1
2
α2d̄k

TBkd̄k . (8)

By dψ

dα
= 0, we obtain the approximate optimal stepsize α∗

k associated with ψ(α)

α∗
k = –

gT
k d̄k

d̄k
TBkd̄k

. (9)

Here, we choose BFGS update formula to generate Bk , that is,

Bk = Bk–1 –
Bk–1sk–1sT

k–1Bk–1

sT
k–1Bk–1sk–1

+
yk–1yT

k–1

sT
k–1yk–1

. (10)

To reduce the computational and storage costs, the memoryless BFGS schemes are usu-
ally used to substitute Bk , see [2, 23, 25]. In this paper, we choose Bk–1 as a scalar matrix
ξ

‖yk–1‖2

sT
k–1yk–1

I , ξ > 0. Then (10) can be rewritten as

Bk = ξ
‖yk–1‖2

sT
k–1yk–1

I – ξ
‖yk–1‖2

sT
k–1yk–1

sk–1sT
k–1

sT
k–1sk–1

+
yk–1yT

k–1

sT
k–1yk–1

. (11)

It is easy to prove that if sT
k–1yk–1 > 0, then Bk is symmetric and positive definite. If the

direction d̄k is chosen as DY formula [8], i.e.,

d̄k = dDY
k = –gk + βDY

k sk–1, βDY
k =

‖gk‖2

sT
k–1yk–1

. (12)



Wang et al. Journal of Inequalities and Applications        (2020) 2020:111 Page 4 of 11

Substituting (11) and (12) into (9), we have

α∗
k =

–sT
k–1gk–1

ξ‖yk–1‖2pk
, (13)

where

pk = 1 –
(gT

k sk–1)2

‖gk‖2‖sk–1‖2 +
(

gT
k yk–1

‖gk‖‖yk–1‖ +
‖gk‖

‖yk–1‖
)2

. (14)

To ensure the sufficient descent property of the direction and the bounded property of
spectral parameter θk , the truncating technique in [19] is adopted to choose θk and βk as
follows:

{
θk = max{min{α∗

k , ρ̄k},ρk},
βk = θkβ

DY
k ,

(15)

where ρ̄k = ‖sk–1‖2

sT
k–1yk–1

and ρk = sT
k–1yk–1
‖yk–1‖2 .

Based on the above analyses, we describe the following algorithm.

Algorithm 2.1 (NSCG)
Step 0. Let x0 ∈ R

n, ε > 0, 0 < c1 ≤ c2 < 1 and 1 ≤ ξ ≤ 2. Compute f0 = f (x0) and g0 =
∇f (x0). Set d0 := –g0 and k := 0.

Step 1. If ‖gk‖ ≤ ε, stop.
Step 2. Compute αk by (4) and (6).
Step 3. Set xk+1 = xk + αkdk , and compute gk+1.
Step 4. Compute θk+1 and βk+1 by (15).
Step 5. Compute dk+1 by (7), set k := k + 1. Return to Step 1.

Remark 1 By contrast with the SCG algorithm formula, the extra computational work of
NSCG algorithm seems to require the inner products gT

k–1sk–1 per iteration. But gT
k–1sk–1

should be computed while implementing the Wolfe conditions. It implies that the extra
computational work can be negligible.

Remark 2 It is well known that sT
k–1yk–1 > 0 can be guaranteed by the Wolfe line search.

Since (11) implies a memoryless quasi-Newton update, from the references [27] and [31],
it can be seen

m ≤ ρk ≤ ρ̄k ≤ M,

where m and M are positive constants. Together with (15), the parameter θk satisfies that

m ≤ θk ≤ M. (16)

The following theorem indicates that the search direction generated by NSCG algorithm
satisfies the sufficient descent condition.
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Theorem 2.1 The search direction dk generated by NSCG algorithm is a sufficient descent
direction, i.e.,

gT
k dk ≤ –c‖gk‖2, where c = m/(1 + c2) > 0. (17)

Proof From (6), we have

lk =
gT

k sk–1

gT
k–1sk–1

∈ [–c2, c2]. (18)

Pre-multiplying (7) by gT
k , from (15), (16) and (18), we have

gT
k dk = –θk‖gk‖2 + βkgT

k sk–1

= θk‖gk‖2 1
lk – 1

≤ –
m

1 + c2
‖gk‖2

= –c‖gk‖2,

where c = m/(1 + c2) > 0. �

3 Convergence analysis
In this section, the convergence of NSCG algorithm is analysed. We consider that ‖gk‖ 
= 0
for all k ≥ 0, otherwise a stationary point is obtained. We make the following assumptions.

Assumption 3.1
(i) The level set Ω = {x|f (x) ≤ f (x0)} is bounded.

(ii) In some open neighbourhood N of Ω , the function f is continuously differentiable
and its gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such that

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖ for any x, y ∈ N . (19)

Assumption 3.1 implies that there exists a constant Γ ≥ 0 such that

∥
∥g(x)

∥
∥ ≤ Γ for any x ∈ Ω . (20)

The following lemma called Zoutendijk condition [36] was originally given by Zou-
tendijk et al.

Lemma 3.1 Suppose that Assumption 3.1 holds. Let the sequences {dk} and {αk} be gener-
ated by NSCG algorithm. Then

∞∑

k=0

(gT
k dk)2

‖dk‖2 < ∞. (21)

From Assumption 3.1, Theorem 2.1 and Lemma 3.1, the following result can be proved.
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Lemma 3.2 Suppose that Assumption 3.1 holds. Let the sequences {dk} and {αk} be gener-
ated by NSCG algorithm. Then either

lim inf
k→∞

‖gk‖ = 0 (22)

or

∞∑

k=0

‖gk‖4

‖dk‖2 < ∞. (23)

Proof It is sufficient to prove that if (22) is not true, then (23) holds. We use proofs by
contradiction. Suppose that there exists γ > 0 such that

‖gk‖ ≥ γ for any k ≥ 0. (24)

From (7) and Theorem 2.1, we have

‖dk‖2

‖dk–1‖2 =
(αk–1βk)2‖dk–1‖2 – θ2

k ‖gk‖2 – 2θkdT
k gk

‖dk–1‖2

≥ (αk–1βk)2 – θ2
k

‖gk‖2

‖dk–1‖2 . (25)

Besides, pre-multiplying (7) by gT
k , we have

gT
k dk – αk–1βkgT

k dk–1 = –θk‖gk‖2.

By using the triangle inequality and (6), we get

∣
∣gT

k dk
∣
∣ + c2αk–1|βk|

∣
∣gT

k–1dk–1
∣
∣ ≥ θk‖gk‖2. (26)

Together with Cauchy’s inequality, (26) yields

(
gT

k dk
)2 + (αk–1βk)2(gT

k–1dk–1
)2 ≥ θ2

k
1 + c2

2
‖gk‖4. (27)

Therefore, from (25) and (27), we obtain

(gT
k dk)2

‖dk‖2 +
(gT

k–1dk–1)2

‖dk–1‖2

=
1

‖dk‖2

[
(
gT

k dk
)2 +

‖dk‖2

‖dk–1‖2

(
gT

k–1dk–1
)2

]

≥ 1
‖dk‖2

[
θ2

k
1 + c2

2
‖gk‖4 +

(
gT

k–1dk–1
)2

( ‖dk‖2

‖dk–1‖2 – (αk–1βk)2
)]

≥ ‖gk‖4

‖dk‖2

[
θ2

k
1 + c2

2
– θ2

k
(gT

k–1dk–1)2

‖dk–1‖2
1

‖gk‖2

]

=
‖gk‖4

‖dk‖2 θ2
k

[
1

1 + c2
2

–
(gT

k–1dk–1)2

‖dk–1‖2
1

‖gk‖2

]

. (28)
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It follows from Lemma 3.1 that

lim
k→∞

(gT
k–1dk–1)2

‖dk–1‖2 = 0.

By use of (24) and θk ≥ m, for all sufficiently large k, there exists a positive constant λ such
that

θ2
k

[
1

1 + c2
2

–
(gT

k–1dk–1)2

‖dk–1‖2
1

‖gk‖2

]

≥ λ. (29)

Therefore, from (28) and (29) we have

(gT
k dk)2

‖dk‖2 +
(gT

k–1dk–1)2

‖dk–1‖2 ≥ λ
‖gk‖4

‖dk‖2

holds for all sufficiently large k. Combining with the Zoutendijk condition, we deduce that
inequality (23) holds. �

Corollary 3.1 Suppose that all the conditions of Lemma 3.2 hold. If

∞∑

k=0

1
‖dk‖2 = +∞, (30)

then

lim inf
k→∞

‖gk‖ = 0.

Proof Suppose that there is a positive constant γ such that ‖gk‖ ≥ γ for all k ≥ 0. From
Lemma 3.2, we have

∞∑

k=0

1
‖dk‖2 ≤ 1

γ 4

∞∑

k=0

‖gk‖4

‖dk‖2 ≤ ∞,

which contradicts (30), i.e., Corollary 3.1 is true. �

In the following, we establish the global convergence theorem of NSCG algorithm.

Theorem 3.1 Suppose that Assumption 3.1 holds and the sequence {xk} is generated by
NSCG algorithm. If there exists a constant γ > 0 such that ‖gk‖ ≥ γ , then the algorithm
satisfies

lim inf
k→∞

‖gk‖ = 0. (31)

Proof From Theorem 2.1, we have

gT
k–1sk–1 ≤ –c‖gk–1‖‖sk–1‖.
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Observe that yT
k–1sk–1 = gT

k sk–1 – gT
k–1sk–1 ≥ (c2 – 1)gT

k–1sk–1, we have

yT
k–1sk–1 ≥ c(1 – c2)‖gk–1‖‖sk–1‖.

Moreover, from (15), (17) and (20), we get

βk ≤ M
‖gk‖2

yT
k–1sk–1

≤ M
c(1 – c2)

‖gk‖2

‖gk–1‖‖sk–1‖

≤ MΓ 2

cγ (1 – c2)
1

‖sk–1‖ =
μ

‖sk–1‖ ,

where μ = MΓ 2/cγ (1 – c2). Thus

‖dk‖ ≤ |θk|‖gk‖ + |βk|‖sk–1‖ ≤ MΓ + μ.

This implies that
∑∞

k=0 1/‖dk‖2 = ∞. By Corollary 3.1, (31) holds. �

4 Numerical results
In this section, we show the computational performance of NSCG algorithm. All codes are
written in Matlab R2015b and run on PC with 2.50 GHz CPU processor and 4.00 GB RAM
memory. Our test problems consist of 130 examples [9] from 100 to 5,000,000 variables.

We implement the same stopping criterion

‖gk‖ ≤ ε or
∣
∣f (xk+1) – f (xk)

∣
∣ ≤ ε max

{
1.0,

∣
∣f (xk)

∣
∣
}

. (32)

Set the parameters ε = 10–6, ξ = 1.0001, c1 = 0.0001 and c2 = 0.9.
Liu et al. [19] proposed GM_AOS 1, GM_AOS 2 and GM_AOS 3 algorithms, and

GM_AOS 2 algorithm was slightly better than the other algorithms. When the quadratic
model is considered, the algorithm developed by [18] is identical with GM_AOS 1 algo-
rithm. In a certain sense, our algorithm can be viewed as an extension of SCG algorithm
[5] and a modification of DY algorithm[8]. Therefore, we adopt the performance profiles
introduced by Dolan et al. [11] to display the numerical performances of NSCG, SCG, DY
and GM_AOS 2 algorithms.

It is noticed that the number of iterations (Itr), the number of function evaluations (NF),
the number of gradient evaluations (NG) and the CPU time (Tcpu) are important factors
showing the numerical performance of an optimal method. In profiles, the top curve is the
method that solved the most problems in a time that was within a factor of the best time.
The horizontal axis gives the percentage (τ ) of the test problems for which a method is
the fastest (efficiency), while the vertical side gives the percentage (ψ) of the test problems
that are successfully solved by each of the methods. Moreover, we present the number of
problems solved by the tested algorithms with a minimum number of Itr, NF and NG and
the minimum Tcpu. If programme runs failure, we denote the number of Itr, NF, NG by
a large positive integer, respectively, and denote the Tcpu by 1000 seconds. In this way,
only NSCG algorithm can solve all test problems. However, SCG, DY and GM_AOS 2
algorithms do 98.5%, 93.8% and 92.3% of problems, respectively.

From Figs. 1–4, we can see that NSCG algorithm is the top performer, being more suc-
cessful and more robust than SCG, DY and GM_AOS 2 algorithms. For example, in Fig. 1,
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Figure 1 Performance profiles for the number of iterations

Figure 2 Performance profiles for the number of function evaluations

subject to Itr, NSCG algorithm outperforms in 62 problems (i.e., it achieves the minimum
number of iterations in 130 problems), SCG algorithm outperforms in 28 problems, DY
algorithm outperforms in 23 problems, while GM_AOS 2 outperforms in 17 problems.
Observe that NSCG algorithm is also the fastest of the three algorithms in Figs. 2, 3 and
4. To conclude, NSCG algorithm is more effective than other algorithms with respect to
all the measures (Itr, NF, NG, Tcpu).

5 Conclusions
In this paper, a new spectral conjugate gradient method is proposed based on the idea
of approximate optimal stepsize. Besides, the memoryless BFGS formula is embedded in
our algorithm to reduce the computational and storage costs. Under some assumptions,
global convergence of the proposed method is established. Numerical results show that
this method is efficient and competitive.
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Figure 3 Performance profiles for the number of gradient evaluations

Figure 4 Performance profiles for the CPU time
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